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สารจากอธิการบดี มหาวิทยาลัยอุบลราชธานี

มหาวิทยาลัยอุบลราชธานี มีวิสัยทัศนในการเปนมหาวิทยาลัยช้ันนำในอาเซียน ท่ียกระดับคุณภาพ

ชีวิตใหแกสังคม โดยมีพันธกิจ 4 ดานประกอบไปดวย ดานท่ี1 สรางบัณฑิตท่ีมีสมรรถนะสูง มีทักษะการเปนผู

ประกอบการ สามารถปฏิบัติงานไดจริงเพ่ือตอบโจทยอุตสาหกรรม ดานท่ี2 สรางองคความรูและนวัตกรรม

เพ่ือพัฒนาคุณภาพชีวิตและสรางมูลคาเพ่ิมใหกับเศรษฐกิจและสังคม ดานท่ี3 บริการวิชาการ เพ่ือถายทอด

องคความรู เทคโนโลยีและนวัตกรรมท่ีตอบสนองความตองการของสังคมและภาคอุตสาหกรรม และดานท่ี4

สงเสริมวัฒนธรรมและภูมิปญญาอีสานใตอยางสรางสรรคเพ่ือสรางมูลคาเพ่ิมทางเศรษฐกิจ ซ่ึงในการจัดการ

ประชุมวิชาการทางคณิตศาสตร คร้ังท่ี 28 ประจำป 2567 The 28th Annual Meeting in Mathematics

2024 (AMM2024) ในหัวขอ Mathematics in a Changing World (คณิตศาสตรภายใตการเปล่ียนแปลง

ของโลก) ซ่ึงมหาวิทยาลัยอุบลราชธานีโดยภาควิชาคณิตศาสตร สถิติและคอมพิวเตอร คณะวิทยาศาสตรได

เปนเจาภาพ เพ่ือนำเสนอผลงานวิจัยทางดานกลุมคณิตศาสตรและคณิตศาสตรประยุกต สถิติ สถิติประยุกต

วิทยาการขอมูล คณิตศาสตรศึกษา และกลุมวิจัยอ่ืน ๆ ท่ีเก่ียวของ ซ่ึงเปนเวทีสำหรับนักวิจัยท้ังระดับชาติและ

นานาชาติไดเผยแพรงานวิจัยและแลกเปล่ียน องคความรู เพ่ือจะนำไปสูคณิตศาสตรภายใตการเปล่ียนแปลง

โลกตอไป

ในการจัดงานคร้ังน้ีเปนกิจกรรมทางวิชาการท่ีมีความสำคัญท่ีจะชวยสงเสริมสนับสนุนการพัฒนา

คุณภาพการศึกษาและงานวิจัยตลอดจนพัฒนาองคความรูจากการวิจัยท่ีมีคุณภาพไปสูการพัฒนาและ

ประยุกตใชเพ่ือเปนประโยชนท้ังตอองคกร สังคมและประเทศชาติ อีกท้ังยังสอดรับกับวิสัยทัศนและพันธกิจ

ของมหาวิทยาลัยอุบลราชธานีดดวย การประชุมวิชาการคร้ังน้ีไดเปดโอกาสให นักศึกษา คณาจารยและนัก

วิชาการไดนำเสนอผลงานวิจัยตอท่ีประชุม เพ่ือเผยแพรผลงานวิจัยสูสาธารณะชน อันจะทำใหเกิดการ

แลกเปล่ียนความคิดเห็นระหวางนักวิจัยในสาขาวิชาตาง ๆ ท่ีเก่ียวของ ท้ังในสถาบันการศึกษาเดียวกันและ

ระหวางสถาบันการศึกษาอันจะนำไปสูการพัฒนาคุณภาพงานวิจัยตอไป

ดิฉันหวังเปนอยางย่ิงวาการประชุมวิชาการในคร้ังน้ีจะเปนอีกกาวหน่ึงท่ีเปดโอกาสใหกับอาจารย นัก

วิจัย นิสิตนักศึกษา ของมหาวิทยาลัยตางๆ ตลอดจนผูสนใจทุกทานแลกเปล่ียนเรียนรูรวมกัน เพ่ือเปนเครือ

ขายการสรางสรรคงานวิจัย และสามารถนำองคความรูท่ีไดจากงานวิจัยไปประยุกตใชใหเกิดประสิทธิภาพ

และประสิทธิผลอยางแทจริง กับสังคมและประเทศชาติในอนาคต

(รองศาสตราจารย ดร.ชุตินันท ประสิทธ์ิภูริปรีชา)

อธิการบดีมหาวิทยาลัยอุบลราชธานี
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สารจากนายกสมาคมคณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ

ในนามของสมาคมคณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ ดิฉันขอแสดงความ

ยินดีเปนอยางย่ิง ท่ีการจัดประชุมวิชาการคณิตศาสตรคร้ังท่ี 28 ประจำป 2567 (AMM 2024) ภายใตหัวขอ

“Mathematics in a Changing World หรือ คณิตศาสตรภายใตการเปล่ียนแปลงของโลก” สำเร็จไปไดดวย

ดี โดยความรวมมือรวมแรงรวมใจของบุคลากรภาควิชาคณิตศาสตร สถิติ และคอมพิวเตอร คณะวิทยาศาสตร

มหาวิทยาลัยอุบลราชธานี เปนสำคัญ

การจัดการประชุมวิชาการประจำป หรือ AMM ของชาวคณิตศาสตรจากท่ัวประเทศท่ีศูนย

สงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย (CEPMART) ภายใตสมาคมคณิตศาสตรแหงประเทศไทย ใน

พระบรมราชูปถัมภ และมหาวิทยาลัยตาง ๆ ท่ัวประเทศ มีสวนรวมดวยน้ัน มีความมุงหมายหลักเพ่ือใหเปน

เวทีในการนำเสนอผลงานวิจัยใหม ๆ ทางคณิตศาสตร คณิตศาสตรประยุกต สถิติ สถิติประยุกต วิทยาการ

คอมพิวเตอร วิทยาการขอมูล และคณิตศาสตรศึกษา อีกท้ังยังเปนเวทีในการแลกเปล่ียนเรียนรูความกาวหนา

ทางวิชาการ ดานคณิตศาสตรแขนงตาง ๆ โดยมีกำหนดจัดประชุมเปนประจำทุกปในการประชุมคร้ังน้ี มีการ

บรรยายพิเศษ และการเสวนาทางวิชาการโดยวิทยากรผูทรงคุณวุฒิจากท่ัวทุกมุมโลกเหมือนเชนเคย สมาคม

คณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ หวังเปนอยางย่ิงวาครู อาจารย นิสิต นักศึกษา และผู

สนใจคณิตศาสตรตลอดจนศาสตรท่ีเก่ียวของ ท่ีไดเขารวมประชุมวิชาการในคร้ังน้ี จะไดรับประโยชนจาก

การนำประสบการณท่ีไดรับไปพัฒนา และตอยอดองคความรู อีกท้ังนำไปถายทอดใหแพรหลายตอไปดวย

สมาคมคณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ ขอขอบคุณภาควิชา

คณิตศาสตร สถิติ และคอมพิวเตอร คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี ท่ีใหเกียรติเปนเจาภาพการ

จัดการประชุม AMM คร้ังน้ี และขอขอบคุณทุกทานท่ีมีสวนรวมในการจัดประชุมดวยความวิริยะอุตสาหะย่ิง

สุดทายน้ี ขอใหการประชุมวิชาการคร้ังน้ี เปนด่ังสะพานเช่ือมไปสูความรวมมือกันระหวางนักคณิตศาสตรทุก

แขนงจากสถาบันและองคกรตาง ๆ ท่ัวประเทศและท่ัวโลก และนำไปสูการประยุกตใชความรู ความสามารถ

ไปพัฒนานวัตกรรมดานวิทยาศาสตร คณิตศาสตร และเทคโนโลยี เพ่ือความเจริญรุงเรืองท่ีย่ังยืนของ

ประเทศชาติอันเปนท่ีรักของพวกเราสืบไป

(ศาสตราจารยกิตติคุณ ดร. พัฒนี อุดมกะวานิช)

นายกสมาคมคณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ
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สารจากผูอำนวยการศูนยสงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย

การจัดประชุมวิชาการทางคณิตศาสตรประจำป (Annual Meeting in Mathematics) เปนการ

ประชุมท่ีสำคัญของประชาคมชาวคณิตศาสตรในประเทศไทยท่ีจะมาพบกันเพ่ือฟงการบรรยายจาก

ผูเช่ียวชาญเฉพาะดาน ในสาขาตาง ๆ ทางคณิตศาสตรและสาขาท่ีเก่ียวของกับคณิตศาสตร เพ่ือใหเกิดการ

ตระหนักรูของ ความกาวหนาและวิทยาการใหม ๆ รวมไปถึงการนำคณิตศาสตรไปใชในดานตาง ๆ และยัง

เปนเวทีใหนักวิจัย ท้ังรุนเกาและรุนใหมไดนำเสนอผลงาน เพ่ือแลกเปล่ียนเรียนรูกับผูท่ีสนใจท่ีอยูตางสถาบัน

กัน ซ่ึงอาจจะนำไปสู ความรวมมือทางดานงานวิจัยตอไปในอนาคต

สถาบันท่ีมีหลักสูตรคณิตศาสตรในประเทศไทยไดรวมมือหมุนเวียนกันเปนเจาภาพรวมจนถึงคร้ังน้ี

โดยภาควิชาคณิตศาสตร สถิติและคอมพิวเตอร คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี ไดรับเปน

เจาภาพจัดการประชุมวิชาการทางคณิตศาสตร ประจำป 2567 โดยเปนการประชุมวิชาการระดับชาติ คร้ังท่ี

28 ระหวางวันท่ี 29 - 31 พฤษภาคม 2567 ในหัวขอ “Mathematics in a Changing World คณิตศาสตร

ภายใตการเปล่ียนแปลงของโลก” ท้ังน้ี การจัดประชุมวิชาการทางคณิตศาสตร จะเปนเวทีสำหรับนักวิจัยท้ัง

ระดับชาติและระดับนานาชาติไดเผยแพรงานวิจัย และแลกเปล่ียนองคความรู เพ่ือจะนำไปสูคณิตศาสตรภาย

ใตการเปล่ียนแปลงของโลก ตอไป

ในนามของผูอำนวยการศูนยสงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย (CEPMART) ขอขอบคุณ

คณะทำงาน ภาควิชาคณิตศาสตร สถิติและคอมพิวเตอร คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี เปน

อยางย่ิง ท่ีใหความกรุณารับเปนเจาภาพการจัดการประชุมทางคณิตศาสตรประจำป ในคร้ังน้ี และขออวยพร

ใหการจัดงานคร้ังน้ีสำเร็จราบร่ืนดวยดีทุกประการ และขอใหคณะทำงาน ทุกทานมีสุขภาพแข็งแรงท้ังกายและ

ใจ มีกำลังใจในการทำงาน กาวผานปญหาและอุปสรรคตาง ๆ อยางราบร่ืนดวยดี

(รองศาสตราจารย ดร.ศจี เพียรสกุล)

ผูอำนวยการศูนยสงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย
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สารจากคณบดีคณะวิทยาศาสตร์  มหาวิทยาลัยอุบลราชธานี 

 

คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี มีวิสัยทัศน์ในการเป็นสถาบันชั้นนำด้านวิจัยวิทยาศาสตร์
ระดับประเทศ  โดยมีพันธกิจ 3 ด้านประกอบไปด้วย ด้านที่ 1 ผลิตบัณฑิตที่พึงประสงค์ด้านวิทยาศาสตร์และ
เทคโนโลยีที่มีความโดดเด่นทางด้านทักษะดิจิทัล (Digital Literacy and Accessibility) ด้านที ่2 ผลิตงานวิจัย
ที่เป็นที่ยอมรับในระดับสากลและสร้างนวัตกรรมเพ่ือตอบโจทย์ความต้องการของประเทศ และสร้างความยั่งยืน
ให้ชุมชน และด้านที ่3 บริการวิชาการตอบโจทย์ความต้องการของผู้รับบริการ สร้างคุณค่าร่วมกับสังคมเพ่ือการ
พัฒนาที่ยั่งยืนซึ่งในการจัดการประชุมวิชาการทางคณิตศาสตร์ ครั้งที่ 28 ประจำปี 2567 The 28th Annual 
Meeting in Mathematics 2024 (AMM2024)  ในหัวข้อ Mathematics in a Changing World (คณิตศาสตร์
ภายใต้การเปลี ่ยนแปลงของโลก) โดยภาควิชาคณิตศาสตร์ สถิติและคอมพิวเตอร์ คณะวิทยาศาสตร์ 
มหาวิทยาลัยอุบลราชธานีมหาวิทยาลัยได้เป็นเจ้าภาพ เพื่อนำเสนอผลงานวิจัยทางด้านกลุ่มคณิตศาสตร์และ
คณิตศาสตร์ประยุกต์  สถิติ สถิติประยุกต์  วิทยาการข้อมูล คณิตศาสตรศึกษา และกลุ่มวิจัยอื่น ๆ ที่เกี่ยวข้อง 
ซึ่งเป็นเวทีสำหรับนักวิจัยทั้งระดับชาติและ นานาชาติได้เผยแพร่งานวิจัยและแลกเปลี่ยน องค์ความรู้ เพื่อจะ
นำไปสู่คณิตศาสตร์ภายใต้การเปลี่ยนแปลงโลกต่อไป  

ในการจัดงานครั้งนี้เป็นกิจกรรมทางวิชาการที่มีความสำคัญที่จะช่วยส่งเสริมสนับสนุนการพัฒนา 

คุณภาพการศึกษาและงานวิจัยตลอดจนพัฒนาองค์ความรู ้จากการวิจัยที ่มีคุณภาพไปสู ่การพัฒนาและ

ประยุกต์ใช้เพื่อเป็นประโยชน์ทั้งต่อองค์กร สังคมและประเทศชาติ อีกท้ังยังสอดรับกับวิสัยทัศน์และพันธกิจของ

คณะวิทยาศาสตร์ด้วย การประชุมวิชาการครั้งนี้ได้เปิดโอกาสให้ นักศึกษา คณาจารย์และนักวิชาการได้

นำเสนอผลงานวิจัยต่อที่ประชุม เพื่อเผยแพร่ผลงานวิจัยสู่สาธารณะชน อันจะทำให้เกิดการแลกเปลี่ยนความ

คิดเห็นระหว่างนักวิจัยในสาขาวิชาต่าง ๆ ที ่เกี ่ยวข้อง ทั ้งในสถาบันการศึกษาเดียวกันและระหว่าง

สถาบันการศึกษาอันจะนำไปสู่การพัฒนาคุณภาพงานวิจัยต่อไป  

ดิฉันหวังเป็นอย่างยิ่งว่าการประชุมวิชาการในครั้งนี้จะเป็นอีกก้าวหนึ่งที่เปิดโอกาสให้กับอาจารย์  

นักวิจัย นิสิตนักศึกษา ของมหาวิทยาลัยต่างๆ ตลอดจนผู้สนใจทุกท่านแลกเปลี่ยนเรียนรู้ร่วมกัน เพื่อเป็น

เครือข่ายการสร้างสรรค์งานวิจัย และสามารถนำองค์ความรู้ที่ได้จากงานวิจัยไปประยุกต์ใช้ให้เกิดประสิทธิภาพ 

และประสิทธิผลอย่างแท้จริง กับสังคมและประเทศชาติในอนาคต  

 
 

(ศาสตราจารย์ ดร.ศิริพร จึงสุทธิวงษ์) 
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คำนำ

สมาคมคณิตศาสตรแหงประเทศไทยในพระบรมราชูปถัมภ โดยศูนยสงเสริมการวิจัยคณิตศาสตรแหง

ประเทศไทย (Center for Promotion of Mathematical Research of Thailand) ไดเร่ิมจัดประชุม

วิชาการทางคณิตศาสตรระดับประเทศ ต้ังแตปพุทธศักราช 2538 และจัดตอเน่ืองเปนประจำทุกป โดยมีภาค

วิชา คณิตศาสตรของมหาวิทยาลัยตาง ๆ หมุนเวียนกันเปนเจาภาพ

ในปพุทธศักราช 2567 สาขาวิชาคณิตศาสตร ภาควิชาคณิตศาสตร สถิติ และคอมพิวเตอร คณะ

วิทยาศาสตรมหาวิทยาลัยอุบลราชธานี ไดรับมอบหมายจากศูนยสงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย

ใหเปนเจาภาพจัดการประชุมวิชาการทางคณิตศาสตรระดับชาติ คร้ังท่ี 28 ประจำปพุทธศักราช 2567 ใน

หัวขอ “Mathematics in a changing world คณิตศาสตรในโลกท่ีกำลังเปล่ียนแปลง” ระหวางวันท่ี 29 –

31 พฤษภาคม 2567 โดยกลุมงานวิจัยท่ีสามารถนำเสนอไดในการประชุมวิชาการคร้ังน้ีไดแก กลุมคณิตศาสตร

และคณิตศาสตรประยุกต กลุมสถิติ สถิติประยุกต และวิทยาการขอมูล กลุมคณิตศาสตรศึกษา และกลุมวิจัย

อ่ืน ๆ ท่ีเก่ียวของ ท้ังน้ีมีจุดมุงหมายเพ่ือท่ีจะใหครู อาจารย นักวิชาการ นักวิจัย นิสิตและนักศึกษา รวมท้ังผูท่ี

สนใจและทำงานท่ีเก่ียวของกับคณิตศาสตรในสาขาตาง ๆ ไดมาพบปะ แลกเปล่ียนความรูและประสบการณ

ทางดานการทำวิจัย การเรียนการสอนทางคณิตศาสตร ซ่ึงทำใหเกิดความรวมมือในการทำงานทางคณิตศาสตร

ระหวางสถาบัน และเสริมสรางความเขมแข็งทางวิชาการดานคณิตศาสตร

การประชุมคร้ังน้ีไดรับเกียรติจากผูทรงคุณวุฒิมาเปนวิทยากรบรรยายพิเศษจำนวน 7 ทาน ไดแก

Professor Dr. Malgorzata Peszynska Mr. Alain Jean Alherbe รองศาสตราจารย ดร.ธีระเดช เจียรสุข

สกุล รองศาสตราจารย ดร.ชัชวาล ปานรักษา รองศาสตราจารย ดร.สายันต แกนนาคำ ผูชวยศาสตราจารย

ดร.วีระชัย สาระคร และ ดร.วุฒิศักด์ิ ตรงศิริวัฒน นอกจากน้ียังมีเสวนาวิชาการในหัวขอคณิตศาสตรภายใต

การเปล่ียนแปลงของโลก โดยมีผูรวมเสวนาคือ รองศาสตราจารย ดร.กิตติกร นาคประสิทธ์ิ รอง

ศาสตราจารย ดร.นพรัตน โพธ์ิชัย รองศาสตราจารย ดร.รตินันท บุญเคลือบ และวาท่ี ร.อ. ดร.ภณัฐ กวยเจ

ริญพานิชก เปนพิธีกรดำเนินรายการ รวมท้ังมีการนำเสนอผลงานภาคบรรยายทางคณิตศาสตรในกลุม

คณิตศาสตรและคณิตศาสตรประยุกต กลุมสถิติ สถิติประยุกต และวิทยาการขอมูล กลุมคณิตศาสตรศึกษา

และกลุมวิจัยอ่ืน ๆ ท่ีเก่ียวของ จำนวน 82 ผลงาน และมีผูเขารวมประชุมประมาณ 210 คน โดยบทคัดยอของ

ผลงานนำเสนอท้ังหมดจะถูกตีพิมพในหนังสือรวบรวมบทคัดยอ (Book of Abstracts) และบางผลงานวิจัย

ฉบับเต็ม (Full Papers) จะถูกนำไปตีพิมพในเอกสารสืบเน่ืองการประชุม (Proceedings) วารสาร

วิทยาศาสตรและวิทยาศาสตรศึกษา วารสารวิทยาศาสตรและเทคโนโลยี มหาวิทยาลัยอุบลราชธานี Thai

Journal of Mathematics (Special Issue: AMM 2024)

v



ภาควิชาคณิตศาสตร สถิติ และคอมพิวเตอร ขอขอบคุณสมาคมคณิตศาสตรแหงประเทศไทยในพระ

บรมราชูปถัมภ ศูนยสงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย และคณะวิทยาศาสตร มหาวิทยาลัย

อุบลราชธานี ท่ีเปนสวนหน่ึงในการสนับสนุนงบประมาณในการจัดประชุมคร้ังน้ี นอกจากน้ี ยังขอขอบคุณแขก

รับเชิญ วิทยากรบรรยายพิเศษ ผูเขารวมเสวนา ผูทรงคุณวุฒิพิจารณาบทความ ประธานนำเสนอในแตละหอง

ผูนำเสนอผลงาน และผูเขารวมประชุมทุกทาน สุดทายน้ีขอขอบคุณกรรมการดำเนินงานทุกทานท่ีอุทิศเวลา

แรงกาย แรงใจ อยางสุดความสามารถจนทำใหการประชุมคร้ังน้ีประสบความสำเร็จดังวัตถุประสงค ท้ังน้ีหาก

เอกสารฉบับน้ีมีขอบกพรอง รวมท้ังการจัดประชุมมีขอบกพรองประการใด ทางภาควิชา ฯ ขออภัยทานไว ณ

ท่ีน้ี และขอนอมรับคำติชมจากทุกทานเพ่ือนำไปปรับปรุงในการจัดประชุมในโอกาสตอไป

(รองศาสตราจารยศราวุธ แสนการุณ)

ประธานดำเนินงาน
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การประชุมวิชาการทางคณิตศาสตร คร้ังท่ี 28 ประจำป 2567

The 28th Annual Meeting in Mathematics (AMM 2024)

Mathematics in a Changing World (คณิตศาสตรภายใตการเปล่ียนแปลงของโลก)

วันท่ี 29 – 31 พฤษภาคม พ.ศ. 2567

ณ อาคารเฉลิมพระเกียรติ 7 รอบพระชนมพรรษา มหาวิทยาลัยอุบลราชธานี

วันพุธท่ี 29 พฤษภาคม พ.ศ. 2567

8.00 น. รถบัสรับสงผูเขารวมประชุมออกเดินทางจากโรงแรมบานสวนคุณตา กอลฟ แอนด รีสอรท

โรงแรมอยูดวยกัน การเดน โฮม และโรงแรมแหวนเพชรเพลส ไปยังอาคารเฉลิมพระเกียรติ

7 รอบพระชนมพรรษา มหาวิทยาลัยอุบลราชธานี

8.00 – 9.00 น. ลงทะเบียนเขารวมงาน

9.00 – 9.30 น. กลาวรายงาน โดย รองศาสตราจารย ดร.ศราวุธ แสนการุณ ประธานจัดการประชุมฯ

พิธีเปด โดยอธิการบดี มหาวิทยาลัยอุบลราชธานี

กลาวตอนรับ โดย

- ผูอำนวยการศูนยสงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย (CEPMART)

- คณบดีคณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

9.30 – 9.45 น. ถายรูปหมูรวมกัน

9.45 – 10.00 น. พักรับประทานอาหารวาง

10.00 – 11.00 น. การบรรยายพิเศษแบบ online เร่ือง Underground Computational Mathematics:

Models and Analyses of an Evolving Subsurface of Planet Earth

โดย Professor Dr. Malgorzata Peszynska, Oregon State University, USA

11.00 – 12.00 น. การบรรยายพิเศษ เร่ือง Safeguarding Data Privacy: Exploring Full Homomorphic

Encryption โดย Mr. Alain Jean Alherbe มหาวิทยาลัยอุบลราชธานี

12.00 – 13.00 น. พักรับประทานอาหารกลางวัน

13.00 – 13.50 น. การบรรยายพิเศษเร่ือง Arithmetic Dynamics: Bridging Order and Chaos

โดย รองศาสตราจารย ดร.ชัชวาล ปานรักษา มหาวิทยาลัยมหิดล

การบรรยายพิเศษเร่ือง Unleashing the Potential of Applied Mathematics in AI

and Machine Learning for Modern Industry

โดย รองศาสตราจารย ดร.สายันต แกนนาคำ มหาวิทยาลัยเทคโนโลยีสุรนารี

13.50 – 14.50 น. การนำเสนอผลงานกลุมยอย

14.50 – 15.10 น. พักรับประทานอาหารวาง

15.10 – 16.30 น. การนำเสนอผลงานกลุมยอย
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16.30 – 18.00 น. เย่ียมชม เฮือนกำนันคาเฟ หนองอีเจม

14.00 – 17.00 น. ประชุมคณะกรรมการศูนยสงเสริมการวิจัยคณิตศาสตรแหงประเทศไทย (CEPMART)

18.00 – 20.00 น. งานเล้ียงรับรอง

20.00 น. รถบัสรับสงผูเขารวมประชุมออกเดินทางจากอาคารเฉลิมพระเกียรติ 7 รอบพระชนมพรรษา

มหาวิทยาลัยอุบลราชธานี ไปยังโรงแรมบานสวนคุณตา กอลฟ แอนด รีสอรท โรงแรมอยู

ดวยกัน การเดน โฮม และโรงแรมแหวนเพชรเพลส

วันพฤหัสบดีท่ี 30 พฤษภาคม พ.ศ. 2567

8.00 น. รถบัสรับสงผูเขารวมประชุมออกเดินทางจากโรงแรมบานสวนคุณตา กอลฟ แอนด รีสอรท

โรงแรมอยูดวยกัน การเดน โฮม และโรงแรมแหวนเพชรเพลส ไปยังอาคารเฉลิมพระเกียรติ

7 รอบพระชนมพรรษา มหาวิทยาลัยอุบลราชธานี

9.00 – 10.00 น. การบรรยายพิเศษเร่ือง การพัฒนาสมรรถนะดานคณิตศาสตรของ PISA ใหกับครูและ

นักเรียนในยุคดิจิทัล

โดย รองศาสตราจารย ดร.ธีระเดช เจียรสุขสกุล ผูอำนวยการสถาบันสงเสริมการสอน

วิทยาศาสตรและเทคโนโลยี (สสวท.)

10.00 – 10.20 น. พักรับประทานอาหารวาง

10.20 – 12.00 น. การนำเสนอผลงานกลุมยอย

12.00 – 13.00 น. พักรับประทานอาหารกลางวัน

13.00 – 13.50 น. การบรรยายพิเศษเร่ือง KKU Smart Mathematics Learning Platform for Secondary

Schools โดย ผูชวยศาสตราจารย ดร.วีระชัย สาระคร มหาวิทยาลัยขอนแกน

การบรรยายพิเศษเร่ือง Decoding Modern Banking: A Mathematician's Guide

โดย ดร.วุฒิศักด์ิ ตรงศิริวัฒน รองผูอำนวยการฝาย Data Innovation ธนาคารกรุงไทย

13.50 – 14.50 น. การนำเสนอผลงานกลุมยอย

14.50 – 15.10 น. พักรับประทานอาหารวาง

15.10 – 16.30 น. การนำเสนอผลงานกลุมยอย

16.30 น. รถบัสรับสงผูเขารวมประชุมออกเดินทางจากอาคารเฉลิมพระเกียรติ 7 รอบพระชนมพรรษา

มหาวิทยาลัยอุบลราชธานี ไปยังโรงแรมบานสวนคุณตา กอลฟ แอนด รีสอรท โรงแรมอยู

ดวยกัน การเดน โฮม และโรงแรมแหวนเพชรเพลส

วันศุกรท่ี 31 พฤษภาคม พ.ศ. 2567

8.00 น. รถบัสรับสงผูเขารวมประชุมออกเดินทางจากโรงแรมบานสวนคุณตา กอลฟ แอนด รีสอรท

โรงแรมอยูดวยกัน การเดน โฮม และโรงแรมแหวนเพชรเพลส ไปยังอาคารเฉลิมพระเกียรติ

7 รอบพระชนมพรรษา มหาวิทยาลัยอุบลราชธานี

9.00 – 10.00 น. การนำเสนอผลงานกลุมยอย

10.00 – 10.10 น. พักรับประทานอาหารวาง
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10.10 – 11.30 น. เสวนาวิชาการ: Mathematics in a Changing World

(คณิตศาสตรภายใตการเปล่ียนแปลงของโลก)

รองศาสตราจารย ดร.กิตติกร นาคประสิทธ์ิ มหาวิทยาลัยขอนแกน

รองศาสตราจารย ดร.นพรัตน โพธ์ิชัย สถาบันเทคโนโลยีพระจอมเกลาเจาคุณทหาร

ลาดกระบัง

รองศาสตราจารย ดร.รตินันท บุญเคลือบ จุฬาลงกรณมหาวิทยาลัยและเลขาธิการสมาคม

คณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ

วาท่ี ร.อ. ดร.ภณัฐ กวยเจริญพานิชก สถาบันสงเสริมการสอนวิทยาศาสตรและเทคโนโลยี

(สสวท.) พิธีกรดำเนินรายการ

11.30 – 12.00 น. พิธีปด โดยนายกสมาคมคณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ

พิธีมอบธง

- มอบธงจากมหาวิทยาลัยอุบลราชธานีโดยคณบดีคณะวิทยาศาสตร

มหาวิทยาลัยอุบลราชธานีสูสมาคมคณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ

รับโดยนายกสมาคมคณิตศาสตรแหงประเทศไทย ในพระบรมราชูปถัมภ

- มอบธงจากสมาคมคณิตศาสตรแหงประเทศไทยโดยนายกสมาคมคณิตศาสตร

แหงประเทศไทย ในพระบรมราชูปถัมภสูมหาวิทยาลัยศรีนครินทรวิโรฒ

12.00 – 13.00 น. พักรับประทานอาหารกลางวัน

12.00 น. และ

13.00 น.

รถบัสรับสงผูเขารวมประชุมออกเดินทางจากอาคารเฉลิมพระเกียรติ 7 รอบพระชนมพรรษา

มหาวิทยาลัยอุบลราชธานีไปยังสนามบิน (แวะซ้ือของฝาก) และเดินทางกลับโดยสวัสดิภาพ

หมายเหตุ 1. ไมมีรถรับสงจากสนามบินมายังโรงแรม หรือสถานท่ีประชุม (อาจใชบริการรถแท็กซ่ีตรงหนาทาง

ออกอาคารสนามบิน)

2. มีรถรับสงจากสถานท่ีประชุมไปยังสนามบิน ในวันศุกรท่ี 31 พฤษภาคม 2567 เวลา 12.00 น.

และ 13.00 น.

3. ตารางอาจมีการเปล่ียนแปลงตามความเหมาะสม
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กำหนดการนำเสนอผลงาน (รหัสบทความ)

การประชุมวิชาการทางคณิตศาสตร คร้ังท่ี 28 ประจำป 2567

วันท่ี 29 – 31 พฤษภาคม พ.ศ. 2567

ณ อาคารเฉลิมพระเกียรติ 7 รอบพระชนมพรรษา มหาวิทยาลัยอุบลราชธานี

วันพุธท่ี 29 พฤษภาคม พ.ศ. 2567

เวลา รายการ

08.00 – 09.00 น. ลงทะเบียน

09.00 – 09.30 น. พิธีเปด

09.30 – 09.45 น. ถายรูปหมูรวมกัน

09.45 – 10.00 น. พักรับประทานอาหารวาง

10.00 – 11.00 น. Keynote Speaker I (KNS-01) หองกันเกรา

11.00 – 12.00 น. Keynote Speaker II (KNS-02) หองกันเกรา

12.00 – 13.00 น. พักรับประทานอาหารกลางวัน

หองกันเกรา หองพวงพะยอม

13.00 – 13.50 น. Invited Speaker I (IVS-01) Invited Speaker II (IVS-02)

หองพวงพะยอม หองประดู 1 หองประดู 2 หองประดู 3

13.50 – 14.10 น. PTS-01 ANA-01 DNM-01 NUT-01

14.10 – 14.30 น. PTS-02 ANA-02 DNM -02 NUT-02

14.30 – 14.50 น. PTS-03 ANA-03 DNM -03 NUT-03

14.50 – 15.10 น. พักรับประทานอาหารวาง

15.10 – 15.30 น. CGT-01 ANA-04 DNM-04 ALG-01

15.30 – 15.50 น. CGT-02 ANA-05 DNM-05 ALG-02

15.50 – 16.10 น. CGT-03 ANA-06 MMF-01 ALG-03

16.10 – 16.30 น. CGT-04 ALG-04

16.30 – 18.00 น. เย่ียมชม เฮือนกำนันคาเฟ หนองอีเจม

14.00 – 17.00 น. ประชุมคณะกรรมการ CEPMART

18.00 – 20.00 น. งานเล้ียงรับรอง
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วันพฤหัสบดีท่ี 30 พฤษภาคม พ.ศ. 2567

เวลา รายการ

09.00 – 10.00 น. Keynote Speaker III (KNS-03) หองกันเกรา

10.00 – 10.20 น. พักรับประทานอาหารวาง

หองพวงพะยอม หองประดู 1 หองประดู 2 หองประดู 3

10.20 – 10.40 น. NUT-04 MED-01 DCS-01 ALG-05

10.40 – 11.00 น. NUT-05 MED-02 DCS-02 ALG-06

11.00 – 11.20 น. NUT-06 MED-03 DCS-03 ALG-07

11.20 – 11.40 น. NUT-07 MED-04 DCS-04 ALG-08

11.40 – 12.00 น. NUT-08 MED-05 DCS-05 ALG-09

12.00 – 13.00 น. พักรับประทานอาหารกลางวัน

หองกันเกรา หองพวงพะยอม

13.00 – 13.50 น. Invited Speaker III (IVS-03) Invited Speaker IV (IVS-04)

หองพวงพะยอม หองประดู 1 หองประดู 2 หองประดู 3

13.50 – 14.10 น. PTS-04 ANA-07 MMF-02 ALG-10

14.10 – 14.30 น. PTS-05 ANA-08 MMF-03 CGT-05

14.30 – 14.50 น. PTS-06 ANA-09 MMF-08 CGT-06

14.50 – 15.10 น. พักรับประทานอาหารวาง

15.10 – 15.30 น. NUT-09 CGT-07 MMF-05 ALG-11

15.30 – 15.50 น. NUT-10 CGT-08 ORT-02 ALG-12

15.50 – 16.10 น. NUT-11 CGT-09 ORT-03 ALG-13

16.10 – 16.30 น. ALG-14

วันศุกรท่ี 31 พฤษภาคม พ.ศ. 2567

เวลา รายการ

หองพวงพะยอม หองประดู 1 หองประดู 2 หองประดู 3

09.00 – 09.20 น. PTS -07 ANA-10 MMF-06 CGT-10

09.20 – 09.40 น. PTS -08 ANA-11 MMF-07 CGT-11

09.40 – 10.00 น. PTS -09 ORT-01 MMF-04 CGT-12

10.00 – 10.10 น. พักรับประทานอาหารวาง

10.10 – 11.30 น. เสวนาวิชาการ: Mathematics in a Changing World

(คณิตศาสตรภายใตการเปล่ียนแปลงของโลก)

หองกันเกรา

11.30 – 12.00 น. พิธีปด

12.00 – 13.00 น. พักรับประทานอาหารกลางวัน
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คำอธิบายอักษรยอ

KNS Keynote Speakers

IVS Invited Speakers
ALG Algebra

ANA Analysis, Fixed Point Theory and Applications, Topology and Geometry

CGT Combinatorics and Graph Theory

DCS Data Science and Computer Science

DNM Differential Equations and Numerical Mathematics

MMF Mathematical Modeling and Mathematical Finance

MED Mathematics Education

NUT Number Theory

ORT Other Related Topics in Mathematics

PTS Probability Theory and Statistics
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รายการรหัสบทความนำเสนอผลงาน

1. Keynote Speakers (KNS)

KNS-01 Underground Computational Mathematics: Models and Analyses of an Evolving Subsurface of Planet Earth

Professor Dr. Malgorzata Peszynska, Oregon State University, USA

KNS-02 Safeguarding Data Privacy: Exploring Full Homomorphic Encryption

Mr. Alain Jean Alherbe มหาวิทยาลัยอุบลราชธานี

KNS-03 การพัฒนาสมรรถนะดานคณิตศาสตรของ PISA ใหกับครูและนักเรียนในยุคดิจิทัล

รองศาสตราจารย ดร.ธีระเดช เจียรสุขสกุล ผูอำนวยการสถาบันสงเสริมการสอนวิทยาศาสตรและเทคโนโลยี (สสวท.)

2. Invited Speakers (IVS)

IVS-01 Arithmetic Dynamics: Bridging Order and Chaos

รองศาสตราจารย ดร.ชัชวาล ปานรักษา มหาวิทยาลัยมหิดล

IVS-02 Unleashing the Potential of Applied Mathematics in AI and Machine Learning for Modern Industry

รองศาสตราจารย ดร.สายันต แกนนาคำ มหาวิทยาลัยเทคโนโลยีสุรนารี

IVS-03 KKU Smart Mathematics Learning Platform for Secondary Schools

ผูชวยศาสตราจารย ดร.วีระชัย สาระคร มหาวิทยาลัยขอนแกน

IVS-04 Decoding Modern Banking: A Mathematician's Guide

ดร.วุฒิศักด์ิ ตรงศิริวัฒน รองผูอำนวยการฝาย Data Innovation ธนาคารกรุงไทย

3. Algebra (ALG)

ALG-01 A New Approach to Ordered Semigroup Theory: Soft Union Ordered Semigroups

Panuwat Luangchaisri and Thawhat Changphas

ALG-02 Magnifiers in some Subsemigroups of the Full Transformation Semigroups

Pongsan Prakitsri

ALG-03 Posets of Ideals in Certain Semigroups of Partial Transformations with Invariant Sets

Jitsupa Srisawat and Yanisa Chaiya

ALG-04 Some Algebraic Properties of Translations on -Ary Semihypergroups𝑛
Anak Nongmanee and Sorasak Leeratanavalee

ALG-05 Transformation Semigroups Which Are Disjoint Union of General Linear Groups

Utsithon Chaichompoo and Kritsada Sangkhanan

ALG-06 Soft Semigroups in Terms of Rough Approximations

Rukchart Prasertpong, Nares Sawatraksa, and Sasisophit Buada

ALG-07 The Pre-period of a Finite Cyclic Group

Pongsaphat Prachumdang and Udom Chotwattakawanit

ALG-08 The Isomorphism Theorems for LU13-algebras

Jidapa Wongthipparat and Lee Sassanapitax

ALG-09 Farey Graphs and Continued Fractions over Certain Finite Fields

Arlisa Janjing, Teeraphong Phongpattanacharoen, and Tuangrat Chaichana
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ALG-10 The Diameter and Girth of Subspace Inclusion Graphs Modulo Prime Powers

Juthamas Sangwisat and Siripong Sirisuk

ALG-11 Solutions of Systems of PDEs and Representations of 𝐴
2

Sarawut Saenkarun

ALG-12 Upper Bounds for the Length of SEL Egyptian Fraction Expansions for Rational Elements of Certain

Discrete-Valued Non-Archimedean Fields

Narakorn Rompurk Kanasri and Mayurachat Janthawee

ALG-13 Some Shallow Elements of Coxeter Groups of Type B

Kittitat Iamthong, Sittinon Jirattikansakul, and Korkeat Korkeatikhun

ALG-14 Functional Graphs of Non-Monic Linear Polynomials on Finite Field Extensions

Suphawich Sengpanich and Nithi Rungtanapirom

4. Analysis, Fixed Point Theory and Applications, Topology and Geometry (ANA)

ANA-01 A Fast Forward-Backward Algorithm Using Linesearch and Inertial Techniques for Convex Bilevel

Optimization Problems with Applications in Data Classification of Some Noncommunicable Diseases

Piti Thongsri and Suthep Suantai

ANA-02 A Novel Double Inertial Viscosity Algorithm for Convex Bilevel Optimization Problems with Application to

Image Restoration Problems

Kobkoon Janngam, Rattanakorn Wattanataweekul, and Suthep Suantai

ANA-03 Convergence and Stability of a New Hybrid Iteration Scheme for a Contraction Operator in Banach Spaces

with Applications

Chonjaroen Chairasiripong, Damrongsak Yambangwai, Papinwich Paimsang, and Tanakit Thianwan

ANA-04 Convergence Analysis and Polynomiographic Visualization of Picard-SP Hybrid Iterative Methods

Kaiwich Baewnoi, Damrongsak Yambangwai, Papinwich Paimsang, and Tanakit Thianwan

ANA-05 Approximation Theorems for G-nonexpansive Mappings in Hyperbolic Spaces by Using Two-step Iterations

Tanakit Thianwan, Maliha Rashid, Amna Kalsoom, and Sana Jabeen

ANA-06 Accelerated Common Fixed Point Algorithm for Convex Minimization Problems and Applications

Jirayut Butwang and Suthep Suantai

ANA-07 Fixed Point Theory for α- -Contraction Types on Uniform Spaces with a Graph𝐺 𝐺
Sittichoke Songsa-ard

ANA-08 Endpoint Theorems of Diametrically Regular Mappings in Uniformly Convex Hyperbolic Spaces

Thanomsak Laokul

ANA-09 Some Characterizations of a Closed Geodesic Polygon and a Closed Spherical Curve in a CAT(k) Space

Areeyuth Sama-Ae, Aniruth Phon-on, Nifatamah Makaje, Areena Hazanee, and Pakwan Riyapan

ANA-10 An Explicit Formula for Quasi-Arithmetic Mean Sequences

Thanatkrit Kaewtem

ANA-11 อัตราสวนของผลรวมพ้ืนท่ีรูปส่ีเหล่ียมขนาบขางอันดับ 2 ตอผลรวมของพ้ืนท่ีรูปส่ีเหล่ียมขนาบขางอันดับ 1 ของรูปสามเหล่ียม

ท่ัวไป

เกวลิน เกิดประวัติ อรรณพ แกวขาว และ สมคิด อินเทพ (ยกเลิกการนำเสนอ)
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5. Combinatorics and Graph Theory (CGT)

CGT-01 Proper Magic Sigma Coloring of Special Graphs

Panuvit Chuaephon and Kittikorn Nakprasit

CGT-02 The (3, 3)-Colorability of Planar Graphs with Specific Cycles

Pongpat Sittitrai and Wannapol Pimpasalee

CGT-03 Solving a 4-Colored 5-Cube Puzzle by Graph Theory

Pichaya Kankonsue, Sayan Panma, and Piyashat Sripratak

CGT-04 ปญหาการพับแถบแสตมป ดวง เม่ือ = 2, 3, 4, 5, 6𝑛 𝑛
ศิริญญา โปรงจิตร ประกายแสง โคตรมิตร ทศพร สายเสมา และ วัชราภรณ อดทน

CGT-05 Secret Sharing from Combinatorial Designs

Nada Somswasdi and Wutichai Chongchitmate

CGT-06 Ternary LDPC Codes Based on Projective Plane

Chanya Lawong and Penying Rochanakul

CGT-07 The Extreme Case of 3-PGDD’s with Block Size 4 and 2 Groups

Apiwat Peereeyaphat, Dinesh G. Sarvate, and Chariya Uiyyasathian

CGT-08 Perfect Matchings in Latin Square Graphs after Vertex Deletions

Thammanoon Puirod

CGT-09 Solvability Conditions for -puzzle with 1 or 2 Fixed Cells𝑛2 − 1( )
Waitin Sinthu-urai and Piyashat Sripratak

CGT-10 Girths and Diameters of a Graph, its δ-Complement, and its δ′-Complement

Supakorn Srisawat and Panupong Vichitkunakorn

CGT-11 Local Antimagic Chromatic Number of the Cartesian Product of Graphs

Teeradej Kittipassorn and Kiattiyot Phibul

CGT-12 List Coloring and List Edge Coloring on King’s Graphs

Papon Tantiwanichanon and Kittikorn Nakprasit

6. Data Science and Computer Science (DCS)

DCS-01 Deep Learning and Quantum Image Processing in Optometry

Monchita Toopsuwan and Umaporn Nuntaplook

DCS-02 Graph Convolutional Network for Multiple Traveling Salesman Problem

Chanoknun Phunnasorn, Wasakorn Laesanklang, and Tipaluck Krityakierne

DCS-03 Artificial Intelligence for Forecasting Rice Yields in Thailand

Thoedsak Saengthong, Thanathat Khottiam, Chakhrit Utamapokai, and Wanyok Atisattapong

DCS-04 Detection of Parvovirus Infection in Shrimps with VGG16

Tharyar Aung, Pallop Huabsomboon, Kittisak Chayantrakom, Somkid Amornsamankul,

and Rapeepun Vanichviriyakit
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DCS-05 การเปรียบเทียบประสิทธิภาพของแบบจำลองพยากรณจำนวนผูเสียชีวิตจากการเกิดอุบัติเหตุจราจรบนโครงขายถนนของ

กระทรวงคมนาคม

สุภาพร ครองยุทธ และ ปรียานุช เช้ือสุข

7. Differential Equations and Numerical Mathematics (DNM)

DNM-01 A Non-dimensional Mathematical Model for Predicting Coastlines with a Double-Groin Structure Using the

Forward Time-Centered Space Finite Difference Scheme

Surasak Manilam and Nopparat Pochai

DNM-02 วิธีการสปริทเบรกแมนสำหรับกำจัดสัญญาณรบกวนแบบการคูณออกจากภาพดิจิทัล

โสภิดา สุขญาณกิจ และ ศิริวรรณ จันทรแกน

DNM-03 อัลกอริทึมผสมใหมสำหรับการหาผลเฉลยของสมการไมเชิงเสนโดยใชวิธีของนิวตันและวิธีแกตำแหนงผิด

ลลิตภัทร สาโรจน และ อภิชาติ เนียมวงษ

DNM-04 Applying the Residual Power Series Method to a Time Fractional Black Scholes European Option Pricing with

Two Assets

Pitsinee Winyarat and Panumart Sawangtong

DNM-05 An Approximate Analytical Solution of the Time-Fractional Navier-Stokes Equations by the Generalized

Shehu Residual Power Series Method

P. Dunnimit, W. Sawangtong, and P. Sawangtong

8. Mathematical Modeling and Mathematical Finance (MMF)

MMF-01 Estimating the Value at Risk of Buy-and-Sell Strategy Using the RSI Indicator on the EUR/USD Exchange

Market

Rattaporn Supama and Watcharin Klongdee

MMF-02 Mechanistic Modeling of Financial Bubble Driven by Herding Behavior and Safe-Haven Asset

Sorathan Juanjenkit and Klot Patanarapeelert

MMF-03 Mathematical Model for the Dynamic of COVID-19 Spread and Impacts of Vaccination, Quarantine, and

Hospitalization among the 5th Wave of COVID-19 in Thailand

Jiraporn Lamwong and Puntani Pongsumpun

MMF-04 Modified NEH Algorithms for Flowshop Scheduling Problem

Rungrot Pholyiam, Pannarat Guayjarernpanishk, and Tawun Remsungnen

MMF-05 ตัวแบบเชิงคณิตศาสตร การแพรระบาดของโรคโควิด-19 ท่ีมีผลจากระยะเวลาในการเขารับการรักษา𝑆𝐼
𝑎
𝐼

𝑠
𝑅

อภิชญา เกล้ียงสง กันยากร ออนรักษ กรกนก ตันติษัณสกุล เกตุกนก หนูดี อัญชุลี ณ ตะก่ัวทุง และ ศุภชัย ดำคำ

MMF-06 A Mathematical Simulation of Airborne Infection Risk Evaluation for Bus Passengers

Jenjira Sooknum and Nopparat Pochai

MMF-07 2-D Magnetotelluric Modeling Using Back-Propagation Multilayer Perceptron Approach: Preliminary Results

Phongphan Mukwachi, Samak Boonpan, and Weerachai Sarakorn

MMF-08 Encapsulation of Endofullerene Fe@C20 into Single-Walled Carbon Nanotube

Tana Sunpatanon and Prangsai Tiangtrong
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9. Mathematics Education (MED)

MED-01 การพัฒนาทักษะการแกปญหาทางคณิตศาสตรและการทำงานเปนทีมของนักเรียนระดับประกาศนียบัตรวิชาชีพช้ันปท่ี 1

เร่ือง พ้ืนท่ีผิวและปริมาตร โดยใชการจัดการเรียนรูแบบปญหาเปนฐาน

ธวัชชัย อินทโฉม และ ธีระพล สลีวงศ

MED-02 บทเรียนออนไลน เร่ือง สถิติ บน Platform DBAC Style สงเสริมทักษะการส่ือสารทางคณิตศาสตร สำหรับนักเรียนช้ัน

มัธยมศึกษาปท่ี 2

พัชรินทร เศรษฐีชัยชนะ

MED-03 การใชกิจกรรมการเรียนรูรวมมือเทคนิค TGT รวมกับส่ือประสมเพ่ือพัฒนาทักษะการเรียนรูและผลสัมฤทธ์ิทางการเรียนเร่ือง

วงกลม ของนักเรียนช้ันมัธยมศึกษาปท่ี 3

ยุทธศาสตร กองพวง สมฤทัย เย็นใจ และ กุณฑลีรัฐ พิมพิลา

MED-04 ผลของการใชชุดการสอนเกมมิฟเคชันท่ีมีตอผลสัมฤทธ์ิทางการเรียนเร่ืองตัวแปรสุมและการแจกแจงความนาจะเปนของ

นักเรียนช้ันมัธยมศึกษาปท่ี 4

สิทธิโชค โสมอ่ำ

MED-05 การจัดการเรียนการสอนแบบ Active Learning ในรายวิชาสถิติสำหรับนักวิทยาศาสตร สำหรับนักเรียนช้ันมัธยมศึกษาปท่ี 4

โรงเรียนมหิดลวิทยานุสรณ

เด่ียว ใจบุญ

10. Number Theory (NUT)

NUT-01 Equations Related to the Sum and Product of the Fibonacci Numbers

Aram Tangboonduangjit and Shayathorn Wanasawat

NUT-02 Relation Between the Digit Sum of Numbers: From 1 to and to10𝑛 −  1  10𝑛−1 10𝑛 −  1  
Perawit Boonsomchua

NUT-03 Divisibility Algorithm of Even Number

Itsara Saenjaroen and Apisit Pakapongpun

NUT-04
More on the Quadratic Exponential Diophantine Equation 𝑝𝑘– 1( )

𝑥
+  𝑝𝑘( )

𝑦
=  𝑧2

Phornpassorn Boonchu, Janyarak Tongsomporn, and Saeree Wananiyakul

NUT-05 สมการไดโอแฟนไทน เม่ือ เปนจำนวนเฉพาะ และ𝑛𝑥 +  𝑝𝑦 =  𝑧2 𝑝 𝑛 ≡ 2(𝑚𝑜𝑑 3𝑝)
อนุสรา ประสิทธ์ินอก และ วีรยุทธ นิลสระคู

NUT-06 All the Positive Solutions of in the Fibonacci and Lucas Numbers when and𝑝𝑥– 𝑝𝑦 =  𝑧𝑝 𝑝 =  2
𝑝 =  3
Phitthayathon Phetnun

NUT-07 Integral Representations of the Pell and Pell-Lucas Numbers

Achariya Nilsrakoo

NUT-08 Some Properties of −Narayana Quaternions𝑘
Chansouk Sikhammountri and Narawadee Phudolsitthiphat

NUT-09 Some Quadratic and Quartic Diophantine Equations with Solutions Involving Fibonacci and Lucas

Numbers

Shayathorn Wanasawat, Panida Krongkaew, Orrawan Prathumwan, and Onanong Wimolrat
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NUT-10 Sums of Iterated Partial Sums of the -Fibonnacci Sequence𝑘
Supamit Pimsri, Somthawin Khunkhet, and Boonyen Thongkam

NUT-11 สมบัติบางประการสำหรับลำดับ -โอเรสเมในรูปแบบเชิงซอน𝑘
ชนนิกานต คนเพียร และ บุญยงค ศรีพลแผว

11. Other Related Topics in Mathematics (ORT)

ORT-01 A Generalization of Decomposition Theorem in D-minimal Expansions of the Real Field

Thanathip Phokhaw and Athipat Thamrongthanyalak

ORT-02 System of Stochastic Grey Differential Equations with Singular Spectrum Analysis for Precious Metal

Prices Forecasting

Rammarat Panadsako and Raywat Tanadkithirun

ORT-03 อิทธิพลของปจจัยทางอุตุนิยมวิทยาท่ีสงผลตอผลผลิตทุเรียนรายปในจังหวัดสุราษฎรธานี

อินทฤทธ์ิ หอมหวล อรวรรณ สืบเสน และ ปูริณชญาน วิสุทธ์ิสิริ

12. Probability Theory and Statistics (PTS)

PTS-01 Local Limit Theorems without Assuming Finite Third Moment

Punyapat Kammoo, Kritsana Neammanee, and Kittipong Laipaporn

PTS-02 Some Properties of Two-Dimensional Trinomial Random Walks Conditioned on End Points

Yuparat Hommai, Monchai Kooakachai, and Wasamon Jantai

PTS-03 Non-uniform Bound on Translated Poisson Approximation for Poisson Binomial Random Variables via

Exchangeable Pair Coupling

Kamonrat Kamjornkittikoon and Suporn Jongpreechaharn

PTS-04 Stochastic Models for Breaking Large Bills and Coins

Nakharin Kabbun, Wasamon Jantai, Duong Than, and Monchai Kooakachai

PTS-05 การแจกแจงความนาจะเปนของความเร็วลมในพ้ืนท่ีท่ีมีศักยภาพในการต้ังฟารมลม: ความเร็วลม

วนิดา พงษศักด์ิชาติ และ พรหมพร ธรรมสาร

PTS-06 การศึกษาความแกรงของสถิติทดสอบความแตกตางของคาเฉล่ียประชากรสองกลุมอิสระกัน เม่ือขอมูลมีการแจกแจงปรกติแบบ

ผสมและการแจกแจงแกมมาแบบผสม

ภัทราภรณ กิจผลเจริญ สุวิมล ชูเปรม และ บำรุงศักด์ิ เผ่ือนอารีย

PTS-07 Modelling Volleyball Match Outcomes by Using Modified Estimators for the Binomial Parameter

Jeeraphat Monnoi, Sutimon Jamrat, and Monchai Kooakachai

PTS-08 Hidden Population Size Estimator of Poisson Lognormal Distribution for Capture-Recapture Data

Orasa Nunkaw and Jutamas Boonradsamee

PTS -09 ความรูความเขาใจและพฤติกรรมการปองกันโรคโควิด-19 หลังการระบาดใหญของประชาชนในจังหวัดสุราษฎรธานี

อัญชุลี ณ ตะก่ัวทุง ศุภชัย ดำคำ เกตุกนก หนูดี และ กันยากร ออนรักษ
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The 28th Annual Meeting in Mathematics (AMM 2024)
Department of Mathematics Statistics and Computer,
Faculty of Science, Ubon Ratchathani University,
Thailand

Underground Computational Mathematics:
Models and Analyses of an Evolving Subsurface of

Planet Earth

Malgorzata Peszynska1,†

1Joel Davis Faculty Scholar and Professor (Dr. hab.)
Department of Mathematics, Oregon State University, USA

Corvallis, OR 97331 - 4605

Abstract

In the talk we discuss mathematical models of complex phenomena in the subsurface of
the Earth such as flow, transport, and heat conduction, as well as mechanical deformation.
The models are coupled systems of nonlinear partial differential equations which typically
have solutions of low regularity; they also require a lot of data, frequently given at disparate
multiple scales. To use the models for prediction, we run simulations based on our compu-
tational algorithms constructed based on rigorous analyses. However, the simulations are
only useful if the data for the models are also reasonably accurate. We show how one can
construct such data from first principles starting from xray micro-CT tomography at the
millimeter scale up to the Darcy scale of meters and further to the kilometer scale of the
Arctic landscape. We illustrate with simulation examples and present current work including
the challenges going forward.

†Keynote Speaker.
Email: Malgo.Peszynska@oregonstate.edu
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The 28th Annual Meeting in Mathematics (AMM 2024)
Department of Mathematics Statistics and Computer,
Faculty of Science, Ubon Ratchathani University,
Thailand

Safeguarding Data Privacy:
Exploring Full Homomorphic Encryption

Alain Jean Alherbe1,†
1Department of Mathematics Statistics and Computer, Faculty of Science

Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

Abstract

Encryption is the process of securing the confidentiality of stored or transmitted data.
It involves encoding the information in such a way that only authorized parties can access
it. There are several cryptography architectures designed to ensure secure data transmission
and storage. For example, Advanced Encryption Standard (AES) and Secure Hash Algo-
rithm (SHA). When data is transmitted over the internet with those architectures, there
is a risk of interception by unauthorized parties and sensitive information can be compro-
mised, leading to security and privacy breaches. Full Homomorphic Encryption (FHE) is an
innovative encryption technique that enables computations to be performed on encrypted
data without the need for decryption. This means that sensitive information remains pri-
vate while computations are carried out on the encrypted data, ensuring that the output
is also encrypted. TenSEAL is a software library developed by Google. It is specifically
designed for building homomorphic applications requiring secure computations on sensitive
data. This library enables the implementation of secure computations while maintaining the
confidentiality of the underlying data. We provide an overview of FHE, examine the benefits
and limitations of using TenSEAL, and demonstrate the procedure of using the library to
perform basic computations on encrypted data.

†Keynote Speaker.
Email: alain.j@ubu.ac.th

17



 
 
The 28th Annual Meeting in Mathematics (AMM 2024) 
Department of Mathematics Statistics and Computer, 
Faculty of Science, Ubon Ratchathani University, 
Thailand 

___________________________________________ 
†Keynote Speaker 
อีเมล: thiradet@ipst.ac.th (ธีระเดช เจียรสุขสกุล),  sthai@ipst.ac.th (สุชาดา ปทมวภิาต). 
 
 
 

 

 

 

 

การพัฒนาสมรรถนะดานคณิตศาสตรของ PISA ใหกับครูและนักเรียนในยุคดิจิทัล 

 

รองศาสตราจารย ดร.ธีระเดช เจียรสุขสกุล1,† และนางสุชาดา ปทมวิภาต1 

1สถาบันสงเสริมการสอนวิทยาศาสตรและเทคโนโลยี (สสวท.) 475 อาคารสริิภญิโญ ช้ัน 9 เขตราชเทวี  

กรุงเทพมหานคร 10400 (สำนักงานช่ัวคราว) 

 

 

บทคัดยอ 

  ในศตวรรษท่ี 21 เทคโนโลยีเขามามีบทบาทมากขึ้นในชีวิตประจำวัน ขอมูลท่ีหลากหลายและมี

ความซับซอนสวนใหญจึงอยูในรูปดิจิทัล ซึ่งขอมูลเหลานี้สามารถนำมาใชในการตัดสินใจทั้งในเรื่องสวนตัว ไป

จนถึงเรื่องที่มผีลตอสังคมสวนรวมได สิ่งเหลาน้ีทำใหการใชการดำเนินการทางคณิตศาสตรเพียงอยางเดียวน้ัน

ไมเพียงพอ แตจำเปนตองมีการคิดอยางเปนเหตุเปนผลและสามารถอธิบายเหตุผลได ดวยเหตุน้ี ใน PISA 2022 

ซึ่งเปนรอบการประเมินลาสุดที่เนนดานคณิตศาสตร จึงไดปรับกรอบการประเมินคณิตศาสตรใหสอดคลองกับ

การเปลี่ยนแปลงดังกลาว โดยไดเพ่ิมการใหเหตุผลทางคณิตศาสตรเขามา เปนสวนหน่ึงของการประเมินรวมกับ

กระบวนการแกปญหาทางคณิตศาสตร ดังน้ัน นักเรียนจึงควรไดรับการสงเสริมใหมีการแสดงเหตุผลรวมกับการ

ใชหลักการพ้ืนฐานทางคณิตศาสตร รวมถึงการสงเสริมใหแกปญหาทางคณิตศาสตรผานกิจกรรมและแบบฝกท่ี

สงเสริมและกระตุนใหฝกคิดและฝกแกปญหาอยางเปนระบบและใหเหตุผลทางคณิตศาสตรอยางสมเหตุสมผล

ตามหลักการ เพ่ือนำไปสูความฉลาดรูดานคณิตศาสตรสำหรับการใชชีวิตในโลกศตวรรษท่ี 21 ตอไป 

 
 

คำสำคัญ: PISA, ความฉลาดรูดานคณิตศาสตร 
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Abstract

Arithmetic Dynamics stands at the crossroads of number theory and dynamical systems,
exploring how numerical patterns evolve over time. This talk introduces its core principles—
focusing on the iteration of functions over fields, the significance of periodic and preperiodic
points, and the interplay between arithmetic properties and dynamical behavior. We will
then highlight current research frontiers, including advances in the distribution of periodic
points, applications of height functions, and emerging conjectures that promise to redefine
our understanding of the field. This presentation aims to provide a clear and thorough
overview of Arithmetic Dynamics, illustrating its role in addressing complex mathematical
problems and highlighting opportunities for future research.
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Abstract

This talk explores the indispensable role of applied mathematics in driving innovations
in artificial intelligence (AI) and machine learning (ML). Aimed at applied mathematics
undergraduates, we journey from the core mathematical theories underpinning AI/ML to
their practical applications in various industries. By interweaving personal experiences with
insights into foundational concepts and emerging trends, we highlight the transformative
potential of applied mathematics. Attendees will learn about the mathematical backbone
of AI technologies, the transition from theoretical models to practical solutions in modern
industry, and the exciting research opportunities that await in fields. Through this session,
we aim to inspire students to apply their mathematical skills towards pioneering solutions
in AI and ML, paving the way for a future where their contributions lead to significant
technological advancements.
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Abstract

This study focuses on a digital platform to enhance secondary school students’ mathemat-
ical interactive learning experience in grades 7-9 (M.1-3). The platform comprises six courses
aligned with Thailand’s core learning standards and the Programme for International Stu-
dent Assessment (PISA). It adapts previous smart mathematical learning innovations with
carefully selected digital tools for each learning activity. Then, the platform trial testing
at networked secondary schools in Northeast Thailand and the primary learning outcome
data were collected and analyzed. The results demonstrate that the platform has promising
outcomes in promoting student engagement and learning in mathematics.
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Abstract

Banking is a cornerstone of modern economies. Its operations are deeply intertwined with
mathematical principles. This talk will delve into the fundamentals of banking operations,
emphasizing the critical role of mathematics. We will examine how the rising trend of artifi-
cial intelligence presents both opportunities and challenges for the mathematically inclined
within the banking sector. In addition, this talk will highlight the enduring importance of
a strong mathematical foundation for those seeking to navigate the evolving landscape of
banking.
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Email: wuttisak.tr@gmail.com

23







Proceedings of the
28th Annual Meeting in Mathematics (AMM 2024)
Department of Mathematics Statistics and Computer,
Faculty of Science, Ubon Ratchathani University,
Thailand

Soft Semigroups in Terms of Rough Approximations

Rukchart Prasertpong1,†,‡, Nares Sawatraksa1, and Sasisophit Buada1

1Division of Mathematics and Statistics, Faculty of Science and Technology,
Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand

Abstract

In this work, we introduce the lower and upper rough approximations for uni-soft (resp.,
int-soft) semigroups, uni-soft (resp., int-soft) left ideals, uni-soft (resp., int-soft) right ideals,
and uni-soft (resp., int-soft) quasi-ideals via congruence relations on semigroups. Then, we
verify the relationship between these concepts and the classical concept of uni-soft (resp.,
int-soft) ideal theory in semigroups.

Keywords: rough set, soft set, uni-soft ideal, int-soft ideal, semigroup.

2020 MSC: 08A72, 03E20, 06F99.

1 Introduction and Earlier Works
Another issue discussed in connection with the concept of a set or a notion is vagueness. Math-
ematics requires that all mathematical notions must be exact. The concept of a set is not only
fundamental for the whole of mathematics but it also plays an important role in natural lan-
guage. We often speak about sets (collections) of various objects of interest such as collections
of food, tourism locations, and people. Almost all concepts we are using in natural language are
vague. In classical set theory, a set is uniquely determined by its elements. In other words, every
element must be uniquely classified as belonging to the set or not. It follows that the notion of
a set is a crisp (precise) one. Then, common sense reasoning based on natural language must
be based on vague concepts and not on classical logic. Observe that beauty is not a precise
but a vague concept, because we cannot classify all interesting images uniquely into two classes:
beautiful and not beautiful. That is the doubtful area that exists for some interesting images
based on beauty. With this point of view, rough set theory can be seen as a new mathematical
approach to vagueness. In the proposed approach, assume that any vague concept is replaced
by a pair of precise concepts called the lower and the upper approximation of the vague concept.
The lower approximation consists of all objects which surely belong to the concept and the
upper approximation contains all objects which possibly belong to the concept. At this point,
approximations are two basic operations in rough set theory classified by the basic building
†Speaker. ‡Corresponding author.
Email: rukchart.p@nsru.ac.th (R. Prasertpong), nares.sa@nsru.ac.th (N. Sawatraksa), sasisophit.b@nsru.ac.th
(S. Buada).
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blocks (equivalence classes) so-called the crisp lower and the crisp upper approximation. The
difference between the lower and the upper approximation constitutes the boundary region of
the vague concept. That is the boundary region of a set consists of all elements that cannot be
classified uniquely to the set or its complement. If the boundary region of a set is empty, then
it means that the set is definable (or exact). In the opposite case, the set is rough (or inexact).
Observe that vagueness is usually associated with the boundary region approach. Rough set
theory was proposed by Pawlak [1] in 1982. The rough set approach seems to be of fundamental
importance in artificial intelligence. Especially, it is a powerful tool in research areas such as
machine learning and decision analysis. This literature is contained in the rudiments of rough
sets [2], and the review article in a survey on rough set theory and its applications [3].

In 1999, Molodtsov [4] initiated the notion of soft set theory as a tuple that is associated with
a set of parameters and a function from a parameter set to the collection of subsets of a universal
set. At this point, a parameter is attributes, characteristics or statements. The major advantage
of soft set theory is that it does need not to bother with any additional information about the data
such as probability in statistics or possibility value in fuzzy set theory. Especially, the research
of the theory for combining the soft set with other mathematical theories has been developed by
many authors. This literature is contained in the review on soft set-based parameter reduction
and decision-making [5].

Throughout this paper, S and U are non-empty sets. In addition, we denote the collection
of subsets of U by C(U).

Definition 1.1. [4] (F, S) is called a soft set over U with respect to S if F is a function from
S to C(U).

Throughout this paper, We generally denote by C(U ∼ S) a collection of soft sets over U
with respect to S.

Definition 1.2. [4] If (F, S) ∈ C(U ∼ S) is defined by

F (a) = U (resp., F (a) = ∅)

for all a ∈ S, then it is called a relative whole (resp., null) soft set over U with respect to S.

Throughout this work, we write WUS
:= (WUS

, S) (resp., N∅S := (N∅S , S)) instead of a
relative whole (resp., null) soft set over U with respect to S.

Definition 1.3. [4] Let F := (F, S),G := (G,S) ∈ C(U ∼ S). Recall that F is a soft subset of
G if F (a) ⊆ G(a) for all a ∈ S. At this point, we write F ⋐ G. The statement F ⋑ G means
G ⋐ F.

Definition 1.4. [4] Let F := (F, S),G := (G,S) ∈ C(U ∼ S). A soft union of F and G is defined
to be the soft set F ⋓G := (F ⋓G,S) ∈ C(U ∼ S) in which F ⋓G is defined by

(F ⋓G)(a) = F (a) ∪G(a)

for all a ∈ S.

Definition 1.5. [4] Let F := (F, S),G := (G,S) ∈ C(U ∼ S). A soft intersection of F and G is
defined to be the soft set F ⋒G := (F ⋒G,S) ∈ C(U ∼ S) in which F ⋒G is defined by

(F ⋒G)(a) = F (a) ∩G(a)

for all a ∈ S.

In 2013, Kim et al. [6] introduced the concept of uni-soft ideals of semigroups based on
soft set theory. Then, they proved some properties via the concept of uni-soft products. As
mentioned above, we review this concept as follows.
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Definition 1.6. [7] Let ∗ be a given binary operation on S. Recall that a semigroup is denoted
by an algebraic system (S, ∗) in which ∗ is associative. For simplicity, we shall write S instead
of (S, ∗). An element a of a semigroup S is said to be a regular element if there exists b ∈ S
such that a = aba. A semigroup S is called a regular semigroup if all elements of S are regular.

In the following, if (S, ∗) is a semigroup, then a ∗ b is denoted by ab for all a, b ∈ S. Given
two non-empty subsets A and B of a semigroup S, the product A ∗B (simply AB) is defined by

AB = {ab : a ∈ A and b ∈ B}.

Furthermore, for an element a of a semigroup S, we put Ra := {(b, c) ∈ S × S : a = bc}.

Definition 1.7. [6] Let S be a semigroup, and let F := (F, S),G := (G,S) ∈ C(U ∼ S). A
uni-soft product of F and G is defined to be the soft set F ▽ G := (F ▽ G,S) ∈ C(U ∼ S) in
which F ▽G is defined by

(F ▽G)(a) =

{∩
(b,c)∈Ra

(F (b) ∪G(c)) if Ra ̸= ∅,
U otherwise

for all a ∈ S.

Remark 1.8. [6] Based on Definition 1.7, ▽ is associative on C(U ∼ S).

Definition 1.9. [6] Let S be a semigroup, and let F := (F, S) ∈ C(U ∼ S).

(1) F is called a uni-soft semigroup if F (ab) ⊆ F (a) ∪ F (b) for all a, b ∈ S.

(2) F is called a uni-soft left ideal if F (ab) ⊆ F (b) for all a, b ∈ S.

(3) F is called a uni-soft right ideal if F (ab) ⊆ F (a) for all a, b ∈ S.

(4) F is called a uni-soft quasi-ideal if (F▽WUS
) ⋓ (WUS

▽ F) ⋑ F.

Theorem 1.10. [6] Let S be a semigroup, and let F := (F, S) ∈ C(U ∼ S). Then, the following
statements hold.

(1) F is a uni-soft-soft semigroup if and only if F▽ F ⋑ F.

(2) F is a uni-soft-soft left ideal if and only if WUS
▽ F ⋑ F.

(3) F is a uni-soft-soft right ideal if and only if F▽WUS
⋑ F.

(4) S is a regular semigroup if and only if F▽WUS
▽ F = F for every uni-soft quasi-ideal F.

In 2014, Song et al. [8] proposed the notion of int-soft ideals of semigroups based on soft set
theory. Then, they proved some properties via the concept of int-soft products. We review this
concept as the following.

Definition 1.11. [8] Let S be a semigroup, and let F := (F, S),G := (G,S) ∈ C(U ∼ S). An
int-soft product of F and G is defined to be the soft set F △ G := (F △ G,S) ∈ C(U ∼ S) in
which F △G is defined by

(F △G)(a) =

{∪
(b,c)∈Ra

(F (b) ∩G(c)) if Ra ̸= ∅,
∅ otherwise

for all a ∈ S.

Remark 1.12. [8] Based on Definition 1.11, △ is associative on C(U ∼ S).
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Definition 1.13. [8] Let S be a semigroup, and let F := (F, S) ∈ C(U ∼ S).

(1) F is called an int-soft semigroup if F (ab) ⊇ F (a) ∩ F (b) for all a, b ∈ S.

(2) F is called an int-soft left ideal if F (ab) ⊇ F (b) for all a, b ∈ S.

(3) F is called an int-soft right ideal if F (ab) ⊇ F (a) for all a, b ∈ S.

(4) F is called an int-soft quasi-ideal if (F△WUS
) ⋒ (WUS

△ F) ⋐ F.

Theorem 1.14. [8] Let S be a semigroup, and let F := (F, S) ∈ C(U ∼ S). Then, the following
statements hold.

(1) F is an int-soft semigroup if and only if F△ F ⋐ F.

(2) F is an int-soft left ideal if and only if WUS
△ F ⋐ F.

(3) F is an int-soft right ideal if and only if F△WUS
⋐ F.

(4) S is a regular semigroup if and only if F△WUS
△ F = F for every int-soft quasi-ideal F.

To support solving the roughness for uni-soft ideal theory and int-soft ideal theory in semi-
groups, this paper first constructs lower and upper approximation operations to novel soft sets
together with a corresponding example. Then, investigate the sufficient conditions for the lower
and upper rough approximations of uni-soft (resp., int-soft) semigroups, uni-soft (resp., int-
soft) left ideals, uni-soft (resp., int-soft) right ideals, and uni-soft (resp., int-soft) quasi-ideals
via congruence relations on semigroups. At this point, the concept of congruence relations on
semigroups is presented as follows.

Definition 1.15. [7] Let R be an equivalence relation on a semigroup S. R is called a congruence
relation if for all x, a, b ∈ S, (a, b) ∈ R implies (xa, xb) ∈ R and (ax, bx) ∈ R.

Definition 1.16. [7] Let R be a congruence relation on a semigroup S and a ∈ S. The set

[a]R := {b ∈ S : (a, b) ∈ R}

is called a congruence class of R (briefly, R-congruence class) containing a.

Remark 1.17. [9] If R is a congruence relation on a semigroup S, then

[a]R[b]R ⊆ [ab]R

for all a, b ∈ S.

Definition 1.18. [9] Let R be a congruence relation on a semigroup S. R is a complete
congruence relation if

[a]R[b]R = [ab]R

for all a, b ∈ S.

2 Main Results
In the following, S instead of a semigroup. We now construct lower and upper approximation
operations of a soft set in S below.
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Definition 2.1. Let R be a congruence relation on S and F := (F, S) ∈ C(U ∼ S). A lower
rough approximation of F is defined to be the soft set ⌞F⌟R := (⌞F⌟R, S) ∈ C(U ∼ S) in which
⌞F⌟R is defined by

⌞F⌟R(a) =
∩

b∈[a]R

F (b)

for all a ∈ S. An upper rough approximation of F is defined to be the soft set ⌜F⌝R := (⌜F⌝R, S) ∈
C(U ∼ S) in which ⌜F⌝R is defined by

⌜F⌝R(a) =
∪

b∈[a]R

F (b)

for all a ∈ S. Based on this point, we say that F is a definable soft set if ⌜F⌝R = ⌞F⌟R; otherwise,
F is a rough soft set.

We consider the following example.

Example 2.2. Let S := {a, b, c, d} be a semigroup with multiplication rules defined by Table
1. Let R be a congruence relation on S such that the R-congruence classes of S are the subsets

Table 1: The Cayley table of a semigroup S

∗ a b c d

a a b c d
b b b b b
c c c c c
d d c b a

{a}, {b, c}, and {d}. Let τ1, τ2, τ3, and τ4 be subsets of U such that τ1 ⊂ τ2 ⊂ τ3 ⊂ τ4, and let
F := (F, S) ∈ C(U ∼ S) be a soft set over U with respect to S in which F is defined by

F (α) =


τ1 if α = a,

τ2 if α = b,

τ3 if α = c,

τ4 if α = d.

Then

⌞F⌟R(α) =


τ1 if α = a,

τ2 if α = b,

τ2 if α = c,

τ4 if α = d

and

⌜F⌝R(α) =


τ1 if α = a,

τ3 if α = b,

τ3 if α = c,

τ4 if α = d.

Therefore, it is easy to see that F is a rough soft set.

Remark 2.3. Based on Example 2.2, observe that ⌞F⌟R(b) = ⌞F⌟R(c) and ⌜F⌝R(b) = ⌜F⌝R(c)
whenever (b, c) ∈ R. In generality, the statement is also true. Indeed, we assume α and β are
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elements of S and (α, β) ∈ R. Then [α]R = [β]R. Suppose u ∈ ⌞F⌟R(α). Then u ∈
∩

γ∈[α]R F (γ).
Hence u ∈

∩
γ∈[β]R F (γ). Thus u ∈ ⌞F⌟R(β). Whence ⌞F⌟R(α) ⊆ ⌞F⌟R(β). Similarly, we can

show that ⌞F⌟R(β) ⊆ ⌞F⌟R(α). It follows that ⌞F⌟R(α) = ⌞F⌟R(β). In the same way, it is true
that ⌜F⌝R(α) = ⌜F⌝R(β).

Lemma 2.4. Let R be a congruence relation on S, and let F := (F, S),G := (G,S) ∈ C(U ∼ S).
Then, the following statements hold.

(1) ⌞F⌟R ⋐ F.

(2) F ⋐ ⌜F⌝R.

(3) If F = N∅S , then ⌞F⌟R = N∅S .

(4) If F = N∅S , then ⌜F⌝R = N∅S .

(5) If F = WUS
, then ⌞F⌟R = WUS

.

(6) If F = WUS
, then ⌜F⌝R = WUS

.

(7) ⌞F ⋒G⌟R = ⌞F⌟R ⋒ ⌞G⌟R.

(8) ⌜F ⋓G⌝R = ⌜F⌝R ⋓ ⌜G⌝R.

(9) ⌞F ⋓G⌟R ⋑ ⌞F⌟R ⋓ ⌞G⌟R.

(10) ⌜F ⋒G⌝R ⋐ ⌜F⌝R ⋒ ⌜G⌝R.

(11) If F ⋐ G, then ⌞F⌟R ⋐ ⌞G⌟R.

(12) If F ⋐ G, then ⌜F⌝R ⋐ ⌜G⌝R.

Proof. We consider the following proofs.

(1) We have ⌞F⌟R ⋐ F. In fact,

⌞F⌟R(a) =
∩

b∈[a]R

F (b) ⊆ F (a)

for all a ∈ S.

(2) We have F ⋐ ⌜F⌝R. In fact,

F (a) ⊆
∪

b∈[a]R

F (b) = ⌜F⌝R(a)

for all a ∈ S.

(3) Suppose that F = N∅S . Then F (a) = ∅ for all a ∈ S. Assume that there exists a ∈ S
such that ⌞F⌟R(a) ≠ ∅. Let u ∈ ⌞F⌟R(a). Then u ∈

∩
b∈[a]R F (b). Thus u ∈ F (α) for all

α ∈ [a]R. This is a contradiction with F = N∅S . Then, it is true that

⌞F⌟R(β) = ∅ = N∅S (β)

for all β ∈ S. Whence ⌞F⌟R = N∅S .

(4) Suppose that F = N∅S . Then F (a) = ∅ for all a ∈ S. Assume that there exists a ∈ S such
that ⌜F⌝R(a) ̸= ∅. Let u ∈ ⌜F⌝R(a). Then u ∈

∪
b∈[a]R F (b). Thus, there exists α ∈ [a]R

such that u ∈ F (α). This is a contradiction with F = N∅S . Thus, it follows that

⌜F⌝R(β) = ∅ = N∅S (β)

for all β ∈ S. Therefore ⌜F⌝R = N∅S .
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(5) Suppose that F = WUS
. Then F (a) = U for all a ∈ S. Assume that there exists a ∈ S

such that U \ ⌞F⌟R(a) ̸= ∅. Let u ∈ U \ ⌞F⌟R(a). Then u ∈ U and u /∈ ⌞F⌟R(a). Hence
u /∈

∩
b∈[a]R F (b). Thus, there exists α ∈ [a]R such that u /∈ F (α). This is a contradiction

with F = WUS
. It follows that

WUS
(β) \ ⌞F⌟R(β) = U \ ⌞F⌟R(β) = ∅

for all β ∈ S. Consequently, ⌞F⌟R = WUS
.

(6) Suppose that F = WUS
. Then F (a) = U for all a ∈ S. Assume that there exists a ∈ S

such that U \ ⌜F⌝R(a) ̸= ∅. Let u ∈ U \ ⌜F⌝R(a). Then u ∈ U and u /∈ ⌜F⌝R(a). Thus
u /∈

∪
b∈[a]R F (b). Hence u /∈ F (α) for all α ∈ [a]R. This is a contradiction with F = WUS

.
This means that

WUS
(β) \ ⌜F⌝R(β) = U \ ⌜F⌝R(β) = ∅

for all β ∈ S, which yields ⌜F⌝R = WUS
.

(7) Let a ∈ S be given. Then

⌞F ⋒G⌟R(a) =
∩

b∈[a]R

(F ⋒G)(b)

=
∩

b∈[a]R

(F (b) ∩G(b))

=

 ∩
b∈[a]R

F (b)

 ∩

 ∩
b∈[a]R

G(b)


= ⌞F⌟R(a) ∩ ⌞G⌟R(a)
= (⌞F⌟R ⋒ ⌞G⌟R)(a).

This means that ⌞F ⋒G⌟R = ⌞F⌟R ⋒ ⌞G⌟R.

(8) Let a ∈ S be given. Then

⌜F ⋓G⌝R(a) =
∪

b∈[a]R

(F ⋓G)(b)

=
∪

b∈[a]R

(F (b) ∪G(b))

=

 ∪
b∈[a]R

F (b)

 ∪

 ∪
b∈[a]R

G(b)


= ⌜F⌝R(a) ∪ ⌜G⌝R(a)
= (⌜F⌝R ⋓ ⌜G⌝R)(a).

This implies that ⌜F ⋓G⌝R = ⌜F⌝R ⋓ ⌜G⌝R.

(9) Let a ∈ S be given. Then

⌞F ⋓G⌟R(a) =
∩

b∈[a]R

(F ⋓G)(b)

=
∩

b∈[a]R

(F (b) ∪G(b))

⊇
∩

b∈[a]R

F (b)

= ⌞F⌟R(a).
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In the same way, we get that ⌞F ⋓G⌟R(a) ⊇ ⌞G⌟R(a). Observe that

⌞F ⋓G⌟R(a) ⊇ ⌞F⌟R(a) ∪ ⌞G⌟R(a) = (⌞F⌟R ⋓ ⌞G⌟R)(a).

This means that ⌞F ⋓G⌟R ⋑ ⌞F⌟R ⋓ ⌞G⌟R.

(10) Let a ∈ S be given. Then

⌜F ⋒G⌝R(a) =
∪

b∈[a]R

(F ⋒G)(b)

=
∪

b∈[a]R

(F (b) ∩G(b))

⊆
∪

b∈[a]R

F (b)

= ⌜F⌝R(a).

Similarly, we can prove that ⌜F ⋒G⌝R(a) ⊆ ⌜G⌝R(a). Then, it is true that

⌜F ⋒G⌝R(a) ⊆ ⌜F⌝R(a) ∩ ⌜G⌝R(a) = (⌜F⌝R ⋒ ⌜G⌝R)(a).

This implies that ⌜F ⋒G⌝R ⋐ ⌜F⌝R ⋒ ⌜G⌝R.

(11) Suppose that F ⋐ G. Then ⌞F⌟R ⋐ ⌞G⌟R. Indeed,

⌞F⌟R(a) =
∩

b∈[a]R

F (b) ⊆
∩

b∈[a]R

G(b) = ⌞G⌟R(a)

for all a ∈ S.

(12) Suppose that F ⋐ G. Then ⌜F⌝R ⋐ ⌜G⌝R. In fact,

⌜F⌝R(a) =
∪

b∈[a]R

F (b) ⊆
∪

b∈[a]R

G(b) = ⌜G⌝R(a)

for all a ∈ S.

Lemma 2.5. Let R be a complete congruence relation on S, and let F := (F, S),G := (G,S) ∈
C(U ∼ S). Then, the following statements hold.

(1) ⌞F⌟R ▽ ⌞G⌟R ⋑ ⌞F▽G⌟R.

(2) ⌞F⌟R △ ⌞G⌟R ⋐ ⌞F△G⌟R.

Proof. We consider the following proofs.

(1) Let a ∈ S be given. Then, we consider the following two cases.
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Case 1. Suppose Ra ̸= ∅. Then

(⌞F⌟R ▽ ⌞G⌟R)(a) =
∩
a=bc

(⌞F⌟R(b) ∪ ⌞G⌟R(c))

=
∩
a=bc

 ∪
x∈[b]R

F (x)

 ∪

 ∪
y∈[c]R

G(y)


=

∩
a=bc

 ∪
x∈[b]R,y∈[c]R

(F (x) ∪G(y))


⊇

∩
a=bc

 ∪
x∈[b]R,y∈[c]R

∩
xy=αβ

(F (α) ∪G(β))

 ,where α, β ∈ S

=
∩
a=bc

 ∪
x∈[b]R,y∈[c]R

(F ▽G)(xy)


=

∩
a=bc

 ∪
xy∈[bc]R

(F ▽G)(xy)


=

∩
a=bc

(⌞F ▽G⌟R)(bc)

= (⌞F ▽G⌟R)(a).

Case 2. Suppose Ra = ∅. Then

(⌞F⌟R ▽ ⌞G⌟R)(a) = U ⊇ (⌞F ▽G⌟R)(a).

Thus ⌞F⌟R ▽ ⌞G⌟R ⋑ ⌞F▽G⌟R.

(2) Let a ∈ S be given. Then, we consider the following two cases.
Case 1. Suppose Ra ̸= ∅. Then

(⌞F⌟R △ ⌞G⌟R)(a) =
∪
a=bc

(⌞F⌟R(b) ∩ ⌞G⌟R(c))

=
∪
a=bc

 ∩
x∈[b]R

F (x)

 ∩

 ∩
y∈[c]R

G(y)


=

∪
a=bc

 ∩
x∈[b]R,y∈[c]R

(F (x) ∩G(y))


⊆

∪
a=bc

 ∩
x∈[b]R,y∈[c]R

∪
xy=αβ

(F (α) ∩G(β))

 ,where α, β ∈ S

=
∪
a=bc

 ∩
x∈[b]R,y∈[c]R

(F △G)(xy)


=

∪
a=bc

 ∩
xy∈[bc]R

(F △G)(xy)


=

∪
a=bc

(⌞F △G⌟R)(bc)

= (⌞F △G⌟R)(a).
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Case 2. Suppose Ra = ∅. Then

(⌞F⌟R △ ⌞G⌟R)(a) = ∅ ⊆ (⌞F △G⌟R)(a).

Therefore ⌞F⌟R △ ⌞G⌟R ⋐ ⌞F△G⌟R.

Lemma 2.6. Let R be a congruence relation on S, and let F := (F, S),G := (G,S) ∈ C(U ∼ S).
Then, the following statements hold.

(1) ⌜F⌝R ▽ ⌜G⌝R ⋑ ⌜F▽G⌝R.

(2) ⌜F⌝R △ ⌜G⌝R ⋐ ⌜F△G⌝R.

Proof. We consider the following proofs.

(1) Let a ∈ S be given. Then, we consider the following two cases.

Case 1. Suppose Ra ̸= ∅. Then, by Remark 1.17, it follows that

(⌜F⌝R ▽ ⌜G⌝R)(a) =
∩
a=bc

(⌜F⌝R(b) ∪ ⌜G⌝R(c))

=
∩
a=bc

 ∩
x∈[b]R

F (x)

 ∪

 ∩
y∈[c]R

G(y)


=

∩
a=bc

 ∩
x∈[b]R,y∈[c]R

(F (x) ∪G(y))


⊇

∩
a=bc

 ∩
xy∈[bc]R

(F (x) ∪G(y))


=

∩
xy∈[a]R

(F (x) ∪G(y))

=
∩

z∈[a]R,z=xy

(F (x) ∪G(y))

=
∩

z∈[a]R

∩
z=xy

(F (x) ∪G(y))

=
∩

z∈[a]R

(F ▽G)(z)

= (⌜F ▽G⌝R)(a).

Case 2. Suppose Ra = ∅. Then

(⌜F⌝R ▽ ⌜G⌝R)(a) = U ⊇ (⌜F ▽G⌝R)(a).

Hence ⌜F⌝R ▽ ⌜G⌝R ⋑ ⌜F▽G⌝R.

(2) Let a ∈ S be given. Then, we consider the following two cases.
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Case 1. Suppose Ra ̸= ∅. Then, by Remark 1.17, we obtain

(⌜F⌝R △ ⌜G⌝R)(a) =
∪
a=bc

(⌜F⌝R(b) ∩ ⌜G⌝R(c))

=
∪
a=bc

 ∪
x∈[b]R

F (x)

 ∩

 ∪
y∈[c]R

G(y)


=

∪
a=bc

 ∪
x∈[b]R,y∈[c]R

(F (x) ∩G(y))


⊆

∪
a=bc

 ∪
xy∈[bc]R

(F (x) ∩G(y))


=

∪
xy∈[a]R

(F (x) ∩G(y))

=
∪

z∈[a]R,z=xy

(F (x) ∩G(y))

=
∪

z∈[a]R

∪
z=xy

(F (x) ∩G(y))

=
∪

z∈[a]R

(F △G)(z)

= (⌜F △G⌝R)(a).

Case 2. Suppose Ra = ∅. Then

(⌜F⌝R △ ⌜G⌝R)(a) = ∅ ⊆ (⌜F △G⌝R)(a).

Therefore ⌜F⌝R △ ⌜G⌝R ⋐ ⌜F△G⌝R.

Theorem 2.7. Let R be a complete congruence relation on S and F := (F, S) ∈ C(U ∼ S).
Then, the following statements hold.

(1) If F is a uni-soft (resp., an int-soft) semigroup, then ⌞F⌟R is a uni-soft (resp., an int-soft)
semigroup.

(2) If F is a uni-soft (resp., an int-soft) left ideal, then ⌞F⌟R is a uni-soft (resp., an int-soft)
left ideal.

(3) If F is a uni-soft (resp., an int-soft) right ideal, then ⌞F⌟R is a uni-soft (resp., an int-soft)
right ideal.

(4) If S is a regular semigroup and F is a uni-soft quasi-ideal, then ⌞F⌟R is a uni-soft quasi-
ideal.

(5) If F is an int-soft quasi-ideal, then ⌞F⌟R is an int-soft quasi-ideal.

Proof. We consider the following proofs.

(1) Assume that F is a uni-soft semigroup. Then F▽ F ⋑ F due to Theorem 1.10 (1). Using
Lemma 2.4 (11) and Lemma 2.5 (1), we deduce that

⌞F⌟R ▽ ⌞F⌟R ⋑ ⌞F▽ F⌟R ⋑ ⌞F⌟R.
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Therefore ⌞F⌟R is a uni-soft semigroup due to Theorem 1.10 (1). We now assume F is
an int-soft semigroup. Then F △ F ⋐ F due to Theorem 1.14 (1). Thus, it follows from
Lemma 2.4 (11) and Lemma 2.5 (2) that

⌞F⌟R △ ⌞F⌟R ⋐ ⌞F△ F⌟R ⋐ ⌞F⌟R.

This means that ⌞F⌟R is an int-soft semigroup due to Theorem 1.14 (1).

(2) Assume that F is a uni-soft left ideal. Then, it is shown in Theorem 1.10 (2) that WUS
▽F ⋑

F. Therefore

WUS
▽ ⌞F⌟R = ⌞WUS

⌟R ▽ ⌞F⌟R
⋑ ⌞WUS

▽ F⌟R
⋑ ⌞F⌟R

due to the arguments (5) and (11) of Lemma 2.4 and Lemma 2.5 (1). As a consequence,
⌞F⌟R is a uni-soft left ideal due to Theorem 1.10 (2). We now assume F is an int-soft left
ideal. Then, by Theorem 1.14 (2), we get WUS

△F ⋐ F. Using the arguments (5) and (11)
of Lemma 2.4 and Lemma 2.5 (2), it follows that

WUS
△ ⌞F⌟R = ⌞WUS

⌟R △ ⌞F⌟R
⋐ ⌞WUS

△ F⌟R
⋐ ⌞F⌟R.

Whence ⌞F⌟R is an int-soft left ideal due to Theorem 1.14 (2).

(3) Suppose that F is a uni-soft right ideal. Then, we get that F▽WUS
⋑ F due to Theorem

1.10 (3). From the arguments (5) and (11) of Lemma 2.4 and Lemma 2.5 (1), it is true
that

⌞F⌟R ▽WUS
= ⌞F⌟R ▽ ⌞WUS

⌟R
⋑ ⌞F▽WUS

⌟R
⋑ ⌞F⌟R.

Therefore ⌞F⌟R is a uni-soft right ideal due to Theorem 1.10 (3). We now assume F is an
int-soft right ideal. Then F △ WUS

⋐ F due to Theorem 1.14 (3). Using the arguments
(5) and (11) of Lemma 2.4 and Lemma 2.5 (2), it follows that

⌞F⌟R △WUS
= ⌞F⌟R △ ⌞WUS

⌟R
⋐ ⌞F△WUS

⌟R
⋐ ⌞F⌟R.

This implies that ⌞F⌟R is an int-soft right ideal due to Theorem 1.14 (3).

(4) Suppose that S is regular. Then, for every uni-soft right ideal G := (G,S) ∈ C(U ∼ S),

G ⋓ F ⋑ G▽ F.

In fact, let G := (G,S) ∈ C(U ∼ S) be a uni-soft right ideal. Let a ∈ S be given. Then,
there exists b ∈ S such that a = aba. Now, observe that Ra ̸= ∅. Thus, it is true that

(G▽ F )(a) =
∩

(b,c)∈Ra

(G(b) ∪ F (c))

⊆ G(ab) ∪ F (a)

⊆ G(a) ∪ F (a)

= (G ⋓ F )(a),
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as required. Note that WUS
is a uni-soft semigroup, which yields WUS

▽WUS
⋑ WUS

due
to Theorem 1.10 (1). Furthermore, we see that F▽WUS

is a uni-soft right ideal induced
by Theorem 1.10 (3). Indeed,

(F▽WUS
)▽WUS

= F▽ (WUS
▽WUS

) ⋑ F▽WUS

due to Remark 1.8. Thus, it is shown in the argument (3) that ⌞F▽WUS
⌟R is a uni-soft

right ideal. We now suppose F is a uni-soft quasi-ideal. Then, by Theorem 1.10 (4), the
arguments (5) and (11) of Lemma 2.4, and Lemma 2.5 (1), it follows that

(⌞F⌟R ▽WUS
) ⋓ (WUS

▽ ⌞F⌟R) = (⌞F⌟R ▽ ⌞WUS
⌟R) ⋓ (⌞WUS

⌟R ▽ ⌞F⌟R)
⋑ (⌞F▽WUS

⌟R) ⋓ (⌞WUS
▽ F⌟R)

⋑ (⌞F▽WUS
⌟R)▽ (⌞WUS

▽ F⌟R)
⋑ ⌞(F▽WUS

)▽ (WUS
▽ F)⌟R

= ⌞F▽ (WUS
▽WUS

)▽ F⌟R
⋑ ⌞F▽WUS

▽ F⌟R
= ⌞F⌟R.

As a consequence, ⌞F⌟R is a uni-soft quasi-ideal.

(5) Assume that F is an int-soft quasi-ideal. Then (F △ WUS
) ⋒ (WUS

△ F) ⋐ F. Using the
arguments (5), (7), and (11) of Lemma 2.4 and Lemma 2.5 (2), it follows that

(⌞F⌟R △WUS
) ⋒ (WUS

△ ⌞F⌟R) = (⌞F⌟R △ ⌞WUS
⌟R) ⋒ (⌞WUS

⌟R △ ⌞F⌟R)
⋐ (⌞F△WUS

⌟R) ⋒ (⌞WUS
△ F⌟R)

= ⌞(F△WUS
) ⋒ (WUS

△ F)⌟R
⋐ ⌞F⌟R.

This implies that ⌞F⌟R is an int-soft quasi-ideal.

It is not difficult to see that the converse of Theorem 2.7 does not hold in general. We
consider the context of uni-soft semigroups in Example 2.8 below.

Example 2.8. Let S := {a, b, c, d} be a semigroup with multiplication rules of the binary
operation ∗ on S defined by Table 2. Let R be a complete congruence relation on S in which

Table 2: The Cayley table of a semigroup S

∗ a b c d

a a a a d
b a b a d
c a a c d
d d d d d

the R-congruence classes of S are the subsets {a, b, c} and {d}. Let τ1, τ2, τ3, and τ4 be subsets
of U such that τ1 ⊃ τ2 ⊃ τ3 ⊃ τ4, and let F := (F, S) ∈ C(U ∼ S) be a soft set over U with
respect to S in which F is defined by

F (α) =


τ1 if α = a,

τ2 if α = b,

τ3 if α = c,

τ4 if α = d.

The 28th Annual Meeting in Mathematics (AMM2024)

38



Observe that F (bc) ⊈ F (b)∪ F (c). Thus F is not a uni-soft semigroup. But, we know ⌞F⌟R is a
uni-soft semigroup. Indeed,

⌞F⌟R(α) =


τ3 if α = a,

τ3 if α = b,

τ3 if α = c,

τ4 if α = d,

which yields ⌞F⌟R(βγ) ⊆ ⌞F⌟R(β) ∪ ⌞F⌟R(γ) for all β, γ ∈ S.

Theorem 2.9. Let R be a congruence relation on S and F := (F, S) ∈ C(U ∼ S). Then, the
following statements hold.

(1) If F is a uni-soft (resp., an int-soft) semigroup, then ⌜F⌝R is a uni-soft (resp., an int-soft)
semigroup.

(2) If F is a uni-soft (resp., an int-soft) left ideal, then ⌜F⌝R is a uni-soft (resp., an int-soft)
left ideal.

(3) If F is a uni-soft (resp., an int-soft) right ideal, then ⌜F⌝R is a uni-soft (resp., an int-soft)
right ideal.

(4) If F is a uni-soft quasi-ideal, then ⌜F⌝R is a uni-soft quasi-ideal.

(5) If S is a regular semigroup and F is an int-soft quasi-ideal, then ⌜F⌝R is an int-soft
quasi-ideal.

Proof. We consider the following proofs.

(1) Assume that F is a uni-soft semigroup. Then F ▽ F ⋑ F due to Theorem 1.10 (1). By
Lemma 2.4 (12) and Lemma 2.6 (1), it follows that

⌜F⌝R ▽ ⌜F⌝R ⋑ ⌜F▽ F⌝R ⋑ ⌜F⌝R.

Therefore ⌜F⌝R is a uni-soft semigroup due to Theorem 1.10 (1). We now suppose F is an
int-soft semigroup. Then F△ F ⋐ F due to Theorem 1.14 (1). It follows from Lemma 2.4
(12) and Lemma 2.6 (2) that

⌜F⌝R △ ⌜F⌝R ⋐ ⌜F△ F⌝R ⋐ ⌜F⌝R.

Hence ⌜F⌝R is an int-soft semigroup due to Theorem 1.14 (1).

(2) Suppose F is a uni-soft left ideal. Then, it is shown in Theorem 1.10 (2) that WUS
▽F ⋑ F.

It follows that

WUS
▽ ⌜F⌝R = ⌜WUS

⌝R ▽ ⌜F⌝R
⋑ ⌜WUS

▽ F⌝R
⋑ ⌜F⌝R

due to the arguments (6) and (12) of Lemma 2.4 and Lemma 2.6 (1). Consequently, ⌜F⌝R
is a uni-soft left ideal due to Theorem 1.10 (2). We now assume F is an int-soft left ideal.
Then, by Theorem 1.14 (2), we have WUS

△ F ⋐ F. Using the arguments (6) and (12) of
Lemma 2.4 and Lemma 2.6 (2), we deduce that

WUS
△ ⌜F⌝R = ⌜WUS

⌝R △ ⌜F⌝R
⋐ ⌜WUS

△ F⌝R
⋐ ⌜F⌝R.

Thus ⌜F⌝R is an int-soft left ideal due to Theorem 1.14 (2).
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(3) Assume that F is a uni-soft right ideal. Then, we get that F▽WUS
⋑ F due to Theorem

1.10 (3). From the arguments (6) and (12) of Lemma 2.4 and Lemma 2.6 (1), it follows
that

⌜F⌝R ▽WUS
= ⌜F⌝R ▽ ⌜WUS

⌝R
⋑ ⌜F▽WUS

⌝R
⋑ ⌜F⌝R.

This implies that ⌜F⌝R is a uni-soft right ideal due to Theorem 1.10 (3). We now assume
F is an int-soft right ideal. Then, we have F△WUS

⋐ F due to Theorem 1.14 (3). By the
arguments (6) and (12) of Lemma 2.4 and Lemma 2.6 (2), we obtain

⌜F⌝R △WUS
= ⌜F⌝R △ ⌜WUS

⌝R
⋐ ⌜F△WUS

⌝R
⋐ ⌜F⌝R.

Whence ⌜F⌝R is an int-soft right ideal due to Theorem 1.14 (3).

(4) Assume that F is a uni-soft quasi-ideal. Then (F ▽ WUS
) ⋓ (WUS

▽ F) ⋑ F. Using the
arguments (6), (8), and (12) of Lemma 2.4 and Lemma 2.6 (1), it follows that

(⌜F⌝R ▽WUS
) ⋓ (WUS

▽ ⌜F⌝R) = (⌜F⌝R ▽ ⌜WUS
⌝R) ⋓ (⌜WUS

⌝R ▽ ⌜F⌝R)
⋑ (⌜F▽WUS

⌝R) ⋓ (⌜WUS
▽ F⌝R)

= ⌜(F▽WUS
) ⋓ (WUS

▽ F)⌝R
⋑ ⌜F⌝R.

Consequently, ⌜F⌝R is a uni-soft quasi-ideal.

(5) Suppose that S is regular. Then, for every int-soft left ideal G := (G,S) ∈ C(U ∼ S),

F ⋒G ⋐ F△G.

Indeed, let G := (G,S) ∈ C(U ∼ S) be an int-soft left ideal. Let a ∈ S be given. Then,
there exists b ∈ S such that a = aba. Now, observe that Ra ̸= ∅. Thus, it is true that

(F △G)(a) =
∪

(b,c)∈Ra

(F (b) ∩G(c))

⊇ F (a) ∩G(ba)

⊇ F (a) ∩G(a)

= (F ⋒G)(a),

as required. It is not difficult to see that WUS
is an int-soft semigroup. Thus, we obtain

that WUS
△WUS

⋐ WUS
due to Theorem 1.14 (1). In addition, observe that WUS

△ F is
an int-soft left ideal induced by Theorem 1.14 (2). In fact,

WUS
△ (WUS

△ F) = (WUS
△WUS

)△ F ⋐ WUS
△ F

due to Remark 1.12. Thus, it is shown in the argument (2) that ⌜WUS
△F⌝R is an int-soft

left ideal. We now assume F is an int-soft quasi-ideal. Then, by Theorem 1.14 (4), the
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arguments (6) and (12) of Lemma 2.4, and Lemma 2.6 (2), it follows that

(⌜F⌝R △WUS
) ⋒ (WUS

△ ⌜F⌝R) = (⌜F⌝R △ ⌜WUS
⌝R) ⋒ (⌜WUS

⌝R △ ⌜F⌝R)
⋐ (⌜F△WUS

⌝R) ⋒ (⌜WUS
△ F⌝R)

⋐ (⌜F△WUS
⌝R)△ (⌜WUS

△ F⌝R)
⋐ ⌜(F△WUS

)△ (WUS
△ F)⌝R

= ⌜F△ (WUS
△WUS

)△ F⌝R
⋐ ⌜F△WUS

△ F⌝R
= ⌜F⌝R.

This means that ⌜F⌝R is an int-soft quasi-ideal.

It is not difficult to see that the converse of Theorem 2.9 does not hold in general. We
consider the context of int-soft semigroups in Example 2.10 below.

Example 2.10. Let S := {a, b, c, d} be a semigroup with multiplication rules of the binary
operation ∗ on S defined by Table 3. Let R be a given congruence relation on S such that the

Table 3: The Cayley table of a semigroup S

∗ a b c d

a a b b d
b b b b d
c b b b d
d d d d d

R-congruence classes of S are the subsets {a}, {b, d}, and {c}. Let τ1, τ2, τ3, and τ4 be subsets of
U such that τ1 ⊂ τ2 ⊂ τ3 ⊂ τ4, and let F := (F, S) ∈ C(U ∼ S) be a soft set over U with respect
to S in which F is defined by

F (α) =


τ1 if α = a,

τ2 if α = b,

τ3 if α = c,

τ4 if α = d.

We see that F (cc) ⊉ F (c) ∩ F (c). Thus F is not an int-soft semigroup. But, we know ⌜F⌝R is
an int-soft semigroup. In fact,

⌜F⌝R(α) =


τ1 if α = a,

τ4 if α = b,

τ3 if α = c,

τ4 if α = d,

and so ⌜F⌝R(βγ) ⊇ ⌜F⌝R(β) ∩ ⌜F⌝R(γ) for all β, γ ∈ S.

3 Summarized Frameworks
In Section 2, we proved that the lower (resp., upper) rough approximation of uni-soft semigroups,
uni-soft left ideals, uni-soft right ideals, and uni-soft quasi-ideals is uni-soft semigroups, uni-soft
left ideals, uni-soft right ideals, and uni-soft quasi-ideals, respectively. Furthermore, we found
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that the lower (resp., upper) rough approximation of int-soft semigroups, int-soft left ideals,
int-soft right ideals, and int-soft quasi-ideals is int-soft semigroups, int-soft left ideals, int-soft
right ideals, and int-soft quasi-ideals, respectively.
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1 Introduction
In 1991, Jones, Singerman, and Wicks [1] studied structures of certain graphs Fu,N , where
u,N ∈ N and gcd(u,N) = 1, defined as follows: the vertex set of the graph Fu,N is given by

χ
N

=

{
p

q
: p, q ∈ Z, q > 0, (p, q) = 1 and N | q

}
∪ {∞}, (1.1)

and there is an edge joining p

q
and r

s
if and only if rq − sp = N with p ≡ ur (mod N) or

rq − sp = −N with p ≡ −ur (mod N). The graph F1,1 is called the Farey graph. A large
body of research showed the close connection between these graphs and continued fractions. In
2015, Sarma, Kushwaha, and Krishnan [6] introduced a specific kind of semi-regular continued
fractions which is referred to as an F1,2-continued fraction as follows: a finite continued fraction
of the form

1

0+

2

b+

ϵ1
a1+

ϵ2
a2

· · · ϵn
an

(n ≥ 0)

or an infinite continued fraction of the form
1

0+

2

b+

ϵ1
a1+

ϵ2
a2+

· · · ϵn
an+

· · ·
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where b is an odd integer, a1, a2, . . . are even positive integers, and ϵ1, ϵ2, · · · ∈ {±1}, is called an
F1,2-continued fraction. They established that each finite F1,2-continued fraction corresponds
to a path from ∞ to its value. In 2018, similar results for a graph F1,3 were also studied by
Kushwaha and Sarma [3]. Recently, in 2022, Kushwaha and Sarma [4] relaxed the conditions of
two adjacent vertices in the graph Fu,N and got a new family of graphs FN defined as follows:
the set of vertices is χ

N
(as in Equation (1.1)) and two vertices p

q
and r

s
are connected by

an edge if and only if rq − sp = ±N . Similarly, they constructed FN -continued fraction and
established the parallel results of their earlier works.

Motivated by the idea of Kushwaha and Sarma, we are interested in some relationships
between graphs and continued fractions but in fields of rational functions over finite fields instead.
For the continued fractions part, we focus on the regular continued fractions that have already
been constructed and well-known, see e.g. [2]. In this study, our objective is to construct Farey
graphs analogous to the one defined in [1] within the field of rational functions over finite fields.
We aim to explore their properties and establish some relationships between these graphs and
regular continued fractions.

2 Continued Fractions in Fields of Rational Functions
Let Fp be a finite fields of p elements (p not necessary a prime), Fp(x) the field of rational
functions over Fp and Fp((x

−1)) the field of formal series over Fp complete with respect to the
degree valuation | · |. Recall that for each nonzero element

α = cmxm + . . .+ c1x+ c0 +
c−1

x
+

c−2

x2
+ . . . ∈ Fp((x

−1))

where m ∈ Z, ci ∈ Fp (i ≤ m) with cm 6= 0, the degree valuation is defined by |α| = pm and
|0| = 0. The integral part of α, denoted by [α] is defined to be [α] = cmxm + . . .+ c1x+ c0. We
summarize the definitions and basic results of the regular continued fractions over Fp in [2] as
follows: every element α ∈ Fp can be uniquely represented as a finite or infinite expression of
the form

α = a0 +
1

a1 +
1

a2 + . . .

= [a0, a1, a2, . . .]

where a0 ∈ Fp[x] is the integral part [α] and an’s are in Fp[x]\Fp (n ≥ 1). The polynomials an
are called the partial quotients of α and αn = [an, an+1, . . .] are called the nth complete quotient
of α. In order to establish convergence to α, we define two sequences {An} and {Bn} in the
following way

A−1 = 1, A0 = a0, An+1 = an+1An +An−1 (n ≥ 0),
B−1 = 0, B0 = 1, Bn+1 = an+1Bn +Bn−1 (n ≥ 0).

The two sequences then satisfies the properties below.

Lemma 2.1. For any n ≥ 0, β ∈ Fp\{0}, we have

1. βAn +An−1

βBn +Bn−1
= [a0, a1, a2, . . . , an, β],

2. AnBn−1 −An−1Bn = (−1)n−1,

3. |Bn| > |Bn−1| > 0,

4.
∣∣∣∣α− An

Bn

∣∣∣∣ = 1

|an+1||Bn|2
(n ≥ 1).
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From Lemma 2.1 (1) and (2), we have An
Bn

are reduced fractions and satisfy

An

Bn
= [a0, a1, a2, . . . , an].

Moreover, by Lemma 2.1 (3) and (4), we have∣∣∣∣α− An

Bn

∣∣∣∣ = 1

|an+1||Bn|2
→ 0, (n → ∞).

Then we call An
Bn

the nth convergent of the regular continued fraction of α where An and Bn are
called the nth partial numerator and nth partial denominator, respectively. A characterization
of rationality was also provided in [2], namely, α is rational if and only if the continued fraction
of α is finite.

3 Farey Graphs
We now introduce the Farey graph over Fp as follows: the vertex set is

χp =

{
p(x)

q(x)
: p(x), q(x) ∈ Fp[x] with q(x) 6= 0 and (p(x), q(x)) = 1

}
and p(x)

q(x) and r(x)
s(x) are adjacent, denoted by p(x)

q(x) ∼
r(x)
s(x) , if and only if

r(x)q(x)− s(x)p(x) ∈ Fp \ {0}.

We consider the Farey graph over Fp as a simple and undirected graph. When there is no
ambiguity, we use χp, or briefly χ, to stand for the Farey graph over Fp.

It is clear to see that, for any c in Fp and for any q(x) in Fp[x]\Fp, two vertices c and
c+ 1

q(x)

(
= cq(x)+1

q(x)

)
in χ are adjacent. In addition, the path from c to c+ 1

q(x) defines the regular
continued fraction of c+ 1

q(x) .
Note that in the next section we usually use long arrows to indicate and emphasize the

direction of a path between two vertices, as it helps us visualize the relation between paths and
its associated continued fraction.

Example 3.1. In the Farey graph χ3, some examples of paths starting from the vertex x are
shown below.

1. x −→ x2 + 1

x
−→ x3 − x

x2 + 1
−→ x4 + 1

x3 − x
−→ x5 + x3

x4 + 1

2. x −→ x2 − 1

x
−→ x3

x2 + 1
−→ x4 + x2 − 1

x3 − x
−→ −x5 + x

−x4 − x2 + 1

3. x −→ x2 + 1

x
−→ x3

x2 − 1
−→ x4 − x2 − 1

x3 + x
−→ −x5 − x4 + x2 + x+ 1

−x4 − x3 + x2 − x+ 1

4. x −→ x2 − 1

x
−→ x3 + x

x2 − 1
−→ −x4 + x2 + 1

−x3
−→ x6 − x4 − x3 − x2 − x

x5 − x2 + 1

Now, for a fixed polynomial T (x), we define FT to be the bijection on χ that sends p(x)
q(x) to

T (x)+ p(x)
q(x) . Then FT is an automorphism as it also preserves the adjacency and non-adjacency.

The map can be considered as

p(x)

q(x)
7→

[
1 T (x)
0 1

]
· p(x)
q(x)
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where
[
a(x) b(x)
c(x) d(x)

]
· p(x)
q(x) = a(x)p(x)+b(x)q(x)

c(x)p(x)+d(x)q(x) . It is straightforward to see that (FT )
−1 = F−T .

Therefore, for any given polynomials u(x) and v(x), we have

Fv−u

(
u(x)

1

)
=

[
1 v(x)− u(x)
0 1

]
· u(x)

1
=

v(x)

1
(3.1)

The figure below shows how Fx preserves the adjacency of the graph χ5.

Moreover, we have another class of automorphisms on χ that affects the denominator of the
vertex. For any polynomial T (x), we define GT to be the bijection on χ defined by

p(x)

q(x)
7→

[
1 0

T (x) 1

]
· p(x)
q(x)

where the action · is as discussed above. That is,

GT

(
p(x)

q(x)

)
=

p(x)

p(x)T (x) + q(x)
.

Then, GT is an automorphism. Also, we have G−1
T = G−T and

Gv−u

(
1

u(x)

)
=

[
1 0

v(x)− u(x) 1

]
· 1

u(x)
=

1

v(x)
(3.2)

for any polynomials u(x) and v(x).

Now, we consider a very specific case when T (x) = 1. One can see that, for any polyno-
mial h(x), the vertices h(x) and FT (h(x)) = F1(h(x)) (= h(x) + 1) are adjacent. In addition,
F k
1 (h(x)) = h(x) + k, and if our field of consideration has characteristic m, then the graph have

a cycle of length m, namely, (h(x), h(x) + 1, h(x) + 2, . . . , h(x) + m − 1). This implies that χ
contains infinitely many (disjoint) cycles of length m.

Theorem 3.2. The graph χp contains infinitely many cycles of length char(Fp), the characteristic
of Fp.

In the rest of this section we provide some useful local information of vertices in χ; more
details can be found in [7]. The definitions given below introduce a notion of neighbors of a
vertex in our Farey graphs.

Definition 3.3. For any distinct vertices p(x)
q(x) ,

h(x)
k(x) in χ with q(x) and k(x) monic, we say

that h(x)
k(x) is a deg k(x)-neighbor of p(x)

q(x) if
∣∣∣p(x)q(x) −

h(x)
k(x)

∣∣∣ ≤
∣∣∣p(x)q(x) −

h′(x)
k′(x)

∣∣∣ for every h′(x)
k′(x) with

deg k′(x) = deg k(x).
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Definition 3.4. The fraction p(x)
q(x) ,

h(x)
k(x) in χ are neighbor if p(x)

q(x) is a deg q(x)-neighbor of h(x)
k(x)

and h(x)
k(x) is a deg k(x)-neighbor of p(x)

q(x) .

Theorem 3.5. [7, Theorem 1] Any distinct vertices p(x)
q(x) ,

h(x)
k(x) in χ, with q(x) and k(x) monic,

are neighbors if and only if deg (p(x)k(x)− h(x)q(x)) = 0.

Theorem 3.6. [7, Theorem 2] Let p(x)
q(x) be a vertex in χp, with q(x) monic, and q = deg q(x).

Then p(x)
q(x) has exactly (p−1)pt neighbors of degree q+ t for any t ≥ 0, and has only one neighbor

of degree less than q.

The figure below demonstrates local information at vertex x+1
x2 in χ3.

4 Some Relationships between Farey Graphs and Continued
Fractions

In this section, some relationships between Farey graphs and continued fractions are provided.
We first show how continued fractions define their associated paths in our Farey graphs.

Theorem 4.1. The value of every finite regular continued fraction belongs to χ and every finite
continued fraction defines a path from its integral part to its value with the convergents as the
vertices.

Proof. The first part is clear. Let [a0, a1, a2, . . . , an] where a0 ∈ Fp[x], ai ∈ Fp[x]\Fp (1 ≤ i ≤ n)
be a regular continued fraction with the ith convergent Ai

Bi
for 0 ≤ i ≤ n. For each 1 ≤ i ≤ n,

by Lemma 2.1 (2), we have AiBi−1 − Ai−1Bi = (−1)i−1. Therefore, Ai−1

Bi−1
and Ai

Bi
are adjacent

and the given regular continued fraction defines the path

a0 −→
A1

B1
−→ A2

B2
−→ · · · −→ An

Bn

from a0 to An
Bn

as required.

Throughout, let F := Fp where p = 2, 3. We use the following notation. Let n ∈ N,
p−1 = 1 = q0, q−1 = 0 and p0 ∈ F[x]. For all i ∈ {1, 2, ..., n}, let pi, qi ∈ F[x] with (pi, qi) = 1
and deg (qi−1) < deg (qi). Note that, in the remainder, our results may have no difference when
considered in F2(x) as 1 ≡ −1 (mod 2). However, they become varied and interesting over F3.
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Theorem 4.2. If qi−1 | (qi − qi−2) and piqi−1 − pi−1qi = (−1)i−1 (1 ≤ i ≤ n), then the path

a0 :=
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pn
qn

from a0 to pn
qn

defines the finite regular continued fraction of pn
qn

where each vertex pi
qi

defines its
ith convergent. In particular, the ith partial numerator and partial denominator are pi and qi,
respectively, with the partial quotient ai = qi−qi−2

qi−1
(1 ≤ i ≤ n).

Proof. With those assumptions we will prove the statement by induction. Consider the path
p0
q0

−→ p1
q1

.

By the assumption, we have
p1q0 − p0q1 = 1

which implies that p1 = a0q1 +1. Moreover, since deg (q1) > deg (q0) = 0, we have q1 ∈ F[x]\F.
Then

p1
q1

=
a0q1 + 1

q1
= a0 +

1

q1
= a0 +

1

a1

where the latter expression is the regular continued fraction of p1
q1

with the partial quotient

a1 = q1 =
q1 − q−1

q0
.

Note that A0 = p0, B0 = q0 and the first partial denominator B1 = a1B0+B−1 = a1 = q1. Since
p1
q1

= A1
B1

, we have A1 = p1.
Suppose that the statement is true for k. Given a path

p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

−→ pk+1

qk+1
.

Then the inductive hypothesis implies that the path
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

from p0
q0

to pk
qk

defines the finite regular continued fraction of pk
qk

, say
pk
qk

= [a0, a1, . . . , ak]

where ai =
qi−qi−2

qi−1
∈ F[x]\F (1 ≤ i ≤ k) and each vertex pi

qi
(1 ≤ i ≤ k) defines its ith partial

numerator and denominator, respectively. The assumption pk+1qk−pkqk+1 = (−1)k implies that
pk+1 =

pkqk+1+(−1)k

qk
. Moreover, since qk | (qk+1 − qk−1) and deg

(
qk+1 − qk−1

)
= deg

(
qk+1

)
>

deg
(
qk
)
, we have qk+1−qk−1

qk
∈ F[x]\F. Now, one can see that

pk+1

qk+1
=

(
pkqk+1 + (−1)k

qk

)
qk+1

=

(
qk+1 − qk−1

qk

)
pk + pk−1(

qk+1 − qk−1

qk

)
qk + qk−1

=

(
qk+1 − qk−1

qk

)
Ak +Ak−1(

qk+1 − qk−1

qk

)
Bk +Bk−1

= [a0, a1, . . . , ak+1],

where ak+1 =
qk+1−qk−1

qk
∈ F[x]\F, by Lemma 2.1(1). We also have, Bk+1 = ak+1Bk +Bk−1 = qk+1.

This implies that Ak+1 = pk+1 as required.
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Theorem 4.3. If qi−1 | (qi − qi−2) and piqi−1 − pi−1qi = (−1)i (1 ≤ i ≤ n), then the path

a0 :=
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pn
qn

from a0 to pn
qn

defines the finite regular continued fraction of pn
qn

where each vertex pi
qi

defines its
ith convergent. In particular, the ith partial numerator and partial denominator are (−1)ipi and
(−1)iqi, respectively, with the partial quotient ai = −

(
qi−qi−2

qi−1

)
(1 ≤ i ≤ n).

Proof. Consider the path
p0
q0

−→ p1
q1

.

By the assumption, we have p1 = a0q1 − 1. Moreover, since deg (q1) > deg (q0) = 0, we have
q1 ∈ F[x]\F. We then have the regular continued fraction of p1

q1
as

p1
q1

=
a0q1 − 1

q1
= a0 +

1

−q1
= a0 +

1

a1

with the partial quotient
a1 = −q1 = −

(
q1 − q−1

q0

)
.

Note that A0 = p0, B0 = q0 the first partial denominator B1 = a1B0 + B−1 = a1 = (−1)1q1.
Since p1

q1
= A1

B1
and they are reduced fractions, A1 = (−1)1p1.

Suppose that the statement is true for k. Given a path
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

−→ pk+1

qk+1
.

Then the path
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

from p0
q0

to pk
qk

defines the finite regular continued fraction of pk
qk

, say

pk
qk

= [a0, a1, . . . , ak]

where ai = −
(
qi−qi−2

qi−1

)
∈ F[x]\F (1 ≤ i ≤ k) and for each 1 ≤ i ≤ k, its ith partial numerator and

denominator are (−1)ipi and (−1)iqi, respectively. The assumption pk+1qk − pkqk+1 = (−1)k+1

implies that pk+1 =
pkqk+1+(−1)k+1

qk
. Moreover, since qk | (qk+1 − qk−1) and deg

(
qk+1 − qk−1

)
=

deg
(
qk+1

)
> deg

(
qk
)
, we have qk+1−qk−1

qk
∈ F[x]\F. Now, one can see that

pk+1

qk+1
=

(
pkqk+1 + (−1)k+1

qk

)
qk+1

=

(
qk+1 − qk−1

qk

)
pk + pk−1(

qk+1 − qk−1

qk

)
qk + qk−1

=

−
(
qk+1 − qk−1

qk

)
(−1)kpk + (−1)k−1pk−1

−
(
qk+1 − qk−1

qk

)
(−1)kqk + (−1)k−1qk−1

=

−
(
qk+1 − qk−1

qk

)
Ak +Ak−1

−
(
qk+1 − qk−1

qk

)
Bk +Bk−1

= [a0, a1, . . . , ak+1],
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where ak+1 = −
(
qk+1−qk−1

qk

)
∈ F[x]\F, by Lemma 2.1(1). Therefore,

Bk+1 = ak+1Bk+Bk−1 = ak+1(−1)kqk+(−1)k−1qk−1 = (−1)k+1(−ak+1qk+qk−1) = (−1)k+1qk+1.

This implies that Ak+1 = (−1)k+1pk+1 as required.

Theorem 4.4. If qi−1 | (qi + qi−2) and piqi−1 − pi−1qi = 1 (1 ≤ i ≤ n), then the path

a0 :=
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pn
qn

from a0 to pn
qn

defines the finite regular continued fraction of pn
qn

where each vertex pi
qi

defines its
ith convergent. In particular, the ith partial numerator and partial denominator are

Ai =

{
pi, if i ≡ 0, 1 (mod 4)

−pi, if i ≡ 2, 3 (mod 4)
, Bi =

{
qi, if i ≡ 0, 1 (mod 4)

−qi, if i ≡ 2, 3 (mod 4)
,

respectively, with the partial quotient ai = (−1)i+1
(
qi+qi−2

qi−1

)
(1 ≤ i ≤ n).

Proof. Note that, for any i ∈ {1, 2, . . . , n− 1}, we have

pi+1

qi+1
=

(
piqi+1 + 1

qi

)
qi+1

=

(
qi+1 + qi−1

qi

)
pi − pi−1(

qi+1 + qi−1

qi

)
qi − qi−1

. (4.1)

Consider the path p0
q0

−→ p1
q1
. We have

p1
q1

=
a0q1 + 1

q1
= a0 +

1

q1
= [a0, a1]

where a1 = q1 = (−1)2
(
q1+q−1

q0

)
. Again, we have B0 = q0 and A0 = p0. Moreover, B1 =

a1B0 +B−1 = a1 = q1 and so A1 = p1. By equation (4.1), we have

p2
q2

=

(
q2 + q0

q1

)
p1 − p0(

q2 + q0
q1

)
q1 − q0

=

−
(
q2 + q0

q1

)
p1 + p0

−
(
q2 + q0

q1

)
q1 + q0

=
a2A1 +A0

a2B1 +B0
= [a0, a1, a2].

Here, a2 = (−1)3
(
q2+q0
q1

)
∈ F[x] \F. It is easy to see that B2 = −q2 and so A2 = −p2. Again by

equation (4.1), we have

p3
q3

=

(
q3 + q1

q2

)
p2 − p1(

q3 + q1
q2

)
q2 − q1

=

(
q3 + q1

q2

)
(−p2) + p1(

q3 + q1
q2

)
(−q2) + q1

=
a3A2 +A1

a3B2 +B1
= [a0, a1, a2, a3]

where a3 = (−1)4
(
q3+q1
q2

)
∈ F[x] \F. Similarly, we get B3 = a3B2+B1 = −a3q2+ q1 = −q3 and

so A3 = −p3. Continuing in the same manner, we have

p4
q4

=

(
q4 + q2

q3

)
p3 − p2(

q4 + q2
q3

)
q3 − q2

=
a4A3 +A2

a4B3 +B2
= [a0, a1, a2, a3, a4]
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where a4 = (−1)5
(
q4+q2
q3

)
∈ F[x] \ F, B4 = q4 and A4 = p4.

Assume that the statement is true for k. Given a path
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

−→ pk+1

qk+1
.

Then the path
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

from p0
q0

to pk
qk

defines the finite regular continued fraction of pk
qk

, say

pk
qk

= [a0, a1, a2, . . . , ak]

where, for each 1 ≤ i ≤ k, ai = (−1)i+1

(
qi + qi−2

qi−1

)
∈ F[x]\F and its ith partial numerator and

denominator are

Ai =

{
pi, if i ≡ 0, 1 (mod 4)

−pi, if i ≡ 2, 3 (mod 4)
, Bi =

{
qi, if i ≡ 0, 1 (mod 4)

−qi, if i ≡ 2, 3 (mod 4)
,

respectively. We divide the proof into 4 cases as follows:
Case 1: k ≡ 0 (mod 4). Then k − 1 ≡ 3 (mod 4) and we therefore have Ak = pk, Bk =
qk, Ak−1 = −pk−1 and Bk−1 = −qk−1. By equation (4.1), we have

pk+1

qk+1
=

(
qk+1 + qk−1

qk

)
pk − pk−1(

qk+1 + qk−1

qk

)
qk − qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]

where ak+1 = (−1)k+2
(
qk+1+qk−1

qk

)
∈ F[x] \F. We also have, Bk+1 = ak+1Bk +Bk−1 = ak+1qk −

qk−1 = qk+1. Therefore, Ak+1 = pk+1.
Case 2: k ≡ 1 (mod 4). Then k − 1 ≡ 0 (mod 4) and k + 2 ≡ 3 (mod 4). We then have
Ak = pk, Bk = qk, Ak−1 = pk−1 and Bk−1 = qk−1. By equation (4.1), we have

pk+1

qk+1
=

(
qk+1 + qk−1

qk

)
pk − pk−1(

qk+1 + qk−1

qk

)
qk − qk−1

=

(−1)k+2

(
qk+1 + qk−1

qk

)
pk + pk−1

(−1)k+2

(
qk+1 + qk−1

qk

)
qk + qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]

where ak+1 = (−1)k+2
(
qk+1+qk−1

qk

)
∈ F[x] \F. We also have, Bk+1 = ak+1Bk +Bk−1 = ak+1qk +

qk−1 = −qk+1. Therefore, Ak+1 = −pk+1.
Case 3: k ≡ 2 (mod 4). Then k − 1 ≡ 1 (mod 4) and k + 2 ≡ 0 (mod 4). We then have
Ak = −pk, Bk = −qk, Ak−1 = pk−1 and Bk−1 = qk−1. By the equation (4.1), we have

pk+1

qk+1
=

(
qk+1 + qk−1

qk

)
pk − pk−1(

qk+1 + qk−1

qk

)
qk − qk−1

=

(−1)k+2

(
qk+1 + qk−1

qk

)
(−pk) + pk−1

(−1)k+2

(
qk+1 + qk−1

qk

)
(−qk) + qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]
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where ak+1 = (−1)k+2
(
qk+1+qk−1

qk

)
∈ F[x] \ F. We also have, Bk+1 = ak+1Bk + Bk−1 =

ak+1(−qk) + qk−1 = −qk+1. Therefore, Ak+1 = −pk+1.
Case 4: k ≡ 3 (mod 4). Then k − 1 ≡ 2 (mod 4) and k + 2 ≡ 0 (mod 4). We then have
Ak = −pk, Bk = −qk, Ak−1 = −pk−1 and Bk−1 = −qk−1. By equation (4.1), we have

pk+1

qk+1
=

(
qk+1 + qk−1

qk

)
pk − pk−1(

qk+1 + qk−1

qk

)
qk − qk−1

=

(−1)k+2

(
qk+1 + qk−1

qk

)
(−pk)− pk−1

(−1)k+2

(
qk+1 + qk−1

qk

)
(−qk)− qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]

where ak+1 = (−1)k+2
(
qk+1+qk−1

qk

)
∈ F[x] \ F. We also have, Bk+1 = ak+1Bk + Bk−1 =

ak+1(−qk) + (−qk−1) = qk+1. So Ak+1 = pk+1.

Theorem 4.5. If qi−1 | (qi + qi−2) and piqi−1 − pi−1qi = −1 (1 ≤ i ≤ n), then the path

a0 :=
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pn
qn

from a0 to pn
qn

defines the finite regular continued fraction of pn
qn

where each vertex pi
qi

defines its
ith convergent. In particular, the ith partial numerator and partial denominator are

Ai =

{
pi, if i ≡ 0, 3 (mod 4)

−pi, if i ≡ 1, 2 (mod 4)
, Bi =

{
qi, if i ≡ 0, 3 (mod 4)

−qi, if i ≡ 1, 2 (mod 4)
,

respectively, with the partial quotient ai = (−1)i
(
qi+qi−2

qi−1

)
(1 ≤ i ≤ n).

Proof. Note that, for each i ∈ {1, 2, . . . , n− 1}, the equation (4.1) is also true. That is,

pi+1

qi+1
=

(
qi+1 + qi−1

qi

)
pi − pi−1(

qi+1 + qi−1

qi

)
qi − qi−1

.

Consider the path p0
q0

−→ p1
q1
. We have

p1
q1

=
a0q1 − 1

q1
= a0 +

1

−q1
= [a0, a1]

where a1 = −q1 = (−1)1
(
q1+q−1

q0

)
. Again, we have B0 = q0 and A0 = p0. Moreover, B1 =

a1B0 +B−1 = a1 = −q1 and so A1 = −p1. By equation (4.1), we have

p2
q2

=

(
q2 + q0

q1

)
p1 − p0(

q2 + q0
q1

)
q1 − q0

=

(
q2 + q0

q1

)
(−p1) + p0(

q2 + q0
q1

)
(−q1) + q0

=
a2A1 +A0

a2B1 +B0
= [a0, a1, a2].

Here, a2 = (−1)2
(
q2+q0
q1

)
∈ F[x] \F. It is easy to see that B2 = −q2 and so A2 = −p2. Again by

equation (4.1), we have

p3
q3

=

(
q3 + q1

q2

)
p2 − p1(

q3 + q1
q2

)
q2 − q1

=

−
(
q3 + q1

q2

)
(−p2)− p1

−
(
q3 + q1

q2

)
(−q2)− q1

=
a3A2 +A1

a3B2 +B1
= [a0, a1, a2, a3]
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where a3 = (−1)3
(
q3+q1
q2

)
∈ F[x] \ F. Similarly, we get B3 = q3 and A3 = p3. Continuing in the

same manner, we have

p4
q4

=

(
q4 + q2

q3

)
p3 − p2(

q4 + q2
q3

)
q3 − q2

=
a4A3 +A2

a4B3 +B2
= [a0, a1, a2, a3, a4]

where a4 = (−1)4
(
q4+q2
q3

)
∈ F[x] \ F, B4 = q4 and A4 = p4.

Assume that the statement is true for k. Given a path
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

−→ pk+1

qk+1
.

Then the path
p0
q0

−→ p1
q1

−→ p2
q2

−→ p3
q3

−→ · · · −→ pk
qk

from p0
q0

to pk
qk

defines the finite regular continued fraction of pk
qk

, say

pk
qk

= [a0, a1, a2, . . . , ak]

where, for each 1 ≤ i ≤ k, ai = (−1)i+1

(
qi + qi−2

qi−1

)
∈ F[x]\F and its ith partial numerator and

denominator are

Ai =

{
pi, if i ≡ 0, 3 (mod 4)

−pi, if i ≡ 1, 2 (mod 4)
, Bi =

{
qi, if i ≡ 0, 3 (mod 4)

−qi, if i ≡ 1, 2 (mod 4)
,

respectively. We divide the proof into 4 cases as follows:
Case 1: k ≡ 0 (mod 4). Then k − 1 ≡ 3 (mod 4) and we therefore have Ak = pk, Bk =
qk, Ak−1 = pk−1 and Bk−1 = qk−1. By equation (4.1), we have

pk+1

qk+1
=

(−1)k+1

(
qk+1 + qk−1

qk

)
pk + pk−1

(−1)k+1

(
qk+1 + qk−1

qk

)
qk + qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]

where ak+1 = (−1)k+1
(
qk+1+qk−1

qk

)
∈ F[x] \ F. We also have Bk+1 = qk+1 and Ak+1 = pk+1.

Case 2: k ≡ 1 (mod 4). Then k − 1 ≡ 0 (mod 4). We then have Ak = −pk, Bk = −qk, Ak−1 =
pk−1 and Bk−1 = qk−1. By equation (4.1), we have

pk+1

qk+1
=

(−1)k+1

(
qk+1 + qk−1

qk

)
(−pk) + pk−1

(−1)k+1

(
qk+1 + qk−1

qk

)
(−qk) + qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]

where ak+1 = (−1)k+1
(
qk+1+qk−1

qk

)
∈ F[x] \ F. We also have Bk+1 = qk+1 and Ak+1 = pk+1.

Case 3: k ≡ 2 (mod 4). Then k − 1 ≡ 1 (mod 4). We then have Ak = −pk, Bk = −qk, Ak−1 =
−pk−1 and Bk−1 = −qk−1. By equation (4.1), we have

pk+1

qk+1
=

(−1)k+1

(
qk+1 + qk−1

qk

)
(−pk)− pk−1

(−1)k+1

(
qk+1 + qk−1

qk

)
(−qk)− qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]
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where ak+1 = (−1)k+1
(
qk+1+qk−1

qk

)
∈ F[x] \ F. We also have Bk+1 = qk+1 and Ak+1 = pk+1.

Case 4: k ≡ 3 (mod 4). Then k − 1 ≡ 2 (mod 4). We then have Ak = pk, Bk = qk, Ak−1 =
−pk−1 and Bk−1 = −qk−1. By equation (4.1), we have

pk+1

qk+1
=

(−1)k+1

(
qk+1 + qk−1

qk

)
pk − pk−1

(−1)k+1

(
qk+1 + qk−1

qk

)
qk − qk−1

=
ak+1Ak +Ak−1

ak+1Bk +Bk−1
= [a0, a1, . . . , ak+1]

where ak+1 = (−1)k+1
(
qk+1+qk−1

qk

)
∈ F[x] \ F. We also have Bk+1 = qk+1 and Ak+1 = pk+1.

Example 4.6. For convenience, we set the notation as follows: any two vertices p(x)/q(x) and
r(x)/s(x) in χ3,

p(x)
q(x)

+−−→ r(x)
s(x) means p(x)

q(x) ∼
r(x)
s(x) with r(x)q(x)− s(x)p(x) = 1 and

p(x)
q(x)

−−−→ r(x)
s(x) means p(x)

q(x) ∼
r(x)
s(x) with r(x)q(x)− s(x)p(x) = −1.

From Example 3.1, we obtain

1. by Theorem 4.2 that the path x
+−−→ x2+1

x
−−−→ x3−x

x2+1

+−−→ x4+1
x3−x

−−−→ x5+x3

x4+1
defines the

regular continued fraction of

x5 + x3

x4 + 1
= [x, x, x, x, x],

2. by Theorem 4.3 that the path x
−−−→ x2−1

x
+−−→ x3

x2+1

−−−→ x4+x2−1
x3−x

+−−→ −x5+x
−x4−x2+1

defines
the regular continued fraction of

−x5 + x

−x4 − x2 + 1
= [x,−x,−x,−x, x],

3. by Theorem 4.4 that the path x
+−−→ x2+1

x
+−−→ x3

x2−1

+−−→ x4−x2−1
x3+x

+−−→ −x5−x4+x2+x+1
−x4−x3+x2−x+1

defines the regular continued fraction of

−x5 − x4 + x2 + x+ 1

−x4 − x3 + x2 − x+ 1
= [x, x,−x, x, x+ 1],

4. by Theorem 4.5 that the path x
−−−→ x2−1

x
−−−→ x3+x

x2−1

−−−→ −x4+x2+1
−x3

−−−→ x6−x4−x3−x2−x
x5−x2+1

defines the regular continued fraction of

x6 − x4 − x3 − x2 − x

x5 − x2 + 1
= [x,−x, x, x,−x2].

5 Conclusion
In this article, we introduce Farey graphs over certain finite fields analogous to the classical
case of rational numbers. We establish some relationships between these graphs and regular
continued fractions. The study confirms the relationships between Farey graphs and continued
fractions in such a way that continued fractions define paths whose vertices are convergents of
continued fractions. On the other hand, we also provide explicit formulae of partial quotients
and nth convergents of associated continued fractions for a given path.
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Abstract

Let Zps denote the ring of integers modulo ps, where p is a prime number and s is a
positive integer. In this talk, we introduce the subspace inclusion graph of Zps , which is a
graph whose vertices are the non-trivial proper subspaces of Zn

ps (for n ≥ 2) and two distinct
vertices are adjacent if and only if one includes the other. We determine some properties of
the graph, including its order, vertex degrees, diameter and girth.

Keywords: subspace, diameter, girth.
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1 Introduction
Graphs associated with algebraic structures play a significant role in mathematics, as well as
in other areas. Various types of graphs can be linked to many algebraic structures. Fields
are commonly used algebraic objects to define and explore different types of algebraic graphs.
Many studies have looked into graphs connected to subspaces of vector spaces. (cf. [1, 4, 20]).
Das [3] introduced the subspace inclusion graph over a field. Its vertex set is the collection of
non-trivial proper subspaces of a finite-dimensional vector space. Two vertices are adjacent if
one is contained in the other. Various fundamental properties have been explored. Furthermore,
many studies and applications have emerged since this research (cf. [2, 8, 18]).

Graphs over finite commutative rings have received significant attention, as evidenced by
previous studies (cf. [7, 16]). Many studies have built upon the ideas of graphs initially used
for finite fields, as shown by the works of [9, 17, 19]. Notable examples of graphs defined on
rings of integers modulo prime powers include bilinear forms graphs [12, 13] and Grassmann
graphs [10, 11]. These rings of integers modulo prime powers hold significant potential for
applications in mathematics, coding theory and information theory.

This paper aims to extend Das’s concept [3] of subspace inclusion graphs from fields to
rings of integers modulo prime powers and explore their properties. The paper is organized as
follows: we revisit properties related to subspaces and review key definitions and concepts in
†Speaker. ‡Corresponding author.
Email: siripong@mathstat.sci.tu.ac.th (S. Sirisuk), juthamas.sang@dome.tu.ac.th (J. Sangwisat).
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graph theory. In section 3, we introduce the concept of subspace inclusion graphs over rings
of integers modulo prime powers, providing fundamental results on their order, vertex degrees,
diameter and girth.

2 Preliminaries
Throughout this paper, our rings are commutative and always contain the identity 1 ̸= 0.

Let Zps denote the ring of integers modulo ps, where p is a prime number and s is a positive
integer. It is well-known that when s = 1, Zp forms a finite field. Zps is a significant algebraic
structure with multiple properties. It is a Galois ring, a finite chain ring, a principal ideal ring
and a commutative local ring (cf. [5, 14,15,21]). The ideals of Zps form a chain as follows:

{0} = psZps ⊊ ps−1Zps ⊊ ps−2Zps ⊊ · · · ⊊ p2Zps ⊊ pZps ⊊ Zps .

Hence, the principal ideal pZps serves as the unique maximal ideal of Zps . This implies that an
element u is a unit in Zps if and only if u does not belong to pZps . It is also known that any
element a ∈ Zps can be expressed as a = upt, where u is a unit and 0 ≤ t ≤ s. Furthermore, the
cardinality of piZps is given by |piZps | = ps−i for all i = 0, 1, . . . , s and the order of Z∗

ps , the set
of units, is |Z∗

ps | = (p− 1)ps−1.
Let n be a positive integer. Consider the Zps-module Zn

ps . A set {x⃗1, x⃗2, . . . , x⃗m} of vectors in
Zn
ps is said to be linearly independent if for any a1, a2, . . . , am in Zps , a1x⃗1+a2x⃗2+· · ·+amx⃗m = 0⃗

implies a1 = a2 = · · · = am = 0. The dimension of a submodule X of Zn
ps is denoted by dim(X)

and is defined to be the number of vectors in the largest linearly independent subset of X. Note
that a linearly independent set in Zn

ps is equivalent to a unimodular set (see [10,11]).
Next, if X = ⟨x⃗1, x⃗2, . . . , x⃗m⟩ is the submodule of Zn

ps generated by a linearly independent
set {x⃗1, x⃗2, . . . , x⃗m}, then X is called an m-subspace or simply a subspace of Zn

ps and the set
{x⃗1, x⃗2, . . . , x⃗m} is called a basis of X. It is worth noting that a subspace of Zn

ps is also known
as a free submodule. Naturally, the subspace {⃗0} is a trivial subspace with dimension 0 and
an empty basis. Furthermore, Zn

ps possesses the standard basis {e⃗1, e⃗2, . . . , e⃗n} where for each
i = 1, 2, . . . , n, e⃗i = (ei1, ei2, . . . , ein) with eii = 1 and eij = 0 for all i ̸= j. Consequently,
dim(Zn

ps) = n. In general, if X is an m-subspace of Zn
ps , then dim(X) = m.

It is well-known that a submodule may not necessarily be a subspace, even though it has
a dimension. However, if X is a submodule of Zn

ps with dim(X) = m, then X contains an
m-subspace of Zn

ps . It is important to note that every basis of a subspace of Zn
ps can be extended

to a basis of Zn
ps (cf. [6]). Additionally, if X is a subspace of Zn

ps with dimension m and a
basis {x⃗1, x⃗2, . . . , x⃗m}, it can be shown that any element x⃗ ∈ X can be uniquely expressed as
x⃗ = a1x⃗1 + a2x⃗2 + · · · + amx⃗m, resulting in |X| = psm. Furthermore, for any subspaces X and
Y of Zn

ps , if X ⊆ Y , then dim(X) ≤ dim(Y ) and if dim(X) = dim(Y ), then X = Y .
Next, let X and Y be subspaces of Zn

ps . A join of X and Y is defined to be a subspace
of Zn

ps containing both X and Y . A join of X and Y with the minimum dimension is called a
minimum join. Denoted by X ∨Y , the set of minimum joins of X and Y . We write dim(X ∨Y )
for the dimension of a minimum join of X and Y . Note that X ∩ Y may not be a subspace of
Zn
ps ; however, dim(X ∩ Y ) always exists.

Lemma 2.1. [11, Theorem 3.3] Let X and Y be subspaces of Zn
ps. Then

dim(X ∨ Y ) = dim(X) + dim(Y )− dim(X ∩ Y ).

Let m,n, q be non-negative integers with q ≥ 2. The Gaussian binomial coefficient is given
by [

n

m

]
q

=
m∏
i=1

qn+1−i − 1

qi − 1
,
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where
[
n
0

]
q
:= 1 and

[
0
m

]
q
:= 0 if m > 0. Note that

[
n
m

]
q
=

[
n

n−m

]
q

and
[
n
m

]
q
= qn−1

qm−1

[
n−1
m−1

]
q
. In

fact,
[
n
m

]
q

is the number of m-dimensional subspaces in an n-dimensional vector space over the
finite field of q elements. The number of m-subspaces of Zn

ps is then studied in [11].

Lemma 2.2. [11, Theorem 3.5] Let 1 ≤ k ≤ m ≤ n. Then:

1. The number of m-subspaces of Zn
ps is p(s−1)m(n−m)

[
n
m

]
p
.

2. In Zn
ps, the number of k-subspaces in a given m-subspace is p(s−1)k(m−k)

[
m
k

]
p
.

3. In Zn
ps, the number of m-subspaces containing a given k-subspace is p(s−1)(m−k)(n−m)

[
n−k
m−k

]
p
.

Finally, we review some basic background from graph theory. A (simple) graph G = (V,E)
consists of a non-empty set V := V (G) of vertices and an edge set E := E(G) of unordered pairs
of two distinct elements in V . The cardinalities of V and E are called the order and size of G,
respectively. A graph with no edges is called an edgeless graph. If there is an edge {u, v} ∈ E,
we say that u is adjacent to v denoted by u ∼ v. A subgraph H of G is a graph in which
V (H) ⊆ V (G) and E(H) ⊆ E(G). If a vertex set V of a graph G can be partitioned into k
disjoint partite sets V1, V2, . . . , Vk such that no two vertices in the same partite set are adjacent,
then G is called a k-partite graph. A bipartite graph is a 2-partite graph. The degree of a vertex
u in a graph G is the number of vertices in G adjacent to u and is denoted by deg(u). If every
vertex in a graph G has the same degree k, we say that G is regular and k is called the valency
of G. A complete graph is a graph in which every two distinct vertices are adjacent. A complete
graph of order n is denoted by Kn.

For any two vertices u and v of a graph G, a u-v path of length k is a sequence of k+1 distinct
vertices u = w0, w1, w2, . . . , wk−1, wk = v in G such that wi ∼ wi+1 for all i = 0, 1, . . . , k − 1. A
graph G is said to be connected if there is a u-v path in G for any two vertices u and v in G. The
distance between two vertices u and v in a connected graph G, denoted by dG(u, v) or d(u, v),
is the length of the shortest u-v path in G. The diameter of a connected graph G, denoted by
diam(G), is the largest distance between pairs of vertices in G. A cycle of length k ≥ 2 is a
sequence of vertices u0, u1, . . . , uk, u0 where u0, u1, . . . , uk form a u0-uk path and uk ∼ u0. A
cycle of length 3 is called a triangle. The girth of G, denoted by g(G), is the length of the
shortest cycle if it exists; otherwise, it is defined as g(G) = ∞.

3 Main Results
From now on, we assume that p is a prime number and s and n are positive integers such that
n ≥ 2, unless otherwise specified. We define the subspace inclusion graph of Zn

ps , denoted by
In(Zn

ps), to be the graph whose vertices are the non-trivial proper subspaces of Zn
ps and any two

distinct vertices X and Y are adjacent if and only if X ⊆ Y or Y ⊆ X.
In this paper, we present some fundamental results concerning the subspace inclusion graphs.

To begin, the order of the graph In(Zn
ps) can be readily determined through Lemma 2.2 (1), as

follows:

Theorem 3.1. The subspace inclusion graph of Zn
ps is of order

n−1∑
m=1

p(s−1)m(n−m)

[
n

m

]
p

.

Theorem 3.2. Let X be an m-subspace of Zn
ps where 1 ≤ m ≤ n− 1. Then the degree of X in

In(Zn
ps) is given by

deg(X) =
m−1∑
k=1

p(s−1)k(m−k)

[
m

k

]
p

+
n−m−1∑
k=1

p(s−1)k(n−m−k)

[
n−m

k

]
p

.
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Here, the empty sums (sums with no summands) are defined to be equal to 0.

Proof. Note that if Y is a vertex in In(Zn
ps) and is adjacent to X, then Y ⊆ X or X ⊆ Y .

By Lemma 2.2, the number of subspaces Y contained in X with 1 ≤ dim(Y ) ≤ m − 1 is given
by

∑m−1
k=1 p(s−1)k(m−k)

[
m
k

]
p
. On the other hand, the number of subspaces Y containing X with

m + 1 ≤ dim(Y ) ≤ n − 1 is
∑n−1

k=m+1 p
(s−1)(k−m)(n−k)

[
n−m
k−m

]
p
=

∑n−m−1
k=1 p(s−1)k(n−m−k)

[
n−m
k

]
p
.

Hence, the degree of X in In(Zn
ps) is

∑m−1
k=1 p(s−1)k(m−k)

[
m
k

]
p
+

∑n−m−1
k=1 p(s−1)k(n−m−k)

[
n−m
k

]
p

as required.

Corollary 3.3. If X and Y are two subspaces of Zn
ps of dimension m and n−m, respectively,

where 1 ≤ m ≤ n− 1, then deg(X) = deg(Y ).

Proof. By Theorem 3.2, we obtain that

deg(X) =
m−1∑
k=1

p(s−1)k(m−k)

[
m

k

]
p

+
n−m−1∑
k=1

p(s−1)k(n−m−k)

[
n−m

k

]
p

and

deg(Y ) =

n−m−1∑
k=1

p(s−1)k(n−m−k)

[
n−m

k

]
p

+

m−1∑
k=1

p(s−1)k(m−k)

[
m

k

]
p

.

Therefore, deg(X) = deg(Y ).

Next, we present special properties of In(Zn
ps) when n = 3.

Proposition 3.4. If n = 3, then In(Z3
ps) is of order 2p2(s−1)(p2+p+1), is regular with valency

p(s−1)(p+ 1) and is of size p3(s−1)(p+ 1)(p2 + p+ 1).

Proof. By Theorem 3.1, the order of In(Z3
ps) is

2∑
m=1

p(s−1)m(3−m)

[
3

m

]
p

= p2(s−1)

[
3

1

]
p

+ p2(s−1)

[
3

2

]
p

= 2p2(s−1)(p2 + p+ 1).

Since all vertices of In(Z3
ps) are of dimensions 1 or 2, Corollary 3.3 implies that their degrees

are equal. Hence, In(Z3
ps) is regular of degree p(s−1)

[
2
1

]
p
= p(s−1)(p+ 1). Therefore, the size of

In(Z3
ps) is p3(s−1)(p+ 1)(p2 + p+ 1).

Lemma 3.5. If X and Y are two distinct vertices of In(Zn
ps) of the same dimension, then

X ≁ Y in In(Zn
ps).

Proof. Suppose X ∼ Y . Then X ⊆ Y or Y ⊆ X. Since dim(X) = dim(Y ), it implies that
X = Y , a contradiction.

By applying the preceding lemma, we can establish numerous properties.

Corollary 3.6. The subspace inclusion graph of Zn
ps is not complete.

Proof. Since n ≥ 2, we consider the standard basis vectors e⃗1 and e⃗2. It is clear that ⟨e⃗1⟩ and
⟨e⃗2⟩ are two distinct 1-subspaces of Zn

ps . By Lemma 3.5, ⟨e⃗1⟩ ≁ ⟨e⃗2⟩. It thus implies that In(Zn
ps)

is not complete.

Corollary 3.7. The subspace inclusion graph of Zn
ps is an (n− 1)-partite graph.
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Proof. Let Vi be the set of i-subspaces of Zn
ps for i = 1, 2, . . . , n − 1. Then V1, V2, . . . and Vn−1

partition the vertices of In(Zn
ps). Moreover, Lemma 3.5 implies that no two vertices in Vi are

adjacent. Thus, In(Zn
ps) is an (n− 1)-partite graph.

Corollary 3.8. The graph In(Zn
ps) is an edgeless graph if and only if n = 2.

Proof. Assume that n = 2. Note that the vertices of the graph In(Zn
ps) are 1-subspaces of Z2

ps .
From Lemma 3.5, it follows that In(Zn

ps) is a graph without edges.
On the other hand, let n ≥ 3. Consider the subspaces ⟨e⃗1⟩ and ⟨e⃗1, e⃗2⟩ of Zn

ps where e⃗1 and
e⃗2 are standard basis vectors in Zn

ps . Since n ≥ 3, they are adjacent vertices in In(Zn
ps). Thus,

In(Zn
ps) is not an edgeless graph.

Next, we explore the diameter and girth of the subspace inclusion graph, along with related
findings. To begin, we establish the graph’s connectivity.

Lemma 3.9. If n ≥ 3, then In(Zn
ps) is a connected graph and diam(In(Zn

ps)) ≤ 3.

Proof. Let X and Y be two vertices in In(Zn
ps). If X ∼ Y , then d(X,Y ) = 1. Assume

X ≁ Y , i.e., d(X,Y ) ̸= 1 and so X ⊈ Y and Y ⊈ X. If X ∩ Y = X, then X ⊆ Y , a
contradiction. Thus, X ∩ Y is a proper submodule of X, so that dim(X ∩ Y ) < dim(X).
Similarly, dim(X ∩Y ) < dim(Y ). We divide the cases by the dimensions of X and Y as follows:

Case 1: dim(X) = dim(Y ) = 1. Then dim(X ∩ Y ) = 0. By Lemma 2.1, dim(X ∨ Y ) =
dim(X) + dim(Y ) − dim(X ∩ Y ) = 1 + 1 − 0 = 2. Hence, there exists a subspace Z ∈ X ∨ Y ,
i.e., Z is a subspace of Zn

ps containing X and Y with dim(Z) = dim(X ∨ Y ) = 2. Thus, Z is a
vertex in In(Zn

ps) such that X ∼ Z ∼ Y . Hence, d(X,Y ) = 2.
Case 2: dim(X) = 1 and dim(Y ) > 1. Then there exists a 1-subspace Z of Zn

ps contained in Y ,
it implies that Z ∼ Y . Note that X∩Z ⊆ X∩Y . Then dim(X∩Z) ≤ dim(X∩Y ) < dim(X) = 1
in X. Thus, dim(X∩Z) = 0. Since dim(X∨Z) = dim(X)+dim(Z)−dim(X∩Z) = 1+1−0 = 2,
there exists a subspace W ∈ X ∨ Z, i.e., W is a subspace of Zn

ps containing X and Z with
dim(W ) = dim(X ∨ Z) = 2. Thus, W is a vertex in In(Zn

ps) such that X ∼ W ∼ Z ∼ Y .
Therefore, d(X,Y ) ≤ 3.

Case 3: dim(X) > 1 and dim(Y ) = 1. It is similar to Case 2.
Case 4: dim(X) > 1 and dim(Y ) > 1.

Case 4.1: dim(X ∨ Y ) < n. Then there exists Z ∈ X ∨ Y , i.e., Z is a subspace of Zn
ps

containing X and Y with dim(Z) = dim(X ∨ Y ) < n. Since X ⊆ Z, dim(Z) > 1. Hence, Z is a
vertex in In(Zn

ps) such that X ∼ Z ∼ Y . Hence, d(X,Y ) = 2.
Case 4.2: dim(X ∩Y ) ≥ 1. Then X ∩Y contains a subspace Z of Zn

ps such that dim(Z) =
dim(X ∩ Y ) ≥ 1. Note that dim(Z) ≤ dim(X) < n. Hence, Z is a vertex in In(Zn

ps) such that
X ∼ Z ∼ Y . Thus, d(X,Y ) = 2.

Case 4.3: dim(X ∨ Y ) = n and dim(X ∩ Y ) = 0. Since dim(Y ) > 1, there exists a
1-subspace Z of Zn

ps contained in Y . Hence, Z ∼ Y . Note that X ∩ Z ⊆ X ∩ Y . Then
dim(X ∩Z) ≤ dim(X ∩ Y ) = 0, i.e., dim(X ∩Z) = 0. Thus, dim(X ∨Z) = dim(X) + dim(Z)−
dim(X ∩ Z) = dim(X) + dim(Z) < dim(X) + dim(Y ) = dim(X) + dim(Y ) − dim(X ∩ Y ) =
dim(X ∨Y ) = n. Hence, there exists W ∈ X ∨Z, i.e., W is a subspace of Zn

ps containing X and
Z with dim(W ) = dim(X∨Z) < n. Thus, W is a vertex in In(Zn

ps) such that X ∼ W ∼ Z ∼ Y .
Hence, d(X,Y ) ≤ 3.

From all cases, it follows that the graph In(Zn
ps) is complete and d(X,Y ) ≤ 3.

Theorem 3.10. If n ≥ 3, then diam(In(Zn
ps)) = 3.

Proof. Assume n ≥ 3. Let {e⃗1, e⃗2, . . . , e⃗n} be the standard basis of Zn
ps . Then X = ⟨e⃗1⟩ and

Y = ⟨e⃗2, e⃗3, . . . , e⃗n⟩ are subspaces of Zn
ps such that dim(X) = 1 and dim(Y ) = n − 1 ≥ 2. It is

easy to see that X ∩ Y = {⃗0}. Clearly, Y ⊈ X and X ⊈ Y . Thus, X ≁ Y . Hence, d(X,Y ) ̸= 1.
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Assume d(X,Y ) = 2. Then there exists a vertex Z in In(Zn
ps) such that X ∼ Z ∼ Y .

Since X ∼ Z, we have X ⊆ Z or Z ⊆ X. Suppose Z ⊆ X. Then Z ∩ Y = {⃗0}. As well,
Z ⊆ Y or Y ⊆ Z since Z ∼ Y . As a result, Z = {⃗0} or Y = {⃗0}, a contradiction. Thus,
X ⊆ Z. Since d(X,Y ) = 2, we also have Y ⊆ Z. Hence, Z is a join of X and Y . Note that
dim(X ∨ Y ) = dim(X) + dim(Y )− dim(X ∩ Y ) = 1+ (n− 1)− 0 = n. Then a minimum join of
X and Y is Zn

ps . Thus, Z = Zn
ps which is a contradiction. Therefore, d(X,Y ) ̸= 2.

Lemma 3.9 shows that diam(In(Zn
ps)) ≤ 3. Since d(X,Y ) ̸= 1 and 2, it implies that

d(X,Y ) = 3. Therefore, diam(In(Zn
ps)) = 3.

Finally, we determine the girth of In(Zn
ps) in the following theorem.

Theorem 3.11. The girth of the subspace inclusion graph of Zn
ps is

g
(
In(Zn

ps)
)
=


∞ if n = 2,

6 if n = 3 and s = 1,

4 if n = 3 and s ≥ 2,

3 if n ≥ 4.

Proof. Note that the length of any cycle is at least 3. Hence, g(In(Zn
ps) ≥ 3 or g(In(Zn

ps)) = ∞.
Case 1: n = 2. In(Zn

ps) is an edgeless graph by Corollary 3.8. Hence, g
(
In(Zn

ps)
)
= ∞.

Case 2: n = 3 and s = 1. By Theorem 4.2 in [3], we have g(In(Zn
p )) = 6.

Case 3: n = 3 and s ≥ 2. We show that In(Zn
ps) has no cycle of length 3. Let X ∼ Y ∼ Z ∼

X be a cycle of length 3 in In(Zn
ps). Then dim(X), dim(Y ) and dim(Z) are either 1 or 2 because

n = 3. By Lemma 3.5, dim(X), dim(Y ) and dim(Z) must be different. This is impossible.
Hence, In(Zn

ps) does not contain any cycle of length 3. Thus, g(In(Zn
ps)) ≥ 4.

Let X1 = ⟨(1, 0, 0)⟩, X2 = ⟨(1, 0, 0), (0, 1, 0)⟩, X3 = ⟨(1, ps−1, 0)⟩ and X4 = ⟨(1, 0, 0), (0, 1, p)⟩.
It is easy to see that {(1, 0, 0)}, {(1, ps−1, 0)}, {(1, 0, 0), (0, 1, 0)} and {(1, 0, 0), (0, 1, p)} are
linearly independent sets. Then X1, X2, X3 and X4 are non-trivial proper distinct subspaces
of Zn

ps . Clearly, X1 ⊆ X2 and X1 ⊆ X4. Since (1, ps−1, 0) = (1, 0, 0) + ps−1(0, 1, 0), we have
X3 ⊆ X2. As well, (1, ps−1, 0) = (1, 0, 0) + ps−1(0, 1, p) implies that X3 ⊆ X4. Therefore,
X1 ∼ X2 ∼ X3 ∼ X4 ∼ X1 is a cycle of length 4 in In(Zn

ps). Thus, g(In(Zn
ps)) = 4.

Case 4: n ≥ 4. Let X1 = ⟨e⃗1⟩, X2 = ⟨e⃗1, e⃗2⟩ and X3 = ⟨e⃗1, e⃗2, e⃗3⟩ where e⃗1, e⃗2 and e⃗3
are standard basis vectors. Then X1, X2 and X3 are non-trivial proper subspaces of Zn

ps and
X1 ⊆ X2 ⊆ X3. Therefore, X1 ∼ X2 ∼ X3 ∼ X1 is a cycle of length 3 in In(Zn

ps). Thus,
g(In(Zn

ps)) = 3.

We can see from the previous theorem that the girths of the graphs over the field Zp and the
ring Zps (with s ≥ 2) differ. These are some properties of the subspace inclusion graphs over
Zps . Many more properties of these graphs could be explored in the future.
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Abstract

Functional graphs are introduced to study iteration behaviors of functions via their graph
structures. Many papers consider monomial functions over commutative ring. In this work,
we are interested in graph-theoretic properties of functional graphs of linear polynomials on
finite field extensions; for example, the indegrees of vertices and the structure of components
– the number of components and order of symmetry. Furthermore, the quotient digraph of
functional graph by a suitable group is introduced to observe the similarity of merged vertices
and components. The main ingredients of this work are the Möbius Inversion Formula and
the Galois theory of finite field extensions.
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1 Introduction
This article deals with the functional graph. In the general context, let X be a nonempty set
and f be a map on X. The functional graph is defined as follows:

Definition 1.1. The functional graph of f on X is a digraph Γ(X, f) whose vertex set is X and
directed edges are (x, f(x)) for all x ∈ X.

Note that the functional graph is used to study the behavior of iterations of a function
because some properties of a function correspond to those of its functional graph.

The following propositions are well-known facts about the structure of connected components,
maximal connected undirected subgraphs, of the functional graph. The proofs of these can be
found in [8].
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Proposition 1.2. Every connected component of Γ(X, f) contains one directed cycle and no
infinite forward path, or contains no directed cycle and an infinite forward path, and any two
such paths have a common point. In particular, if X is finite, then every component is a directed
cycle attached by directed trees with single root on cycle.

Proposition 1.3. Assume that f is a bijective map on X. Then every connected component of
Γ(X, f) is exactly a directed cycle or an infinite two-way path. In particular, if X is finite, then
every component is a directed cycle.

To obtain the structure of the functional graph, the main related parameters are the indegree
of each vertex, the number of connected components, the lengths of directed cycles, and the
length of the longest directed path.

Further interesting properties of digraph are the (semi-)regularity and the symmetry.

Definition 1.4. A digraph is regular if every vertex has the same indegree and outdegree.
Consequently, a functional graph is regular if every vertex has the same indegree.

Definition 1.5. A digraph is symmetric of order M ≥ 2 if its set of components can be
partitioned into subsets of M isomorphic components.

In Algebra, many researches are concerned with the case when X is a commutative ring and f
is a polynomial function over X. Many graph-theoretic properties of Γ(X, f) are investigated in
the case that f is a monomial; for example, the formula for indegree and structure of connected
components. Most of these are studied on the rings of integers modulo [7] and the quotient rings
of polynomials over finite fields [6, 9]. In Section 2.2, we study graph-theoretic properties and
structure of Γ(F, f) when F is a field and f is a non-monic linear polynomial over F.

Furthermore, we are interested in actions of certain groups on functional graphs of which
the result are not known to us so far. In what follows, let Γ be a digraph with vertex set V (Γ)
and directed edge set E(Γ), and let G be a group.

Definition 1.6. A group action on a digraph Γ by G is a group action on V (Γ) by G such that
for each σ ∈ G, if (v, w) ∈ E(Γ), then (σ(v), σ(w)) ∈ E(Γ).

Definition 1.7. For a group action on the digraph Γ by G, a quotient digraph Γ/G is a digraph
whose vertices are the orbits Gv = {σ(v) : σ ∈ G} for v ∈ V (Γ) and directed edges are (Gv,Gw)
for v, w ∈ V (Γ) such that there exist v′ ∈ Gv and w′ ∈ Gw with (v′, w′) ∈ E(Γ).

Example 1.8. Consider the finite field extension F3(α)/F3 where α2 + 1 = 0. Note that the
Galois group Gal(F3(α)/F3) consists of the identity map and the map σ : α 7→ −α. So, the
orbits of this group are {0} , {1} , {−1} , {±α} , {±α+ 1} , {±α− 1}.

Let f(x) = −x+ 1 ∈ F3[x]. Then the functional graph Γ(F3(α), f) and its quotient digraph
by Gal(F3(α)/F3) are as follows.

Figure 1: Functional graph (left) and its quotient digraph (right)
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Based on this notion, we study the quotient digraph of Γ(F, f) by some subgroups of Aut(F)
that preserve coefficients of f . For example, for a prime power q and positive integer d, the
canonical action of the Galois group Gal(Fqd/Fq) on Fqd yields a group action on the functional
graph Γ(Fqd , f), where Fqd/Fq is a finite field extension and f is a polynomial over Fq. In fact,
each σ ∈ Gal(Fqd/Fq) preserves every coefficient of f , so that σ gives rise to an automorphism
of the functional graph Γ(Fqd , f). In Section 3.1, we would like to figure out how connected
components of the functional graphs Γ(Fqd , f) collapse into the quotient digraph, for instance,
when a directed cycle becomes a shorter cycle or when several directed cycles become a single
cycle. By the Galois theory of finite field extensions, the structure of quotient digraphs is
transformed to number-theoretic conditions that can be investigated via arithmetic-function
properties recapitulated in Section 2.1. The number of components and the order of symmetry
of quotient digraphs are discussed in Section 3.2. The final two sections give examples of quotient
digraphs demonstrating the results in the previous section.

Notation For a set S, we denote by #S the cardinality of S and if S ⊆ N, we denote by gcdS
the greatest common divisor of elements in S.

2 Preliminaries

2.1 Arithmetic Functions

In this section, we summarize some well-known definitions and properties in Number Theory
[2, 4, 5] that are used in this article. We begin with the following basic definitions.

• An arithmetic function is a function from N to C.

• A multiplicative function is an arithmetic function A such that A(M1M2) = A(M1)A(M2)
for all relatively prime M1,M2 ∈ N. Note that, for each M ∈ N with prime factorization
M = pα1

1 . . . pαr
r , we have

A(M) = A(pα1
1 ) . . . A(pαr

r ).

• The Möbius function is an arithmetic function µ defined by, for M ∈ N,

µ(M) =


1 if M = 1,

(−1)r if M is square-free,
0 otherwise.

• The Euler’s phi function is an arithmetic function φ defined by, for M ∈ N,

φ(M) = # {1 ≤ x ≤M : gcd(x,M) = 1} .

It is known that, for each M ∈ N,

φ(M) =M ·
∏
p|M

(
1− 1

p

)
.

• For a prime number p, the p-adic valuation is an arithmetic function vp defined by, for
M ∈ N, vp(M) is the highest exponent α ≥ 0 such that pα |M .

• The radical rad(M) of M ∈ N is the product of the distinct prime divisors of M .
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Proposition 2.1. Let f, F : N → C be such that, for M ∈ N,

F (M) =
∑
x|M

f(x).

If f is multiplicative, then so is F .

Note that both µ and φ are multiplicative. Furthermore, µ satisfies the following property.

Proposition 2.2. For M ∈ N,

∑
x|M

µ(x) =
∑
x|M

µ

(
M

x

)
=

{
1 if M = 1,

0 otherwise.

Proposition 2.3 (Möbius Inversion Formula for one variable). Let f, F : N → C. The following
statements are equivalent:

(1) For each M ∈ N, ∑
x|M

f(x) = F (M).

(2) For each M ∈ N, ∑
x|M

µ

(
M

x

)
F (x) = f(M).

Proposition 2.4 (Möbius Inversion Formula for two variables). Let f, F : N × N → C. The
following statements are equivalent:

(1) For each M,N ∈ N, ∑
x|M

∑
y|N

f(x, y) = F (M,N).

(2) For each M,N ∈ N, ∑
x|M

∑
y|N

µ

(
M

x

)
µ

(
N

y

)
F (x, y) = f(M,N).

Lemma 2.5. Let n ∈ N. Define the divisor-checking function f(∗;n) by, for M ∈ N, f(M ;n) =
1 if M | n, and f(M ;n) = 0 otherwise.

Then f(∗;n) is multiplicative and, for each M ∈ N,

gcd(M,n) =
∑
x|M

φ(x)f(x;n). (2.1)

Proof. First, to show that f(∗;n) is multiplicative, let M1,M2 ∈ N be relatively prime. Observe
that M1 | n and M2 | n if and only if M1M2 | n. If M1M2 | n, then f(M1M2;n) = 1 =
f(M1;n)f(M2;n). Otherwise, M1 ∤ n or M2 ∤ n, so f(M1M2;n) = 0 = f(M1;n)f(M2;n).

Next, to show that gcd(∗, n) is multiplicative, let M1,M2 ∈ N be relatively prime. Ob-
serve that every divisor of M1M2 can be written as a product of divisors of M1 and M2,
respectively. This implies that gcd(M1M2, n) | gcd(M1, n) · gcd(M2, n). On the other hand,
it is clear that gcd(M1, n) · gcd(M2, n) | M1M2. Furthermore, since M1 and M2 are relatively
prime, so are gcd(M1, n) and gcd(M2, n). It follows that gcd(M1, n) · gcd(M2, n) | n, thus
gcd(M1, n) · gcd(M2, n) | gcd(M1M2, n). Therefore, gcd(M1M2, n) = gcd(M1, n) · gcd(M2, n).

Finally, by Proposition 2.1 and the multiplicity of φ and f(∗;n), the function given by right-
hand side of (2.1) is multiplicative. Since gcd(∗, n) is also multiplicative, it suffices to show that
(2.1) holds for prime powers. Let p be a prime number and α ∈ N. We distinguish three cases.
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1. If p ∤ n, then f(pi;n) = 0 for all i ≥ 1, so

gcd(pα, n) = 1 = 1 + 0 = φ(1)f(1;n) +
α∑

i=1

φ(pi)f(pi;n).

2. If p | n and α ≤ vp(n), then f(pi;n) = 1 for all 0 ≤ i ≤ α, so

gcd(pα, n) = pα = 1 +

α∑
i=1

(pi − pi−1) = φ(1)f(1;n) +

α∑
i=1

φ(pi)f(pi;n).

3. If p | n and α > vp(n), then f(pi;n) = 1 for all 0 ≤ i ≤ vp(n) and f(pi;n) = 0 for all
vp(n) + 1 ≤ i ≤ α, so

gcd(pα, n) = pvp(n) = 1 +

vp(n)∑
i=1

(pi − pi−1) + 0

= φ(1)f(1;n) +

vp(n)∑
i=1

φ(pi)f(pi;n) +
α∑

i=vp(n)+1

φ(pi)f(pi;n).

Möbius Inversion Formula for one variable (Proposition 2.3) implies the following lemma.

Lemma 2.6. Let n ∈ N. Then, for each M ∈ N,

∑
x|M

µ

(
M

x

)
gcd(x, n) =

{
φ(M) if M | n,
0 otherwise.

2.2 Functional Graphs of Linear Polynomials on Fields
In this section, an isomorphism of digraphs is introduced to discuss the structures of Γ(F, ax+b)
for some specific a, b ∈ F. For a digraph Γ, denote vertex set and directed edge set of Γ by V (Γ)
and E(Γ), respectively.

Definition 2.7. Let Γ1 and Γ2 be digraphs. A map Φ : V (Γ1) → V (Γ2) is called an isomorphism
of digraphs from Γ1 to Γ2 if Φ is bijective and (v, w) ∈ E(Γ1) if and only if (Φ(v),Φ(w)) ∈ E(Γ2).

If there is an isomorphism from Γ1 onto Γ2, we say that Γ1 is isomorphic to Γ2 and denote
this Γ1

∼= Γ2.

Theorem 2.8. Let a, b1, b2 ∈ F. If a 6= 1, then Γ(F, ax+ b1) ∼= Γ(F, ax+ b2).
Moreover, for each b ∈ F×, Γ(F, ax+ b) ∼= Γ(F, ax) if and only if a 6= 1.

Proof. Assume that a 6= 1. Write c = (1− a)−1 · (b2− b1). Define Φ : F → F by Φ(x) = x+ c for
x ∈ F. Clearly, Φ is bijective. Note that Φ(ax+ b1) = (ax+ b1)+ c = a(x+ c)+ b2 = aΦ(x)+ b2
for all x ∈ F. Therefore, Γ(F, ax+ b1) ∼= Γ(F, ax+ b2).

Let b ∈ F× be such that Γ(F, ax) ∼= Γ(F, ax + b) with an isomorphism Φ. Then Φ(ax) =
aΦ(x)+b for all x ∈ F. Therefore, Φ(0) = aΦ(0)+b, so a 6= 1; otherwise, b = (1−a)Φ(0) = 0.

Next, the structure of Γ(F, ax) for a ∈ F× is as follows:

Theorem 2.9. Let a ∈ F×. The components of Γ(F, ax) are [x]a = {atx : t ∈ Z} for x ∈ F.
The trivial component of Γ(F, ax) is the component [0]a = {0}. In particular, if n = ord(a,F×)
is finite, every nontrivial component of Γ(F, ax) is a directed cycle of length n. Otherwise, it
is an infinite two-way path.

Therefore, for each a1, a2 ∈ F×, Γ(F, a1x) ∼= Γ(F, a2x) if and only if ord(a1,F×) = ord(a2,F×).
Furthermore, if F is finite, then the number of nontrivial components is #F×/n.
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To conclude, for each a ∈ F× and b ∈ F, we have Γ(F, ax+ b) is regular with indegree 1 and
if a 6= 1 and [1]a 6= F×, we have Γ(F, ax+ b)− [0]a is symmetric.

To end this section, we state a sufficient condition related to a group action on a digraph
and a homomorphism of quotient digraphs.

Definition 2.10. Let X and Y be sets with group actions by a group G. A function ψ from X
to Y is said to be G-equivariant if σ ◦ ψ = ψ ◦ σ for every σ ∈ G.

By definitions of a group action of digraph and quotient digraph, we obtain the following
propositions.

Proposition 2.11. Assume that a function f on X is G-equivariant. Then a group action on
X by G induces a group action on Γ(X, f) by G.

Proposition 2.12. Let Γ1 and Γ2 be digraphs with group actions on Γ1 and Γ2 by G. If Γ1
∼= Γ2

with a G-equivariant isomorphism Φ, then Γ1/G ∼= Γ2/G with an isomorphism Φ : Gx 7→ GΦ(x).

3 Main Results
3.1 On Finite Field Extension
In this section, let q be a prime power and d be a positive integer. Consider a finite field extension
Fqd/Fq with a cyclic group F×

qd
of order qd − 1.

Let a ∈ Fq \ {0, 1}. Let n = ord(a,F×
q ) be the multiplicative order of a. Note that n | q − 1.

It is known [3] that the Galois group G := Gal(Fqd/Fq) is a cyclic group of order d generated
by the Frobenius automorphism Frobq : x 7→ xq. For x ∈ F×

qd
, denote the orbit of x in G by

Gx =
{

Frobe
q(x) = xq

e
: 0 ≤ e < d

}
.

For every a, b ∈ Fq with a 6= 0, 1, Theorem 2.8 implies that Γ(Fqd , ax+ b) ∼= Γ(Fqd , ax) with
an isomorphism x 7→ x− (1−a)−1b. Furthermore, G acts on both functional graphs canonically
by Proposition 2.11 and Γ(Fqd , ax+ b)/G ∼= Γ(Fqd , ax)/G by Proposition 2.12.

Therefore, it suffices to study the structure of the quotient digraph Γ/G of a functional graph
Γ := Γ(Fqd , ax) where a ∈ Fq \ {0, 1}. We already know the structure of Γ by Theorem 2.9.

As the trivial component [0] = {0} in Γ must be collapsed to the trivial component [G0] =
{0} in Γ/G, we consider nontrivial components [Gx] in Γ/G for x ∈ F×

qd
.

For x ∈ F×
qd

, we define the following parameters

• D is the least positive integer such that xqD = x, i.e. D = #Gx;

• k is the least positive integer such that xqk ∈ [x] where [x] is the component of x in Γ.

Note that D is the order of q modulo ord(x,F×
qd
) and k is the order of q modulo ord(xn,F×

qd
),

so k | D and D | nk.

Lemma 3.1. Let x, x′ ∈ F×
qd

be in the same component of Γ. Let D′, k′ be the corresponding
parameters of x′. Then D′ = D and k′ = k.

Proof. Write x′ = atx for some t ∈ Z. As a ∈ Fq, we have aq = a, so (x′)q
e
= (atx)q

e
=

(aq
e
)txq

e
= atxq

e for all 0 ≤ e < d. Hence parameters of x and x′ coincide by minimality.

Lemma 3.2. Let x, x′ ∈ F×
qd

be in the same orbit over G. Let D′, k′ be the corresponding
parameters of x′. Then D′ = D and k′ = k.

Proof. Clearly, D′ = D. Write x′ = xq
e for some 0 ≤ e < d. As a ∈ Fq, we have aq = a. Note

that if xqk = atx for some t ∈ Z, then (x′)q
k
= (xq

k
)q

e
= (aq

e
)txq

e
= atx′, so k′ ≤ k. Similarly,

k ≤ k′.
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Observe that D is the number of vertices in Γ that are collapsed into a vertex Gx in Γ/G

and k is the number of components, namely [x], [xq], [xq
2
], . . . , [xq

k−1
], in Γ that are collapsed

into the component [Gx] in Γ/G. Since the component [x] in Γ is a directed cycle of length n, it
follows that the component [Gx] in Γ/G is a directed cycle of length ℓ := nk/D because there
are ℓD = nk vertices in Γ collapsed to [Gx].

Therefore, to count the number of components in Γ/G with given length ℓ, it suffices by
Lemmas 3.1, 3.2, and the above observation to count the number of vertices in Γ with parameters
D, k such that nk = ℓD.

For D, k ∈ N, let γ(D, k;n) be the number of elements in F×
qd

with parameters D, k with
respect to Γ if D | d, k | D, and D | nk; otherwise, we set γ(D, k;n) = 0. Then the number of
components in Γ/G with parameters D, k is 1

nk
γ(D, k;n).

Lemma 3.3. Let Z be a cyclic group and let δ, κ, n ∈ N be such that δ | #Z and κ | #Z. Then

# {x ∈ Z : ord(x, Z) | δ and ord(xn, Z) | κ} = gcd(δ, nκ).

Proof. Note that, since Z is a cyclic group, we have for each x ∈ Z,

ord(xn, Z) | κ if and only if ord(x, Z) | nκ.

As gcd(δ, nκ) | #Z, it follows that

# {x ∈ Z : ord(x, Z) | δ and ord(xn, Z) | κ} = # {x ∈ Z : ord(x, Z) | δ and ord(xn, Z) | nκ}
= # {x ∈ Z : ord(x, Z) | gcd(δ, nκ)}
= gcd(δ, nκ).

To calculate γ(D, k;n), we use the relation between parameters and orders of q in specific
modulos as shown in the following theorem.

Theorem 3.4. Let D, k ∈ N. Then

γ(D, k;n) =
∑
h|D

∑
e|k

µ

(
D

h

)
µ

(
k

e

)(
qgcd(h,e) − 1

)
gcd

(
h

gcd(h, e)
, n

)
.

Proof. Note that, for each D, k ∈ N and x ∈ F×
qd

, if ord(x,F×
qd
) | qD−1 and ord(xn,F×

qd
) | qk−1,

then ord(x,F×
qd
) | qh − 1 and ord(xn,F×

qd
) | qe − 1 for the least h | D and e | k, so h is the order

of q modulo ord(x,F×
qd
) and k is the order of q modulo ord(xn,F×

qd
).

By Lemma 3.3 applied to F×
qd

and definition of γ(∗, ∗;n), we have, for each D, k ∈ N,∑
h|D

∑
e|k

γ(h, e;n) = gcd
(
qD − 1, n(qk − 1)

)
.

As n | q − 1, it follows from an elementary calculation that for each D, k ∈ N,∑
h|D

∑
e|k

γ(h, e;n) =
(
qgcd(D,k) − 1

)
gcd

(
D

gcd(D, k)
, n

)
.

Hence, the result follows from Möbius Inversion Formula for two variables (Proposition 2.4).

Now, the number of components in Γ/G with given length can be calculated. More precisely,
if ℓ ∈ N with ℓ | n and n | ℓd, let C(ℓ;n) be the number of nontrivial components in Γ/G with
length ℓ. We have the following formula

C(ℓ;n) =
∑
k| ℓd

n

1

nk
γ

(
nk

ℓ
, k;n

)
.
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Since we know the number of components with given length, we can calculate the order of
symmetry of Γ/G− [G0] based on the fact that the set of nontrivial components is partitioned
into subsets of MΓ := gcd {C(ℓ;n) : ℓ | n, n | ℓd} isomorphic component.

3.2 General Results
In this section, we simplify the formula of γ(D, k;n) in Theorem 3.4.

Observe first that, for D, k ∈ N with D | d, k | D, and D | nk,

γ(D, k;n) =
∑
h|D

∑
e|k

µ

(
D

h

)
µ

(
k

e

)(
qgcd(h,e) − 1

)
gcd

(
h

gcd(h, e)
, n

)

=
∑

g|gcd(D,k)

(qg − 1)

 ∑
h|D, e|k

gcd(h,e)=g

µ

(
D

h

)
µ

(
k

e

)
gcd

(
h

g
, n

)

=
∑
g|k

(qg − 1)


∑

h|D
g
, e| k

g

gcd(h,e)=1

µ

(
D/g

h

)
µ

(
k/g

e

)
gcd (h, n)

 .
For a further simplification, we define functions F (∗, ∗;n), F̂ (∗, ∗) : N× N → C by

F (M,N ;n) =
∑

x|M, y|N
gcd(x,y)=1

µ

(
M

x

)
µ

(
N

y

)
gcd (x, n)

and
F̂ (M,N) =

∑
x|M, y|N
gcd(x,y)=1

µ

(
M

x

)
µ

(
N

y

)
.

for each M,N ∈ N. It follows that

γ(D, k;n) =
∑
g|k

(qg − 1) · F (D/g, k/g;n).

Furthermore, if gcd(n, d) = 1, then

γ(D, k;n) =
∑
g|k

(qg − 1) · F̂ (D/g, k/g).

Now, we apply Möbius Inversion Formulas on some suitable functions to calculate F̂ , F . To
this end, we define functions H,∆ : N× N → C by

H(M,N) =

{
1 if gcd(M,N) = 1,

0 otherwise,

and

∆(M,N) =

{
1 if M = N,

0 otherwise
for each M,N ∈ N. By Proposition 2.2,

H(M,N) =
∑

z|gcd(M,N)

µ(z) =
∑

x|M, y|N
x=y

µ(y) =
∑
x|M

∑
y|N

µ(y)∆(x, y).
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By Möbius Inversion Formula for two variables (Proposition 2.4),

F̂ (M,N) =
∑

x|M, y|N
gcd(x,y)=1

µ

(
M

x

)
µ

(
N

y

)
=

∑
x|M

∑
y|N

µ

(
M

x

)
µ

(
N

y

)
H(x, y)

= µ(N)∆(M,N) =

{
µ(N) if M = N,

0 otherwise.

For M,N ∈ N, define

H̃(M,N) =
∑
y|N

µ

(
N

y

)
H(M,y) =

∑
y|N

gcd(M,y)=1

µ

(
N

y

)
.

Then

F̂ (M,N) =
∑
x|M

µ

(
M

x

) ∑
y|N

gcd(x,y)=1

µ

(
N

y

) =
∑
x|M

µ

(
M

x

)
H̃(x,N).

By Möbius Inversion Formula for one variable (Proposition 2.3),

H̃(M,N) =
∑
x|M

F̂ (x,N) =
∑
x|M
x=N

µ(N) =

{
µ(N) if N |M,

0 otherwise.

Therefore,

F (M,N ;n) =
∑

x|M, y|N
gcd(x,y)=1

µ

(
M

x

)
µ

(
N

y

)
gcd (x, n)

=
∑
x|M

µ

(
M

x

)
gcd(x, n)

 ∑
y|N

gcd(x,y)=1

µ

(
N

y

)
=

∑
x|M

µ

(
M

x

)
gcd(x, n)H̃(x,N)

=
∑
x|M
N |x

µ

(
M

x

)
gcd(x, n)µ(N).

It follows that F (M,N ;n) = 0 if N ∤M , and if N |M , then

F (M,N ;n) = µ(N)
∑
x|M

N

µ

(
M/N

x

)
gcd(Nx, n)

= µ(N)
∑
x|M

N

µ

(
M/N

x

)
gcd(gcd(N,n)x, n)

= µ(N) gcd(N,n)
∑
x|M

N

µ

(
M/N

x

)
gcd

(
x,

n

gcd(N,n)

)
.
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By Lemma 2.6, we have

F (M,N ;n) = µ(N) gcd(N,n)φ

(
M

N

)

if N |M and gcd(N,n)

∣∣∣∣nNM ; otherwise, F (M,N ;n) = 0.

Hence, for each D | d, k | D with D | nk,

γ(D, k;n) =
∑
g|k

(qg − 1) · F
(
D

g
,
k

g
;n

)

= φ

(
D

k

) ∑
g|k

gcd
(

k
g
,n
)
|nk
D

µ

(
k

g

)
gcd

(
k

g
, n

)
· (qg − 1)

= φ

(
D

k

) ∑
g|k

gcd(g,n)|nk
D

µ (g) gcd (g, n) ·
(
qk/g − 1

)
.

So, for each ℓ | n with n | ℓd, we have

C(ℓ;n) =
∑
k| ℓd

n

1

nk
γ

(
nk

ℓ
, k;n

)

= φ
(n
ℓ

)∑
k| ℓd

n

∑
g|k

gcd(g,n)|ℓ

µ(g)
gcd(g, n)

g
· q

k/g − 1

n · k/g

= φ
(n
ℓ

) ∑
g| ℓd

n
gcd(g,n)|ℓ

∑
k| ℓd

n
g|k

µ(g)
gcd(g, n)

g
· q

k/g − 1

n · k/g

= φ
(n
ℓ

) ∑
g| ℓd

n
gcd(g,n)|ℓ

∑
m| ℓd

ng

µ(g)
gcd(g, n)

g
· q

m − 1

n ·m

= φ
(n
ℓ

) ∑
m| ℓd

n

 ∑
g| ℓd

nm
gcd(g,n)|ℓ

µ(g)
gcd(g, n)

g

 · q
m − 1

n ·m
.

For M ∈ N, define

A(M) =
∑
x|M

gcd(x,n)|ℓ

µ(x)
gcd(x, n)

x
=

∑
x|M

µ(x)
gcd(x, n)

x
· f(gcd(x, n); ℓ),

where f(∗; ℓ) is the divisor-checking function as in Lemma 2.5. Since f(∗; ℓ) and gcd(∗, n) are
multiplicative and gcd(gcd(M1, n), gcd(M2, n)) = 1 for all M1,M2 with gcd(M1,M2) = 1, it
follows that f(gcd(∗, n); ℓ) is multiplicative, whence also A. It suffices to calculate the value of
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A for prime powers. Let p be a prime number and α ∈ N. Then

A(pα) =
∑
x|pα

µ(x)
gcd(x, n)

x
· f(gcd(x, n); ℓ)

= µ(1)
gcd(1, n)

1
· f(gcd(1, n); ℓ) + µ(p)

gcd(p, n)

p
· f(gcd(p, n); ℓ)

=


1− 1

p
if p ∤ n,

1 if p | n and p ∤ ℓ,
0 if p | n and p | ℓ.

Since A is multiplicative, for each M ∈ N, we have

A(M) =
∏
p|M
p∤n

A
(
pvp(M)

)
·

∏
p|M

p|n, p∤ℓ

A
(
pvp(M)

)
·

∏
p|M

p|n, p|ℓ

A
(
pvp(M)

)
.

The second term is always 1. The last term is 0 if there is a prime number p such that p | M ,
p | n, and p | ℓ, i.e. gcd(M,n, ℓ) > 1; otherwise, the last term is 1. Therefore

A(M) =
∏
p|M
p∤n

(
1− 1

p

)

=

∏
p|M

(
1− 1

p

) ·

∏
p|M
p|n

(
1− 1

p

)
−1

=
φ(M)

M
· gcd(M,n)

φ(gcd(M,n))

if gcd(M,n, ℓ) = 1; otherwise, A(M) = 0.
Therefore, for ℓ | n with n | ℓd,

C(ℓ;n) = φ
(n
ℓ

) ∑
m| ℓd

n

A

(
ℓd

nm

)
· q

m − 1

n ·m

= φ
(n
ℓ

) ∑
m| ℓd

n

gcd( ℓd
nm

,ℓ)=1

 ∏
p| ℓd

nm
p∤n

(
1− 1

p

) · q
m − 1

n ·m
.

We are interested in the following three special cases, namely when gcd(n, d) = 1, d | n, and
d is a prime power.

First, assume that gcd(n, d) = 1. Then the length of nontrivial component in Γ/G is ℓ = n

(since n

ℓ

∣∣∣n and n

ℓ

∣∣∣d) and ℓd

n
= d, so gcd

(
d

m
, ℓ

)
= gcd

(
d

m
, n

)
= 1 for all m | d and

C(ℓ;n) = C(n;n) = φ (1)
∑
m|d

∏
p| d

m

(
1− 1

p

) · q
m − 1

n ·m
=

∑
m|d

m

d
φ

(
d

m

)
· q

m − 1

n ·m
.

Therefore, MΓ = C(n;n) ≥ qd − 1

n · d
≥ 2, so Γ/G− [G0] is symmetric.

Other cases are discussed in the next sections.
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3.3 Special Case: d | n

In this section, we assume that d | n. Then the length of nontrivial component in Γ/G is of the
form ℓ =

n

d
· s, where s | d. Note that ℓd/n = s and s | ℓ because n

d
∈ N. For each m | s, observe

that gcd
( s
m
, ℓ
)
= 1 if and only if m = s. Then

C(ℓ;n) = φ
(n
ℓ

)
· q

ℓd
n − 1

n · ℓd
n

= φ

(
d

s

)
· q

s − 1

n · s
.

Next, we calculate the order of symmetry MΓ using the following proposition and lemma.

Proposition 3.5 (Lifting The Exponent lemma [1]). Let π be a prime number, x, y ∈ Z be such
that π ∤ x, π ∤ y, and π | x− y, and let n ∈ N. Then

• if π is odd, then vπ(x
n − yn) = vπ(x− y) + vπ(n);

• if π = 2 and n is even, then v2(x
n − yn) = v2(x− y) + v2(x+ y) + v2(n)− 1;

• if π = 2 and n is odd, then v2(x
n − yn) = v2(x− y),

Lemma 3.6. Let π ∤ q be a prime number and η be the order of q modulo π. Then, for s ∈ N
with rad(s) | q − 1,

vπ

(
qs − 1

(q − 1) · s

)
=


0 if η ∤ s,
vπ(q

η − 1)− vπ(q − 1) if π is odd and η | s,
v2(q + 1)− 1 if π = 2 and s is even,
0 if π = 2 and s is odd.

Proof. Note that η ≤ π − 1 < π, so η = 1 if π = 2. By LTE (Proposition 3.5), we distinguish
four cases.

1. If η ∤ s, then gcd(η, s) < s, so π ∤ qgcd(η,s)−1 by minimality of η. Since gcd(qs−1, qη−1) =
qgcd(η,s) − 1 and π | qη − 1, we have π ∤ qs − 1, i.e. vπ(qs − 1) = 0. Observe that π ∤ q − 1;
for otherwise we would have η = 1, which is absurd as η ∤ s. So π ∤ s. Therefore,
vπ(q − 1) = 0 = vπ(s).

2. If π is odd and η | s, then vπ(q
s − 1) = vπ(q

η − 1) + vπ(s)− vπ(η) = vπ(q
η − 1) + vπ(s).

3. If π = 2 and s is even, then v2(q
s − 1) = v2(q − 1) + v2(q + 1) + v2(s)− 1.

4. If π = 2 and s is odd, then v2(q
s − 1) = v2(q − 1) and v2(s) = 0.

From all the four cases, we obtain the result by subtracting vπ(q − 1) + vπ(s).

Observe that if π | q, then π ∤ s as s | q − 1, so vπ(qs − 1) = vπ(q − 1) = vπ(s) = 0. For each
s | q − 1, it follows that qs − 1

(q − 1) · s
has nonnegative π-adic valuation for all prime number π, so

it is an integer. Note that Lemma 3.6 and this result do not use the assumption d | n.

Back to the calculation of MΓ. As MΓ = gcd

{
φ

(
d

s

)
· q − 1

n
· qs − 1

(q − 1) · s
: s | d

}
, we have

q − 1

n

∣∣∣∣MΓ, so MΓ > 1 if n < q − 1.

Assume n = q − 1. We claim that MΓ = 1 if (d is odd or v2(q + 1) = 1 = v2(d)) and 2 |MΓ

otherwise. To prove this, let π be a prime number. We compute vπ
(
φ

(
d

s

)
· qs − 1

(q − 1) · s

)
for

some suitable s | d to yield a value of vπ(MΓ). We distinguish three cases via Lemma 3.6.
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1. If π | q, then vπ

(
qd − 1

(q − 1) · d

)
= 0 by the above observation, so vπ(MΓ) = 0.

2. If π ∤ q and π is odd, then vπ(MΓ) = vπ

(
qd − 1

(q − 1) · d

)
= 0 if η ∤ d or η = 1. Assume that

η | d and η 6= 1, i.e. π ∤ q − 1, so π ∤ d. Pick

s =
∏
p|d

π|p−1

pvp(d).

Clearly, s | d. Suppose to the contrary that η | s. Then there exists a prime number p | d
such that π | p− 1 and p | η, so π < η which is absurd. So, η ∤ s. Because π ∤ d, we have

vπ(MΓ) = vπ

(
φ

(
d

s

)
· qs − 1

(q − 1) · s

)
=

∑
p|d

π∤p−1

vπ(φ(p
vp(d))) + 0 = 0.

3. If π ∤ q and π = 2, then v2(MΓ) = v2

(
qd − 1

(q − 1) · d

)
= 0 if d is odd or v2(q + 1) = 1.

Assume that d is even and v2(q + 1) > 1. If v2(d) = 1, then pick s = d

2
, which is odd, so

v2(MΓ) = v2

(
φ

(
d

s

)
· qs − 1

(q − 1) · s

)
= 0. Assume that v2(d) > 1. Let s | d.

• If s is even, then v2

(
qs − 1

(q − 1) · s

)
= v2(q + 1)− 1 > 0.

• If s is odd, then v2

(
d

s

)
= v2(d) > 1, so v2(MΓ) = v2

(
φ

(
d

s

))
≥ v2

(
d

s

)
− 1 > 0.

Thus, Γ/G− [G0] is not symmetric unless n < q − 1 or both v2(q + 1) and v2(d) are greater
than 1. If n < q−1, then Γ/G− [G0] is symmetric of order q − 1

n
. If v2(q+1) > 1 and v2(d) > 1,

then Γ/G− [G0] is symmetric of order 2.

3.4 Special Case: Prime-power degree of extension

In this section, we assume that d > 1 is a power of a prime number p. Then the length of
nontrivial component in Γ/G is of the form ℓ = n/pλ, where 0 ≤ λ ≤ min(vp(d), vp(n)). Note
that ℓd/n = d/pλ.

1. If vp(n) = 0, then gcd(n, d) = 1, so

C(ℓ;n) = C(n;n) = qd − 1

n · d
+

∑
m|d
m<d

(
1− 1

p

)
· q

m − 1

n ·m
.

2. If vp(d) ≤ vp(n), then d | n, so

C(ℓ;n) = φ(pλ) · q
d/pλ − 1

n · d/pλ
.
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3. If 0 < vp(n) < vp(d), then gcd

(
d

pλm
, ℓ

)
= 1 if and only if (λ < vp(n) and m =

d

pλ
) or

λ = vp(n) for all m
∣∣∣ d
pλ

, so

C(ℓ;n) =


φ(pλ) · q

d/pλ − 1

n · d/pλ
if 0 ≤ λ < vp(n),

φ(pλ) ·
∑
m| d

pλ

qm − 1

n ·m
if λ = vp(n).

Finally, we calculate the order of symmetry MΓ using the following lemma.

Lemma 3.7. Assume that d > 1 is a power of a prime number p. If p | n, then

gcd(qd−1 + · · ·+ q + 1, p− 1) = 1.

Proof. Assume p | n. Since n | q − 1, write q = mp+ 1 for some m ∈ N.
Assume p > 2. Let r be a prime divisor of p− 1. Then p ≡ 1 mod r, so q ≡ m+ 1 mod r.

1. If r | m, then q ≡ 1 mod r, so qd−1 + · · ·+ q + 1 ≡ d mod r. Since r < p and d is a power
of p, we have gcd(d, r) = 1. It follows that r ∤ qd−1 + · · ·+ q + 1.

2. If r ∤ m, then m+1 6≡ 1 mod r and qd−1+ · · ·+q+1 ≡ (m+ 1)d − 1

(m+ 1)− 1
mod r. Since r−1 < p

and d is a power of p, we have gcd(d, r − 1) = 1, so the order of m+ 1 modulo r does not
divide d. It follows that (m+ 1)d 6≡ 1 mod r, i.e. r ∤ qd−1 + · · ·+ q + 1.

From the both cases, we conclude that gcd(qd−1 + · · ·+ q + 1, p− 1) = 1.

Back to the calculation of MΓ.

1. If vp(n) = 0, then MΓ = C(n;n) ≥ 2, so Γ/G− [G0] is symmetric.

2. If vp(d) ≤ vp(n), then MΓ = 1 unless n < q−1 or both v2(q+1) and v2(d) are greater than
1. In these exceptional cases, Γ/G− [G0] is symmetric of order q − 1

n
and 2, respectively.

3. If 0 < vp(n) < vp(d), then

MΓ = gcd

φ(pvp(n)) · ∑
k|d/pvp(n)

q − 1

n
· qk − 1

(q − 1) · k
, φ(pλ) · q − 1

n
· q

d/pλ − 1

n · d/pλ
: 0 ≤ λ < vp(n)

 .

Since vp(n) ≥ 1, we have p | q−1, so qd/p
λ − 1

(q − 1) · d/pλ
∈ N for every 0 ≤ λ ≤ vp(n) by Lemma

3.6. Then Γ/G− [G0] is symmetric of order q − 1

n
if n < q − 1 as q − 1

n

∣∣∣∣MΓ.

Assume that n = q − 1. Note that qp
α − 1

(q − 1) · pα

∣∣∣∣ qp
β − 1

(q − 1) · pβ
for all 0 ≤ α ≤ β. By Lemmas

3.6 and 3.7,

MΓ = gcd

pvp(n)−1 ·
∑

k|d/pvp(n)

qk − 1

(q − 1) · k
,

qd/p
vp(n)−1 − 1

(q − 1) · d/pvp(n)−1

 .
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If p = 2 and q ≡ 3 mod 4 and v2(n) ≥ 2, then 2min(v2(n)−1,v2(q+1)−1) |MΓ, i.e. Γ/G− [G0]
is symmetric of order 2. In other cases, we have

MΓ = gcd

 ∑
k|d/pvp(n)

qk − 1

(q − 1) · k
,

qd/p
vp(n)−1 − 1

(q − 1) · d/pvp(n)−1

 .

It is still hard to compute MΓ.

In order to illustrate our results, we provide examples of the quotient digraph of a functional
graph Γ = Γ(F7d , 3x)/G by G = Gal(F7d/F7), where d = 3, 4, 5, 6, 10. Note that q = 7 and
n = ord(3,F×

7 ) = 6 = q − 1.

Table 1: C(ℓ;n) for ℓ | n with n | ℓd

d condition ℓ C(ℓ;n)

3 v3(n) = 1 = v3(d) 6 =
6

1
φ(1) · 7

3/1 − 1

6 · 3/1
= 29

2 =
6

3
φ(3) · 7

3/3 − 1

6 · 3/3
= 2

4 v2(n) = 1 < 2 = v2(d) 6 =
6

1
φ(1) · 7

4/1 − 1

6 · 4/1
= 100

3 =
6

2
φ(2) ·

[
74/2 − 1

6 · 4/2
+

74/4 − 1

6 · 4/4

]
= 5

5 v5(n) = 0 6
75 − 1

6 · 5
+

(
1− 1

5

)
· 7

1 − 1

6 · 1
= 561

6 d | n 6 φ

(
6

6

)
· 7

6 − 1

6 · 6
= 3268

3 φ

(
6

3

)
· 7

3 − 1

6 · 3
= 29

2 φ

(
6

2

)
· 7

2 − 1

6 · 2
= 8

1 φ

(
6

1

)
· 7

1 − 1

6 · 1
= 2

10 General 6 φ

(
6

6

)
·
[(

1− 1

5

)
· 7

2 − 1

6 · 2
+ 1 · 7

10 − 1

6 · 10

]
= 4707924

3 φ

(
6

3

)
·
[(

1− 1

5

)
· 7

1 − 1

6 · 1
+ 1 · 7

5 − 1

6 · 5

]
= 561

Therefore, Γ/G− [G0] is not symmetric when d = 3, 6, and is symmetric of order 5, 561, and
3 when d = 4, 5, 10 respectively.
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1 Introduction
In recent years, fixed point theory has become a significant tool in various areas of mathemat-
ics, especially in the study of functional equations, differential equations, and optimization. A
fundamental result in fixed point theory is the Banach Contraction Principle. Since its introduc-
tion, many researchers have aimed to generalize and extend the Banach Contraction Principle
to different contexts, such as metric spaces with a graph or partially ordered sets.

The study of maps on complete metric spaces endowed with a partial ordering has been a
subject of interest since the work of A.C.M. Ran and M.C.B. Reurings [8]. Later, J.J. Nieto
and R. Rodríguez-López [7] further generalized these results and introduced Picard operators
in the context of partially ordered sets. In 2008, Jacek Jachymski [5] introduced the concept
of generalizations of contractions on metric spaces with partially ordered sets to metric spaces
endowed with a graph.

Parallel to these developments, progress has been made in examining contractions on uni-
form spaces. In 1987, Angelov [1] put forth the concept of Φ-contractions on Hausdorff uni-
form spaces, which concurrently generalizes the Banach contractions on metric spaces and γ-
contractions [6] on locally convex spaces, and demonstrated the existence of fixed points under
various circumstances. Later, in 1991 [2], he expanded the notion of Φ-contractions to encompass
j-nonexpansive maps and established conditions to ensure the existence of their fixed points.
†Speaker. ‡Corresponding author.
Email: sittichoke.son@sru.ac.th (S. Songsa-ard)
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Expanding upon this research, we delved into functionally lipschitzian (FL) and functionally
uniformly lipschitzian (FUL) maps in locally convex spaces [4]. We focused on the weak topology
in normed spaces and provided criteria for FL and FUL maps, demonstrating that FL maps are
weakly continuous. Furthermore, we investigated fixed points in uniform spaces [3], examining
sufficient conditions for the existence of fixed points of J-contractions in uniform spaces equipped
with a collection of pseudometrics. We also presented examples of ordinary differential equations
(ODEs) that employ the main theorem to ensure the existence of solutions.

Inspired by these previous works and the developments in the field, we focus our investigation
on α-G-contractions on uniform spaces generated by a collection of pseudometrics. We aim to
provide criteria for these contractions by drawing ideas from our work on FL and FUL maps and
to demonstrate their applicability through examples similar to the integral equations presented
in [3].

This paper is organized into three chapters, beginning with an introduction that provides
motivation, background, and essential definitions. In Chapter 2, we introduce the novel concept
of α-G-contraction maps on uniform spaces, present criteria for analyzing maps on ℓp equipped
with the weak topology, which is a uniform space induced by a collection of pseudometrics
resulting from seminorms, and explore the connection between weakly connected and Cauchy
equivalent in uniform spaces. Chapter 3 presents two main theorems outlining sufficient condi-
tions for maps to be Picard operators, along with criteria to ensure their satisfaction.

2 Preliminaries
In this part, we provide some background and preliminary concepts in graph theory and uniform
spaces, necessary for the understanding of our main results. A directed graph (or digraph) is a
pair consisting of a nonempty set of vertices and a set of ordered pairs of distinct vertices, called
edges or arcs. The graph of interest has an infinite number of vertices, is directed, has weights
on the connecting lines as distances between two vertices along that line, and every vertex has
a loop.

We also introduce the concepts of conversion and undirected graphs. A conversion graph
of a graph G is obtained by reversing the direction of the edges of G, denoted by G−1. The
conversion graph has the same vertex set as G, V (G−1) = V (G), and the edge set is defined as
E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

An undirected graph of G, denoted by G̃, is defined such that V (G̃) = V (G) and E(G̃) =
E(G) ∪ E(G−1). In other words, if graph G has an edge connecting vertices x and y, the
undirected graph of G has edges connecting x to y and y to x.

A path in a graph G from vertex x to vertex y with length N (N ∈ N ∪ 0) is a sequence
(xi)

N
i=0 of N + 1 vertices such that x0 = x, xN = y, and (xi−1, xi) ∈ E(G) for i = 1, ..., N . A

graph G is connected if, for every x, y ∈ V (G), there exists a path in G from x to y and from
y to x. Finally, a graph G is weakly connected if its undirected graph G̃ is connected. The
definition of G-contraction on metric spaces endowed with a graph G, as presented in Jacek’s
work, is as follows:

Definition 2.1. Let f : X → X. f is called a G-contraction if f preserves edges of G, that is,

∀x, y ∈ X[(x, y) ∈ E(G) ⇒ (fx, fy) ∈ E(G)]

and f decreases the weight of the edges of G, that is,

∃c ∈ (0, 1)∀x, y ∈ X[(x, y) ∈ E(G) ⇒ d(fx, fy) ≤ cd(x, y)].

Next, we lay the foundation for our main results by introducing essential concepts and proving
several key lemmas. Firstly, we present the definition of an α-G-contraction on a uniform space
generated by a collection of pseudometrics.
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Next, we establish a lemma stating that if T is an α-G-contraction, then T is also an α-G−1-
contraction and an α-G̃-contraction.

Following this, we introduce a significant lemma that is essential for bounding the tail of a
series, similar to the Cauchy sense. This lemma will be instrumental in our upcoming theorems.

Lastly, we present the concepts of Cauchy equivalence and weakly connectedness in uniform
spaces generated by a collection of pseudometrics. We then prove that two specific types of
iteration sequences starting from distinct points are Cauchy equivalent if and only if the graph
G is weakly connected. This result offers additional understanding of the relationship between
graph theory and uniform spaces.

Definition 2.2. Let (E,A) be a uniform space generated by a collection of pseudometrics
indexed by a set A, X be a nonempty subset of E, and T : X → X.
T is said to be α-G-contraction if for each α ∈ A, there is a graph G such that

1. for any (x, y) ∈ E(G), (Tx, Ty) ∈ E(G), and

2. there exists cα ∈ (0, 1) such that for any (x, y) ∈ E(G), then

pα(Tx, Ty) ≤ cαpα(x, y),

where pα is a pseudometric indexed by α.

We also provide a criterion for checking whether a map T : ℓp → ℓp is an α-G-contraction
on ℓp with respect to the weak topology where 1 < p < ∞, as follows in the next theorem:

Theorem 2.3. Let 1 < p < ∞, f1, f2, ..., fN be Lipschitz functions with Lipschitz constants
k1, k2, ..., kN , c ∈ (0, 1), and T : ℓp → ℓp defined by

T ((xm)) = (f1x1, f2x2, ..., fNxN , cxN+1, cxN+2, ...).

Let G be a graph with V (G) = ℓp and

E(G) = {((xm), (ym)) : xi = yi ∀ i = 1, . . . , N}.

Then T is an α-G-contraction on ℓp with respect to the weak topology.

Proof. We will show that T preserves the edges of G. Let ((xm), (ym)) ∈ E(G), i.e., xi = yi for
all i = 1, . . . , N . Then, (T ((xm)), T ((ym))) ∈ E(G), so T preserves the edges of G.

Now, we will show that T decreases the weight of the edges of G. Let (αm) ∈ ℓq with
1
q +

1
p = 1 and ((xm), (ym)) ∈ E(G).

Consider T (xm)−T (ym) = (f1x1− f1y1, . . . , fNxN − fNyN , cxN+1− cyN+1, . . . ), which satisfies∣∣∣∣∣
∞∑

m=1

αm · e∗m(T (xm)− T (ym))

∣∣∣∣∣ ≤
N∑
i=1

ki|αi| |(xi − yi)|+ c

∣∣∣∣∣
∞∑

i=N+1

αi · (xi − yi)

∣∣∣∣∣ .
Since xi = yi for every i = 1, . . . , N , it follows that∣∣∣∣∣

∞∑
m=1

αm · e∗m(T (xm)− T (ym))

∣∣∣∣∣ ≤ c

∣∣∣∣∣
∞∑
i=1

αi · (xi − yi)

∣∣∣∣∣ .
Thus, T is an α-G-contraction on ℓp with respect to the weak topology.

To further illustrate the concept of α-G-contractions and their properties, we present the
following example. This example demonstrates that every γ-contraction [6] can be considered
as an α-G-contraction when associated with a complete graph.
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Example 2.4. Let (E,A) be a uniform space generated by a collection of pseudometrics indexed
by a set A, X be a nonempty subset of E, and T : X → X.
If T is a γ-contraction for each γ ∈ A, then T is also an α-G-contraction when associated with
a complete graph.
Proof. Recall the definition of γ-contraction in [6], for each γ ∈ A , there is a constant c ∈ (0, 1)
such that pγ(Tx, Ty) ≤ cpγ(x, y) for any x, y ∈ X. It is easy to see that T is also an α-G-
contraction when associated with a complete graph i.e.,

V (G) = X and E(G) = X ×X.

Example 2.5. Let 1 < p < ∞ and T : ℓp → ℓp with

T ((xm)) = c(x1, x2, . . . , xN , . . . ) + (zn) where (zn) ∈ ℓp.

If c ∈ (0, 1), then T is an α-G contraction, where G is a complete graph, i.e.,

V (G) = ℓp and E(G) = ℓp × ℓp.

Next, we introduce some additional graph theory concepts before exploring various proper-
ties and characteristics of α-G-contractions in the context of uniform spaces and graphs. The
equivalence class of x on a graph G, denoted by [x]G, consists of vertices related through a
relation R on V (G). Here, yRz holds if and only if there exists a path in G from y to z and
from z to y. Furthermore, the component of G containing vertex x denoted by Gx refers to the
largest connected subgraph of G that includes x as a vertex, with its vertices making up the
equivalence class [x]G.
Lemma 2.6. Let (E,A) be a uniform space generated by a collection of pseudometrics indexed
by a set A, X be a nonempty subset of E, and T : X → X.
If T is α-G-contraction, then T is α-G−1-contraction and α-G̃-contraction.
Proof. Let (x, y) ∈ E(G−1). Then (y, x) ∈ E(G), so (Ty, Tx) ∈ E(G) and hence (Tx, Ty) ∈
E(G−1). Since T is α-G-contraction, there exists cα ∈ (0, 1) such that for any (x, y) ∈ E(G),
then pα(Tx, Ty) ≤ cαpα(x, y) . Let (x, y) ∈ E(G−1). Then (y, x) ∈ E(G), so pα(Tx, Ty) =
pα(Ty, Tx) ≤ cαpα(y, x) = cαpα(x, y). Then T is α-G−1-contraction and T is α-G̃-contraction.

Lemma 2.7. Let X be nonempty subset of a uniform space generated by a collection of pseu-
dometrics indexed by a set A, and T : X → X be an α-G-contraction with a constant cα. Then
for any x ∈ X, and y ∈ [x]G̃, there exists rα(x, y) ≥ 0 such that

pα(T
nx, T ny) ≤ cnαrα(x, y) for any α ∈ A, and n ∈ N.

Proof. Let x ∈ X and y ∈ [x]G̃. Then there is a path (xi)
N
i=0 in G̃ from x to y for some N ∈ N

such that x0 = x and xN = y and (xi−1, xi) ∈ E(G̃) for each i = 1, 2, . . . , N . Let α ∈ A. Then
there exists cα ∈ (0, 1) such that

pα(T
nxi−1, T

nxi) ≤ cnαpα(xi−1, xi) for any i = 1, 2, . . . , N.

By letting rα(x, y) =
∑N

i=1 pα(xi−1, xi), then

pα(T
nx, T ny) ≤

N∑
i=1

pα(T
nxi−1, T

nxi)

≤ cnα

N∑
i=1

pα(xi−1, xi) = cnαrα(x, y).
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And next, we discuss the concepts of Cauchy equivalence and weakly connected graphs in
the context of uniform spaces generated by a collection of pseudometrics. We focus on the
relationship between these properties and the uniform structure induced by the pseudometrics.
We begin by introducing the concept of Cauchy equivalence:

Definition 2.8. A sequence (xn) and (yn) are said to be Cauchy equivalent in a uniform space
(X,A) generated by a collection of pseudometrics A with A as the index set, if for all sequences
(xn) and (yn) that are Cauchy sequences, pα(xn, yn) → 0 as n → ∞ for every α ∈ A.

Throughout this part, we will explore the implications of Cauchy equivalence in the context
of weakly connected graphs and the properties of uniform spaces induced by pseudometrics.

Theorem 2.9. G is weakly connected if and only if for any α-G-contraction T : X → X and
for any x, y ∈ X, (Tnx) and (Tny) are Cauchy equivalent.

Proof. (⇒) Let x, y ∈ X. Since G is weakly connected, [x]G̃ = X, so Tx ∈ [x]G̃. To show that
Tnx is a Cauchy sequence, let α ∈ A and ϵ > 0. By lemma 2.7 and definition of α-G-contraction,
there exist rα(x, Tx) > 0 such that

pα(T
nx, T n+1x) ≤ cnαrα(x, Tx).

Since cα ∈ (0, 1), there exists N ∈ N such that for any m,n ≥ N ,
∑n

i=m ciα < ϵ. Let m,n ≥ N
such that m ≤ n. Then

pα(T
mx, T nx) ≤

n−1∑
i=m

pα(T
ix, T i+1x)

≤
n−1∑
i=m

ciαrα(x, Tx)

= rα(x, Tx)
n−1∑
i=m

ciα.

Since
∑n

i=m ciα < ϵ, (Tnx) is a Cauchy sequence. Since y ∈ [x]G̃, by lemma 2.7, for all α ∈ A,
there exists rα(x.y) ≥ 0 such that

pα(T
nx, T ny) ≤ cnαrα(x, y) for any n ∈ N.

Because limn→∞ cnα = 0, (Tnx) and (Tny) are Cauchy equivalent.
(⇐) Suppose that G is not weakly connected, then there are two point x0 and y0 in X such that
y0 /∈ [x0]G̃. Let T : X → X be defined by

Tx =

{
x0 if x ∈ [x0]G̃
y0 if x /∈ [x0]G̃.

It is clear that (Tnx0) = (x0) and (Tny0) = (y0) are constant sequences, however, x0 ̸= y0, so
(Tnx0) and (Tny0) are not Cauchy equivalent. It remains to show that T is α-G-contraction.
Let α ∈ A.

1. Let (x, y) ∈ E(G). Then y ∈ [x]G̃, so (Tx, Ty) = (x0, x0) ∈ E(G) or (Tx, Ty) = (y0, y0) ∈
E(G). Hence T preserves edges.

2. Let (x, y) ∈ E(G). Then
pα(Tx, Ty) = 0 ≤ cαpα(x, y).

Then T is an α-G-contraction, so we are done.
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In the following theorem, we explore a specific property that arises when restricting an α-G-
contraction to a certain component of a graph G̃. The result demonstrates that the equivalence
class [x0]G̃ is T -invariant, and the restricted mapping T |[x0]G̃

is an α-G̃x0-contraction. This
finding provides valuable insights into the behavior of the contraction mapping in relation to
the graph-theoretic properties of the component.

Theorem 2.10. Let X be nonempty subset of a uniform space generated by a collection of
pseudo metrics indexed by a set A, and T : X → X be an α-G-contraction. Assume that there
is a point x0 ∈ X such that Tx0 ∈ [x0]G̃. Let G̃x0 be the component of G̃ containing x0. Then
[x0]G̃ is T -invariant and is T |[x0]G̃

is an α-G̃x0-contraction.

Proof. Let x ∈ [x0]G̃. Then there is a path (xi)
N
i=0 from x0 to x such that xN = x and

(xi−1, xi) ∈ E(G̃) for each i = 1, 2, . . . , N . Since T preserves edges of G̃, (Txi−1, Txi) ∈ E(G̃)
for each i = 1, 2, . . . , N . Then (Txi)

N
i=0 is a path in G̃ from Tx0 to Tx, so Tx ∈ [Tx0]G̃ = [x0]G̃

and hence T |[x0]G̃
is a selfmap on [x0]G̃.

To show that T |[x0]G̃
is an α-G-contraction, let α ∈ A.

(1) : Let (x, y) ∈ E(G̃x0). There is a path (xi)
N
i=0 from x0 to y such that xN−1 = x, xN = y, and

(xi−1, xi) ∈ E(G̃x0). Since (xN−1, xN ) = (x, y) ∈ E(G̃x0) ⊆ E(G̃), (TxN−1, TxN ) = (Tx, Ty) ∈
E(G̃). Since Tx0 ∈ [x0]G̃, there is a path (yi)

M
i=0 from x0 to Tx0 such that y0 = x0, yM = Tx0

and (yi−1, yi) ∈ E(G̃x0). Since T is an α-G̃-contraction, (Txi)Ni=0 is a path in G̃ from Tx0 to
Ty. Then (y0 = x0, y1, . . . , yM = Tx0, Tx0, Tx1, . . . , TxN−1 = Tx, TxN = Ty) is a path in G̃
from x0 to Ty, by the definition of G̃x0 , (Tx, Ty) = (TxN−1, TxN ) ∈ E(G̃x0). Hence T |[x0]G̃

preserves edges of G̃x0 .
(2) : Clearly, by T is an α-G̃-contraction, there exists cα ∈ (0, 1) such that for any (x, y) ∈
E(G̃x0), then

pα(T |[x0]G̃
x, T |[x0]G̃

y) ≤ cαpα(x, y).

3 Main Results
In this section, we present two main theorems that focus on the conditions under which an
α-G-contraction is a Picard Operator (P.O.) in the context of uniform spaces generated by a
collection of pseudometrics. We begin with Main Theorem I, which establishes conditions for a
Picard Operator in the presence of a specific property (∗) that involves convergent sequences in
X and the existence of subsequences with edges in E(G̃). Under these conditions and with T
being an α-G-contraction, we demonstrate that T |[x]G̃ is a Picard Operator for x ∈ XT , where
XT is a set of vertices in X with edges in E(G̃).

Moving on, we present Main Theorem II, which explores a different set of conditions for an
α-G-contraction to be a Picard Operator. In this case, we consider an orbitally G-continuous
α-G-contraction T and again define XT as the set of vertices with edges in E(G). If x ∈ XT ,
we show that T |[x]G̃ is a Picard Operator.

These two main theorems contribute to a deeper understanding of the properties and behavior
of α-G-contractions under different conditions in the context of uniform spaces and graphs. As
we progress through this section, we will elaborate on these results and their implications for
the study of α-G-contractions.

Theorem 3.1 (The main theorem I). Let X be nonempty sequentially complete subset of a
uniform space generated by a collection of pseudo metrics indexed by a set A, and (X,A, G)
have the following property (∗):

for each sequence (xn) in X, if xn → x as n → ∞ and (xn, xn+1) ∈ E(G) for any n ∈ N,
then there exists a subsequence (xnk

) of (xn) with (xnk
, x) ∈ E(G̃) for any k ∈ N.
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Let T : X → X be an α-G-contraction, and XT = {x ∈ X : (x, Tx) ∈ E(G̃)}. If x ∈ XT ,
then T |[x]G̃ is a Picard operator.

Proof. Let x ∈ XT . Then (x, Tx) ∈ E(G), by theorem 2.10, [x]G̃ is T -invariant and T |[x]G̃ is an α-
G̃x-contraction. By lemma 2.7, since G̃x is weakly connceted, for any y ∈ G̃x, (Tnx) is a Cauchy
sequence. Since X is sequentially complete, there exists x0 ∈ X such that Tnx → x0 as n → ∞.
Since (x, Tx) ∈ E(G), so is (Tnx, T n+1x) for any n ∈ N. By property (∗), there is a subsequence
(Tnkx) of (Tnx) with (Tnkx, x0) ∈ E(G) for any k ∈ N. Then (Tnk+1x, Tx0) ∈ E(G), so
(x, Tx, T 2x, . . . , T n1x, x0) is a path in G̃ from x to x0. Hence x0 ∈ [x]G̃ and for each α ∈ A

pα(T
nk+1x, Tx0) ≤ cαpα(T

nkx, x0) for any k ∈ N.

Since Tn converges to x0, so are (Tnk+1) and (Tnk). By continuity of pα for any α ∈ A,
pα(x0, Tx0) = 0, then we have Tx0 = x0.

In the proof of Theorem 3.1, we showed that under the given conditions, T |[x]G̃ is a Picard
operator. Now, we can extend this result further by considering the case when the graph G is
weakly connected, which leads us to the following corollary.

Corollary 3.2. Let T : X → X be an α-G-contraction, and G be weakly connected. Then T is
a Picard operator.

Proof. Since G is weakly connected, XT = X, so for all x ∈ X, [x]G̃ = X. By the proof of
Theorem 3.1, we are done.

In Theorem 3.1, we establish a set of conditions under which an α-G-contraction T on
a nonempty sequentially complete subset X of a uniform space generated by a collection of
pseudometrics becomes a Picard operator. One crucial condition is property (∗), which relates
to the behavior of sequences in X and their connection to the graph G.

Theorem 3.3 provides a concrete example of a situation where condition (∗) is satisfied, by
considering the graph G defined on the space ℓp. By constructing the edges of G in a specific
way, we show that (ℓp, ℓ

∗
p, G) indeed satisfies condition (∗).

Theorem 3.3. Let G be a graph defined by V (G) = ℓp. The edges of graph G are defined as

E(G) = {((xn), (yn)) : xi = yi for all i = 1, . . . , N}.

It follows that (ℓp, ℓ∗p, G) satisfies condition (∗) in theorem 3.1.

Proof. Let (xkn)k∈N be a sequence in ℓp. Assume that (xkn) converges weakly to (x0n) as k → ∞
and ((xkn), (x

k+1
n )) ∈ E(G) for all k ∈ N. It follows that for every (αn) ∈ ℓq,

∞∑
n=1

αnx
k
n →

∞∑
n=1

αnx
0
n as k → ∞.

Since ((xkn), (x
k+1
n )) ∈ E(G) for all k ∈ N, it holds that for i = 1, 2, . . . , N , e∗i (xkn) = e∗i (x

k+1
n ).

Hence, xki = xk+1
i for all k ∈ N and i = 1, 2, . . . , N . As ei ∈ ℓq for all i = 1, 2, . . . , N , we have

∞∑
n=1

(e∗n(ei) · xkn) →
∞∑
n=1

(e∗n(ei) · x0n) as k → ∞.

This implies that xki → x0i as k → ∞. Thus, xki = x0i . Therefore, ((xkn), (x
0
n)) ∈ E(G).

Consequently, (ℓp, ℓ∗p, G) satisfies condition (∗).
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Before presenting Lemma 3.4, it is essential to ensure that the set (ℓp)T is nonempty, as this
has implications for the existence of fixed points for the Lipschitz functions f1, f2, . . . , fN . In
the context of the α-G-contraction T on ℓp and the graph G defined as in Theorem 3.3, Lemma
3.4 provides a characterization of the existence of fixed points for these Lipschitz functions.
Specifically, we show that f1, f2, . . . , fN have fixed points if and only if (ℓp)T ≠ ∅. This result
further supports the applicability of Theorem 3.1 in the case of ℓp and the graph G defined in
Theorem 3.3.

Lemma 3.4. Let 1 < p < ∞ and f1, f2, . . . , fN be Lipschitz functions with Lipschitz constants
k1, k2, . . . , kN respectively, c ∈ (0, 1), and let T : ℓp → ℓp be defined by

T ((xm)) = (f1x1, f2x2, . . . , fNxN , cxN+1, cxN+2, . . .).

Let G be a graph defined by V (G) = ℓp and

E(G) = {((xm), (ym)) : xi = yi for all i = 1, . . . , N}

and
(ℓp)T = {(xm) ∈ ℓp : ((xm), T (xm)) ∈ E(G)}.

Then f1, f2, . . . , fn have fixed points if and only if (ℓp)T ̸= ∅.

Proof. (⇒) Suppose f1, f2, . . . , fN have fixed points. Then there exists xi such that fixi = xi,
where i = 1, 2, . . . , N .

T ((xm)) = (f1x1, f2x2, . . . , fNxN , cxN+1, cxN+2, . . .)

= (x1, x2, . . . , xN , cxN+1, cxN+2, . . .).

Therefore, ((xm), T (xm)) ∈ E(G).
(⇐) Suppose (ℓp)T ̸= ∅. Then there exists (xm) ∈ (ℓp)T such that ((xm), T (xm)) ∈ E(G). This
means fixi = xi for all i = 1, 2, . . . , N . Hence, xi is a fixed point of fi for all i = 1, 2, . . . , N .
Therefore, f1, f2, . . . , fN have fixed points.

Theorem 3.5. Let f1, f2, . . . , fN be Lipschitz functions with constants k1, k2, . . . , kN respectively,
f1, f2, . . . , fN have some fixed points, and let c ∈ (0, 1). Define the operator T : ℓp → ℓp by

T ((xn)) = (f1x1, f2x2, . . . , fNxN , cxN+1, cxN+2, . . . ).

Consider a graph G defined by V (G) = ℓp. The edges of the graph G are defined as

E(G) = {((xn), (yn)) : xi = yi for all i = 1, . . . , N}.

Let (ℓp)T = {(xn) ∈ ℓp : ((xn), T (xn)) ∈ E(G)}. Then, there exists (wn) ∈ (ℓp)T such that
T |[(wn)]G̃

is a Picard operator.

Proof. We aim to show that there exists (wm) ∈ (ℓp)T such that T |[(wm)]G̃
is a Picard operator,

using the main theorem 3.1.
Considering ℓp with the weak topology as a uniform space, generated by a collection A of

pseudomatrices induced by seminorms, with ℓ∗p serving as the index set. Thus A is saturated
since the weak topology is Hausdroff and we have:

1. From Lemma 3.4: (ℓp)T ̸= ∅, indicating the existence of (wm) ∈ (ℓp)T .

2. From Theorem 2.3: T is a α-G-contraction on ℓp with the weak topology.

3. From Theorem 3.3: (ℓp, ℓ
∗
p, G) satisfies condition (∗).
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Hence, T |[(wm)]G̃
is a Picard operator.

Having established the conditions under which an α-G-contraction is a Picard operator in
Theorem 3.1, we now present a second main theorem that considers a slightly different scenario,
specifically examining the role of orbital G-continuity. We say that a function f : X → X is
orbitally G-continuous if, for every x, y ∈ X and every sequence (kn)n∈N of positive integers
such that

fknx → y and (fknx, fkn+1x) ∈ E(G) for n ∈ N,

it follows that f(fknx) → fy. In this case, we examine the implications of orbital G-continuity
for the Picard operator property of T |[x]G̃ for some x ∈ X.

Theorem 3.6 (The main theorem II). Let X be nonempty sequentially complete subset of a
uniform space generated by a collection of pseudometrics indexed by a set A. Let T : X → X
be an α-G-contraction and orbitally G-continuous, and XT = {x ∈ X : (x, Tx) ∈ E(G)}. If
x ∈ XT and [x]G̃ is closed, then T |[x]G̃ is a Picard operator.

Proof. Let x ∈ XT and y ∈ [x]G̃. Then (x, Tx) ∈ E(G). By Theorem 2.10, T |[x]G̃ is α-G-
contraction. Since Theorem 2.9, (Tnx) and (Tny) are Cauchy equivalent. By the sequential
completeness, (Tnx) and (Tny) converge to the same point x0 ∈ [x]G̃. It remains to show
that x0 is a fixed point of T |[x]G̃ . Since (x, Tx) ∈ E(G), (Tnx, T n+1x) ∈ E(G). By orbital
G-continuity of T , T (Tnx) → Tx0 and hence (Tn+1x) → Tx0. Since A is saturated and [x]G̃ is
closed, Tx0 = x0 ∈ [x]G̃.

Having established the conditions for an α-G-contraction to be a Picard operator in the con-
text of orbital G-continuity in Theorem 3.6, we now provide some criteria for maps, specifically
Lipschitz functions and the mapping T : ℓp → ℓp, that satisfy these requirements in Theorem
3.7. This demonstrates the implications of orbital G-continuity.

Theorem 3.7. Let 1 < p < ∞, and let f1, f2, . . . , fN be Lipschitz functions with k1, k2, . . . , kN
as their respective Lipschitz constants. Let c ∈ (0, 1) and define a mapping T : ℓp → ℓp by

T ((xm)) = (f1x1, f2x2, . . . , fNxN , cxN+1, cxN+2, . . . ).

Let G be a graph defined by V (G) = ℓp and

E(G) = {((xm), (ym)) : xi = yi for all i = 1, . . . , N}.

Then, T is orbitally G-continuous.

Proof. Let (xm), (ym) ∈ ℓp and a sequence (ka) of positive integers where a ∈ N.
Suppose T ka((xm))

w→ (ym) as a → ∞ and (T ka((xm)), T ka+1((xm))) ∈ E(G) for all a ∈ N.
Since T ka((xm))

w→ (ym) as a → ∞, for every (αm) ∈ ℓq where 1
q +

1
p = 1, we have

∞∑
m=1

αm · e∗m(T ka(xm)) →
∞∑

m=1

αm · ym.

Thus,
∞∑

m=1

αm · e∗m(T ka(xm)) =
N∑
i=1

αi(f
ka
i xi) +

∞∑
i=N+1

αi(c
kaxi).

Let (βm) ∈ ℓq. Thus, we have

∞∑
m=1

βm · e∗m(T (T ka(xm))) =
N∑
i=1

βi(f
ka+1
i xi) +

∞∑
i=N+1

βi(c
ka+1xi),
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and
∞∑

m=1

βm · e∗m(T (ym)) =

N∑
i=1

βi(fiyi) +

∞∑
i=N+1

βi(cyi).

Let (αm) = (β1, β2, ..., βN , cβN+1, cβN+2...) ∈ ℓq.
Since (T ka((xm)), T ka+1((xm))) ∈ E(G), we have fka

i xi = fka+1
i xi for i = 1, 2, ..., N .

Therefore,
∞∑

m=1

αm · e∗m(T ka(xm)) =

∞∑
m=1

βm · e∗m(T (T ka(xm))).

Since fi is a continuous function for all i = 1, 2, ..., N and fka
i xi → yi, we have

αifi(f
ka
i xi) → αifi(yi).

∞∑
m=1

βm · e∗m(T (T ka(xm))) =
N∑
i=1

βi · e∗i (T (T ka(xm))) +
∞∑

i=N+1

βic(c
kaxi)

=
N∑
i=1

αifi(f
ka
i xi) +

∞∑
i=N+1

αi(c
kaxi)

and
∞∑

m=1

βm · e∗m(T (ym)) =
N∑
i=1

βi · e∗i (T (ym)) +
∞∑

i=N+1

cβiyi =
N∑
i=1

αifi(yi) +
∞∑

i=N+1

αiyi.

Since
N∑
i=1

αifi(f
ka
i xi) +

∞∑
i=N+1

αi(c
kaxi) →

N∑
i=1

αifi(yi) +

∞∑
i=N+1

αiyi,

we have
∞∑

m=1

βm · e∗m(T (T ka(xm))) →
∞∑

m=1

βm · e∗m(T (ym)).

Therefore, T (T ka(xm))
w→ (T (ym)) as a → ∞.

In order to satisfy the condition in Theorem 3.6 that [x]G̃ must be a closed set, we present
Lemma 3.8 which guarantees that [(xm)]G̃ is indeed a closed set for the mapping T : ℓp → ℓp in
Lemma 3.4.

Lemma 3.8. Let 1 < p < ∞ and f1, f2, . . . , fN be Lipschitz functions with Lipschitz constants
k1, k2, . . . , kN respectively, c ∈ (0, 1), and let T : ℓp → ℓp be defined by

T ((xm)) = (f1x1, f2x2, . . . , fNxN , cxN+1, cxN+2, . . .).

Let G be a graph defined by V (G) = ℓp and

E(G) = {((xm), (ym)) : xi = yi for all i = 1, . . . , N}.

Then [(xm)]G̃ is a closed set.

Proof. To show that [(xm)]G̃ is a closed set, let (wα
m) be a net in [(xm)]G̃, where α ∈ Λ, and

(ym) ∈ ℓp with 1 < p < ∞. Suppose (wα
m)

w→ (ym) as α → ∞. Since (wα
m) ∈ [(xm)]G̃, we

have wα
i = xi for all i = 1, 2, . . . , N . Since e∗i ∈ ℓ∗p for all i = 1, 2, . . . , N , and (wα

m)
w→ (ym) as

α → ∞, we have e∗i (w
α
m) → e∗i (ym). That is, wα

i → yi for all i = 1, 2, . . . , N . Thus, (wα
i ) = (xi),

where α ∈ Λ and (xi) is a constant net. That is, (xi) → yi and (xi) → xi. Hence, yi = xi for all
i = 1, 2, . . . , N . Therefore, (ym) ∈ [(xm)]G̃. Consequently, [(xm)]G̃ is a closed set.
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Now, we present Theorem 3.9 which provides a complete criteria for verifying if a map in ℓp
satisfies all the conditions outlined in Theorem 3.6.
Theorem 3.9. Let 1 < p < ∞, and let f1, f2, . . . , fN be Lipschitz functions with k1, k2, . . . , kN
as their Lipschitz constants, respectively and f1, f2, . . . , fN have fixed points. Let c ∈ (0, 1) and
T : ℓp → ℓp be defined by

T ((xm)) = (f1x1, f2x2, . . . , fNxN , cxN+1, cxN+2, . . .).

Let G be a graph defined by V (G) = ℓp and
E(G) = {((xm), (ym)) : xi = yi for all i = 1, . . . , N}.

Let
(ℓp)T = {(xm) ∈ ℓp : ((xm), T (xm)) ∈ E(G)}.

Then, there exists (xm) ∈ (ℓp)T such that T |[(xm)]G̃
is a Picard operator.

Proof. We aim to show that there exists (xm) ∈ (ℓp)T such that T |[(xm)]G̃
is a Picard operator,

using the main theorem 3.6.
Considering ℓp with the weak topology as a uniform space, generated by a collection A of

pseudomatrices induced by seminorms, with ℓ∗p serving as the index set. Thus A is saturated
since the weak topology is Hausdroff and we have:

1. From Lemma 3.4: (ℓp)T ̸= ∅, indicating the existence of (xm) ∈ (ℓp)T .

2. From Theorem 2.3: T is a α-G-contraction on ℓp with the weak topology.

3. From Theorem 3.7: T is orbitally-G-continuous.

4. From Lemma 3.8: [(xm)]G̃ is a closed set.

Hence, T |[(xm)]G̃
is a Picard operator.
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Abstract

Instant Insanity is a puzzle consisting of four cubes where each face is colored with one
of the four colors. The goal of Instant Insanity is to arrange the cubes in a stack so that
each color appears exactly once on each of their four long sides (front, back, left, right). In
this study, we propose a new puzzle consisting of five cubes where the first four cubes are
the original cubes from Instant Insanity, and the last cube is a copy of one of those cubes,
called a 4-colored 5-cube puzzle. This puzzle aims to stack the original four cubes, and then
attach the last cube to a face of one of the four cubes, creating a structure known as a tower,
so that each color appears exactly once on the vertical line and the horizontal line of each
side (front, back, left, and right). To solve the puzzle, we apply graph theory to construct
graphs that arrange a tower. We show all ways of arranging the cubes to solve the puzzle.

Keywords: Instant Insanity, cube puzzle, directed graph.

2020 MSC: Primary 91A46; Secondary 05C20, 05C30.

1 Introduction
Instant Insanity is a 4-colored 4-cube puzzle introduced around 1900. Parker Brothers named
the puzzle as “Instant Insanity” and the puzzle became popular in the 1960’s. The puzzle has
appeared under the variety of names, for examples, “The Great Tantalizer”, “Groceries” and
“Katzenjammer”, see [5]. Instant Insanity consists of four cubes where each face of each cube is
colored yellow (Y), green (G), white (W) or cyan (C). To solve the puzzle, one needs to arrange
the cubes in the stack such that each of the four long sides have different colors ([2], [6], [7]
and [10]). A cube can be unfolded so that each side is adjacent to at least one of its neighboring
faces. An unfolded cube is called a net. One possible net of the cube is shown in Figure 1. The
nets of cube numbers 1, 2, 3 and 4 for Instant Insanity are given in Figure 2.
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Email: pichaya_kankonsue@cmu.ac.th (P. Kankonsue), sayan.panma@cmu.ac.th (S. Panma),
piyashat.sripratak@cmu.ac.th (P. Sripratak).
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Figure 1: The net of the cube

Figure 2: The nets of cubes for Instant Insanity

After Instant Insanity became popular in 1967, Brown [2] showed that Instant Insanity has
82,944 different cases to consider by solving an associated problem in number theory, released in
1968. Schwartz [10] improved Brown’s approach. Their methods reduce the possible number of
cases from 82,944 to 81. Subsequently, Grecos and Gibberd [6] enhanced Brown’s and Schwartz’s
works and replaced the problem by a simple graphical problem. This method can be used to
solve the problems proposed by Brown [2]. In 1969, Deventer [11] introduced the methods of
graph theory to solve the puzzle. The colors of the puzzle can be represented by vertices and the
pairs of opposite sides can be represented by edges. A solution of the game can be represented
by two cycles.

Many researchers have studied the problem in various solids. In 2002, Jebasingh and Simo-
son [8] extended Instant Insanity puzzle to the five Platonic solids which are cube, octahedron,
dodecahedron, icosahedron and tetrahedron. They studied the number of distinct ways of stack-
ing the solids. In 2013, Demaine et al. [4] studied variants of the Instant Insanity puzzle, ex-
ploring the relationship between the complexity and the shapes of the pieces. Moreover, they
analyzed different types of triangular prism puzzles and rectangular prism puzzles.

Recently, Roldán [9] studied a mathematical model of Instant Insanity by analyzing all
possible ways of coloring cubes to create a similar puzzle. They have done this analysis for n
cubes and n colors for n = 4, 5 and 6, released in 2016. Alsardary et al. [1] introduced a new
technique to solve Instant Insanity using the Perl programming language, released in 2016.
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The solution for Instant Insanity, obtained from [11], is presented in Table 1.

Table 1: The solution for Instant Insanity from [11]
cube front back left right

1 white cyan cyan yellow
2 green white yellow green
3 yellow green white cyan
4 cyan yellow green white

The following theorem shows that the solution given in Table 1 is unique, see [11].
Theorem 1.1. [11] There is a unique solution to the Instant Insanity puzzle, up to rotations,
flips and permutations of the cubes.

Our game is a puzzle of five cubes where each face of each cube is colored with one of the
four colors (yellow, green, white and cyan). The faces of four from five cubes are colored with
four colors as in Figure 2. The last cube is a copy of one of the four cubes. The objective is
to stack the four cubes and attach the last cube to one of the four cubes, so that each side
(front, back, left and right) of the structure displays each color exactly once, both vertically and
horizontally. This structure is called a tower. Two examples of tower are shown in Figure 3.

Figure 3: Two examples of tower

2 Preliminaries
In this section, we introduce notations for cubes in the puzzle and provide definitions for graphs.
Additionally, we will convert the nets of cubes into graphs to help us obtain the solution and
present a theorem for Instant Insanity.

First, we give the notation of the cubes. Let i represent the number of the cube with
i ∈ {1, 2, 3, 4}. Cube i′ is the cube with the same color pattern as cube i. Let j ∈ {1, 2, 3, 4}
represent the number of the cube such that cube i′ is attached to. The face of cube j such that
cube i′ is attached to is defined by k, where k ∈ {F,B,L,R} represents the front, the back, the
left and the right faces, respectively. Let Y , G, W and C be the colors of the faces on the cubes
correspond to yellow, green, white and cyan, respectively.

Then, we provide definitions for graphs. A directed graph is a triple G = (V (G), E(G), pG)
with the vertex set V (G), the edge set E(G) and the incidence mapping pG : E(G) → V (G)2

defined as pG(e) := (oG(e), tG(e)) where oG(e) represents the origin and tG(e) represents the tail
of edge e.
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Let G be a graph. For e ∈ E(G) where oG(e) ∈ V (G) and tG(e) ∈ V (G), let ē be an edge
with oG(ē) = tG(e) and tG(ē) = oG(e).

For v ∈ V (G), the out-neighborhood of v is denoted as N+
G (v) := {tG(e)|e ∈ E(G) and oG(e) =

v} and the in-neighborhood of v is denoted as N−
G (v) := {oG(e)|e ∈ E(G) and tG(e) = v}.

For definition of the graph of cube i, let Gi = (V (Gi), E(Gi), pGi) be the graph of cube i
with V (Gi) = {Y,G,W,C} and E(Gi) = {e1, e2, e3}. Let Gi(V (Gi), E(Gi), pGi) be the graph
of the copy of cube i with V (Gi) = V (Gi), E(Gi) = E(Gi) ∪ {ē|e ∈ E(Gi)} = {e1, e2, e3, ē1 =
e4, ē2 = e5, ē3 = e6} and pGi := E(Gi) → V (Gi)

2, where

pGi(eα) =

{
pGi(eα), if α = 1, 2, 3,

(tGi(eα−3), oGi(eα−3)), if α = 4, 5, 6.

Next, we transform the nets of cubes into graphs. A graph can be constructed from the nets
of four cubes (see Figure 3) as shown in Figure 4. The vertices represent the four colors of the
puzzle, and each edge represents a pair of opposite faces. Moreover, each cube has three pairs
of opposite faces which are front-back, left-right and top-bottom. Hence, there are three edges
for each cube ([3], [11] and [12]).

Figure 4: The graphs constructed from the cubes

The four graphs can be combined into a graph whose edges are labeled by that cube number
shown in Figure 5. This graph is called the graph for Instant Insanity.

Figure 5: The graph for Instant Insanity

Our goal is to find two directed cycles within the graph in Figure 5. The first cycle will
identify the front and the back faces of the stack, referred to as CF . The second cycle will
identify the left and the right faces of the stack, referred to as CL. Each edge in CF and CL

is obtained from each cube exactly once, and there are no edges shared between CF and CL.
Thus, CF and CL must be Hamiltonian cycles, meaning each cycle visits each vertex exactly
once. CF and CL are given in Figure 6.
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Figure 6: CF and CL

There is an edge e with label 1 in CF such that pCF (e) = (W,C), and there is an edge e′

with label 1 in CL such that pCL(e′) = (C, Y ). Thus, the color of the front face is white, the
color of the back face is cyan, the color of the left face is cyan and the color of the right face is
yellow. Additionally, there is an edge e with label 2 in CF such that pCF (e) = (G,W ), and there
is an edge e′ with label 2 in CL such that pCL(e′) = (Y,G). Thus, the color of the front face is
green, the color of the back face is white, the color of the left face is yellow and the color of the
right face is green. Moreover, there is an edge e with label 3 in CF such that pCF (e) = (Y,G),
and there is an edge e′ with label 3 in CL such that pCL(e′) = (W,C). Thus, the color of the
front face is yellow, the color of the back face is green, the color of the left face is white and
the color of the right face is green. Finally, there is an edge e with label 4 in CF such that
pCF (e) = (C, Y ), and there is an edge e′ with label 4 in CL such that pCL(e′) = (G,W ). Thus,
the color of the front face is cyan, the color of the back face is yellow, the color of the left face
is green and the color of the right face is white.

The cubes can be arranged according to CF and CL. Hence, we can solve the puzzle.

3 Main Results
In this section, we introduce an algorithm for constructing solutions to a 4-colored 5-cube puzzle
and provide some relevant theorems to the solutions of the puzzle. Moreover, we give an example
of how to find the solutions and show all of them.

Recall that CF and CL are graphs that construct the solution to the arrangement of the
cube numbers 1, 2, 3 and 4 as in Figure 6.

For every edge, we define a function ϕ on {1, 2, 3, 4, 5, 6} to pair each edge e with its opposite-
direction edge.

A function ϕ is defined as follows:

ϕ(α) =

{
α+ 3; α = 1, 2, 3,

α− 3; α = 4, 5, 6.

Let k ∈ {F,B,L,R} and j ∈ {1, 2, 3, 4}. The color of face k of cube j is denoted by k(j).
Next, we determine an algorithm that outputs the solutions for our puzzle.

Algorithm for Solving a 4-Colored 5-Cube Puzzle

1. If cube i′ is attached to face k ∈ {F,B} of cube j.
1.1. If k = F , then choose eF ∈ NF =

{
e ∈ E(Gi)|oGi(e) = F (j) and tGi(e) ∈ N+

Gi
(F (j))

}
.

If k = B, then choose eF ∈ NB =
{
e ∈ E(Gi)|tGi(e) = B(j) and oGi(e) ∈ N−

Gi
(B(j))

}
.

1.2. Let α be the index such that eF = eα.
If E(Gi)−

({
eα, eϕ(α)

}
∪ {e ∈ E(Gi)|oGi(e) = L(j) or tGi(e) = R(j)}

)
̸= ∅,

then choose eL ∈ E(Gi)−
({

eα, eϕ(α)
}
∪ {e ∈ E(Gi)|oGi(e) = L(j) or tGi(e) = R(j)}

)
.

Otherwise, eL does not exist.
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1.3. Construct GF := CF + eF and GL := CL + eL.
1.4. Construct the solutions to the puzzle from GF and GL using “Generate Solution”.

2. If cube i′ is attached to face k ∈ {L,R} of cube j.
2.1. If k = L, then choose eL ∈ NL =

{
e ∈ E(Gi)|oGi(e) = L(j) and tGi(e) ∈ N+

Gi
(L(j))

}
.

If k = R, then choose eL ∈ NR =
{
e ∈ E(Gi)|tGi(e) = R(j) and oGi(e) ∈ N−

Gi
(R(j))

}
.

2.2. Let α be the index such that eL = eα.
If E(Gi)−

({
eα, eϕ(α)

}
∪ {e ∈ E(Gi)|oGi(e) = F (j) or tGi(e) = B(j)}

)
̸= ∅,

then choose eF ∈ E(Gi)−
({

eα, eϕ(α)
}
∪ {e ∈ E(Gi)|oGi(e) = F (j) or tGi(e) = B(j)}

)
.

Otherwise, eF does not exist.
2.3. Construct GF := CF + eF and GL := CL + eL.
2.4. Construct the solutions to the puzzle from GF and GL using “Generate Solution”.

Generate Solution

From graphs GF := CF + eF and GL := CL + eL, we can construct the solution of a 4-colored
5-cube Puzzle. This process consists of two steps.

In the first step, we arrange cubes numbered 1, 2, 3 and 4 using CF and CL. The solution
to the arrangement of cubes numbered 1, 2, 3 and 4 is given in Table 1, see [11].

In the second step, we attach cube i′ to face k of cube j in the stack of cubes numbered 1,
2, 3 and 4.

On cube 5, the color on the front face corresponds to the color of vertex oGi(e
F ), the color

on the back face corresponds to the color of vertex tGi(e
F ), the color on the left face corresponds

to the color of vertex oGi(e
L), and the color on the right face corresponds to the color of vertex

tGi(e
L).

Now, we prove the next theorem to show that the graph obtained from the algorithm can
be used to generate solutions to the puzzle.

Theorem 3.1. Any output from the algorithm is a solution to the puzzle.

Proof. The solution to the arrangement of the cubes number 1, 2, 3 and 4 can be constructed
from CF and CL. The front (back, left and right) side of each cube has all four different colors
as shown in Table 1.

Let the copy of cube i be the cube i′, and let Gi be the graph of cube i′. Suppose that cube
i′ attaches to face k ∈ {F,B,L,R} of cube j.

Case 1 Consider the graph constructed by attaching cube i′ to face k ∈ {F,B} of cube j.
If k = F , we have oGi(e

F ) = F (j). Therefore, face F (front face) of cube i′ and face F
of cube j having the same color implies that the front side of the puzzle have all different
colors. Similarly, if k = B, we have tGi(e

F ) = B(j). Therefore, face B (back face) of cube i′

and face B of cube j having the same color implies that the back side of the puzzle have all
different colors. Let eL ∈ E(Gi) −

({
eα, eϕ(α)

}
∪ {e ∈ E(Gi)|oGi(e) = L(j) or tGi(e) = R(j)}

)
.

Then, eL /∈
{
eα, eϕ(α)

}
. Therefore, face L (left face) and face R (right face) of cube i′ are not

face F or face B of cube i′. Since eL /∈ {e ∈ E(Gi)|oGi(e) = L(j) or tGi(e) = R(j)}, we have
oGi(e

L) ̸= L(j) and tGi(e
L) ̸= R(j). Hence, face L of cube i′ and face L of cube j have different

colors. Furthermore, the colors on face R of cube i′ and face R of cube j are different.
Case 2 Consider the graph constructed by attaching cube i′ to face k ∈ {L,R} of cube j.

If k = L, we have oGi(e
L) = L(j). Therefore, face L of cube i′ and face L of cube j hav-

ing the same color implies that the left side of the puzzle have all different colors. Simi-
larly, if k = R, we have tGi(e

L) = R(j). Therefore, face R of cube i′ and face R of cube
j having the same color implies that the right side of the puzzle have all different colors.
Let eF ∈ E(Gi) −

({
eα, eϕ(α)

}
∪ {e ∈ E(Gi)|oGi(e) = F (j) or tGi(e) = B(j)}

)
. Then, eF /∈
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{
eα, eϕ(α)

}
. Therefore, face F and face B of cube i′ are not face L or face R of cube i′. Since

eF /∈ {e ∈ E(Gi)|oGi(e) = F (j) or tGi(e) = B(j)}, we have oGi(e
F ) ̸= F (j) and tGi(e

F ) ̸= B(j).
Hence, face F of cube i′ and face F of cube j have different colors. Furthermore, the colors on
face B of cube i′ and face B of cube j are different.

Therefore, GF := CF + eF and GL := CL + eL can be used to construct a solution to the
puzzle as in Table 2.

Table 2: The solution to a 4-colored 5-cube Puzzle
cube front back left right

1 white cyan cyan yellow
2 green white yellow green
3 yellow green white cyan
4 cyan yellow green white
5 oGi(e

F ) tGi(e
F ) oGi(e

L) tGi(e
L)

The following theorem shows that we can generate all solutions of the puzzle using the
algorithm.

Theorem 3.2. If a solution to a 4-colored 5-cube puzzle exists, then it can be constructed using
the algorithm.

Proof. Consider the case when cube i′ is attached to sides F or B. If there is a solution to the
puzzle, there exist graphs H1 and H2 corresponding to the solution. Since graphs CF and CL

construct the unique solution to Instant Insanity, we get H1 := CF + eq for some eq ∈ E(Gi)
and H2 := CL + er for some er ∈ E(Gi), where eq represents the pair of faces F and B of cube
i′ and er represents the pair of faces L and R of cube i′.

If we attach cube i′ to face F of cube j and the colors on all faces of side F in the tower
must be different, then face F of cube i′ and face F of cube j must have the same color. We get
oGi(eq) = F (j) and tGi(eq) ∈ N+

Gi
(F (j)). Similarly, if cube i′ attached to face B of cube j and

all faces on side B of the tower must have different colors, then face B of cube i′ and face B of
cube j must have the same color. We get tGi(eq) = B(j) and oGi(eq) ∈ N−

Gi
(B(j)). Therefore,

edge eq can be chosen as eF in step 1.1 of the algorithm.
Moreover, the pair of opposite faces represented by edge eq is defined as face F and face B

of cube i′. Hence, it is not possible to use this pair of faces as face L and face R. We obtain
er ̸= eq and er ̸= eϕ(q). In addition, face L of cube i′ must not have the same color as face L
of cube j, and face R of cube i′ must not have the same colors as face R of cube j. We get
oGi(er) = L(j) and tGi(er) = R(j). Therefore, edge er can be chosen as eL in step 1.2 of the
algorithm.

We obtain H1 = GF = CF + eq and H2 = GL = CL + er using the algorithm, and these
graphs correspond to the given solution to the puzzle.

Consider the case when cube i′ is attached to sides L or R. If there is a solution to the
puzzle, there exist graphs T1 and T2 corresponding to the solution. Since graphs CL and CF

construct the unique solution to Instant Insanity, we get T1 := CL + er for some er ∈ E(Gi)
and T2 := CF + eq for some eq ∈ E(Gi), where eq represents the pair of faces F and B of cube
i′ and er represents the pair of faces L and R of cube i′.

In the same way, if we attach cube i′ to face L of cube j and the colors on all faces of side L
in the tower must be different, then face L of cube i′ and face L of cube j must have the same
color. We get oGi(er) = L(j) and tGi(er) ∈ N+

Gi
(L(j)). If cube i′ attached to face R of cube j

and all faces on side R of the tower must have different colors, then face R of cube i′ and face R
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of cube j must have the same color. We get tGi(er) = R(j) and oGi(er) ∈ N−
Gi
(R(j)). Therefore,

edge er can be chosen as eL in step 2.1 of the algorithm.
Moreover, the pair of opposite faces represented by edge er is defined as face L and face R

of cube i′. Hence, it is not possible to use this pair of faces as face F and face B. We obtain
eq ̸= er and eq ̸= eϕ(r). In addition, face F of cube i′ must not have the same color as face F
of cube j, and face B of cube i′ must not have the same colors as face B of cube j. We get
oGi(eq) = F (j) and tGi(eq) = B(j). Therefore, edge eq can be chosen as eF in step 2.2 of the
algorithm.

We obtain T1 = GL = CL + er and T2 = GF = CF + eq using the algorithm, and these
graphs correspond to the given solution to the puzzle.

Next, we demonstrate an example of the solutions in the case that cube i′ is attached to face
k of cube j.

Denote P (i, j, k) 4-colored 5-cube puzzle which cube i′ is attached to face k of cube j.
For P (1, 1, F ), attach cube 1′ to face F of cube 1.
Let E(G1) = {e1, e2, e3, ē1, ē2, ē3} , pG1(e1) = (C, Y ), pG1(e2) = (W,C), pG1(e3) = (G,W ),

pG1(ē1) = (Y,C), pG1(ē2) = (C,W ) and pG1(ē3) = (W,G).
Since F (1) = W , we have N+

G1
(F (1)) = {C,G}. Then,

NF =
{
e ∈ E(G1)|oG1(e) = F (1) and tG1(e) ∈ N+

G1
(F (1))

}
= {e2, ē3} ,

that is |NF | = 2.
Therefore, we can choose an edge eF in 2 ways, namely, eF ∈ {e2, ē3}.
Case 1 eF = e2: Since L(1) = C and R(1) = Y , we have

E(G1)− ({e2, ē2} ∪ {e ∈ E(G1)|oG1(e) = C or tG1(e) = Y }) = {ē1, e3, ē3} .

Therefore, we can choose an edge eL in 3 ways, namely, eL ∈ {ē1, e3, ē3}.
Case 2 eF = ē3: Since L(1) = C and R(1) = Y , we have

E(G1)− ({ē3, e3} ∪ {e ∈ E(G1)|oG1(e) = C or tG1(e) = Y }) = {ē1, e2} .

Therefore, we can choose also an edge eL in 2 ways, namely, eL ∈ {ē1, e2}.
Hence, there are five pairs of GF and GL for P (1, 1, F ):
1. GF = CF + e2 and GL = CL + ē1
2. GF = CF + e2 and GL = CL + e3
3. GF = CF + e2 and GL = CL + ē3
4. GF = CF + ē3 and GL = CL + ē1
5. GF = CF + ē3 and GL = CL + e2.
In the case P (1, j, k), we obtain all possible edges eF and eL from the algorithm. When k = F

or k = B, the first edge obtained is eF and the following edge is eL. However, if k = L or k = R,
the first edge obtained is eL an the following edge is eF . Thus, we get graphs corresponding to
the solution of P (1, j, k) which are CF + eF and CL + eL.
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Table 3: Edges eF and eL for P (1, j, k) obtained from the algorithm
P (i, j, k) Edge eF Edge eL P (i, j, k) Edge eL Edge eF

P (1, 1, F )
e2 ē1, e3, ē3 P (1, 1, L)

e1 ē2, e3
ē3 ē1, e2 ē2 e1, e3

P (1, 2, F ) e3 e1, e2, ē2 P (1, 2, L) ē1 e2, ē3
P (1, 3, F ) ē1 ē2, e3 P (1, 3, L)

e2 e1, e3

P (1, 4, F )
e1 e2, ē3 ē3 e1, e2, ē2
ē2 e1, ē1, ē3 P (1, 4, L) e3 ē1, e2

P (1, 1, B)
ē1 e2, e3, ē3 P (1, 1, R) e1 ē2, e3
e2 ē1, e3, ē3 P (1, 2, R) ē3 e1, ē1, e2

P (1, 2, B)
ē2 e1, e3 P (1, 3, R)

ē1 e2, ē2, e3
e3 e1, e2, ē2 e2 e1, e3

P (1, 3, B) ē3 e1, ē2 P (1, 4, R)
ē2 ē1, e3, ē3

P (1, 4, B) e1 e2, ē3 e3 ē1, e2

For example, in the case P (1, 1, F ), the edges eF can be e2 and ē3. If eF = e2, the edges eL

can be ē1, e3 and ē3. Likewise, if eF = ē3, the edges eL can be ē1 and e2.
Hence, graphs corresponding to the solutions of P (1, 1, F ) are (i) CF + e2 and CL + ē1, (ii)

CF + e2 and CL + e3, (iii) CF + e2 and CL + ē3, (iv) CF + ē3 and CL + ē1 and (v) CF + ē3 and
CL + e2.

In the same way, we obtain pairs of eF and eL for P (2, j, k), P (3, j, k), and P (4, j, k).
For P (2, j, k), let E(G2) = {e1, e2, e3, ē1, ē2, ē3} , pG2(e1) = (C,C), pG2(e2) = (Y,G),

pG2(e3) = (G,W ), pG2(ē1) = (C,C), pG2(ē2) = (G,Y ) and pG2(ē3) = (W,G).

Table 4: Edges eF and eL for P (2, j, k) obtained from the algorithm
P (i, j, k) Edge eF Edge eL P (i, j, k) Edge eL Edge eF

P (2, 1, F ) ē3 e2 P (2, 1, L)
e1 e2, ē2, e3

P (2, 2, F )
ē2 e1, ē1, e3 ē1 e2, ē2, e3
e3 e1, ē1, ē2 P (2, 2, L) e2 e1, ē1, ē3

P (2, 3, F ) e2 e3 P (2, 3, L) ē3 e1, ē1, ē2

P (2, 4, F )
e1 e2, ē3 P (2, 4, L)

ē2 e3, ē3
ē1 e2, ē3 e3 e2

P (2, 1, B)
e1 e2, e3, ē3 P (2, 1, R) ē2 e3
ē1 e2, e3, ē3 P (2, 2, R)

e2 e1, ē1, ē3
P (2, 2, B) e3 e1, ē1, ē2 ē3 e1, ē1, e2

P (2, 3, B)
e2 e3 P (2, 3, R)

e1 ē2, e3
ē3 e2, ē2 ē1 ē2, e3

P (2, 4, B) ē2 e1, ē1, ē3 P (2, 4, R) e3 e2
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For P (3, j, k), let E(G3) = {e1, e2, e3, ē1, ē2, ē3} , pG3(e1) = (Y,G), pG3(e2) = (Y,W ),
pG3(e3) = (W,C), pG3(ē1) = (G,Y ), pG3(ē2) = (W,Y ) and pG3(ē3) = (C,W ).

Table 5: Edges eF and eL for P (3, j, k) obtained from the algorithm
P (i, j, k) Edge eF Edge eL P (i, j, k) Edge eL Edge eF

P (3, 1, F )
ē2 e1, e3 P (3, 1, L) ē3 e1, ē1, e2
e3 e1, e2 P (3, 2, L)

e1 ē2, e3
P(3, 2, F ) ē1 ē2, e3, ē3 e2 e1, e3

P (3, 3, F )
e1 e2, ē3 P (3, 3, L)

ē2 ē1, e3, ē3
e2 e1, ē1, ē3 e3 ē1, ē2

P (3, 4, F ) ē3 e1, ē2 P (3, 4, L) ē1 e2, e3
P (3, 1, B) e3 e1, e2 P (3, 1, R)

ē1 e2, ē3

P (3, 2, B)
e2 ē1, e3, ē3 ē2 e1, ē1, ē3
ē3 ē1, ē2 P (3, 2, R) e1 ē2, e3

P (3, 3, B) e1 e2, ē3 P (3, 3, R) e3 ē1, ē2

P (3, 4, B)
ē1 ē2, e3 P (3, 4, R)

e2 e1, e3
ē2 e1, e3 ē3 e1, e2

For P (4, j, k), let E(G4) = {e1, e2, e3, ē1, ē2, ē3} , pG4(e1) = (Y, Y ), pG4(e2) = (C, Y ),
pG4(e3) = (G,W ), pG4(ē1) = (Y, Y ), pG4(ē2) = (Y,C) and pG4(ē3) = (W,G).

Table 6: Edges eF and eL for P (4, j, k) obtained from the algorithm
P (i, j, k) Edge eF Edge eL P (i, j, k) Edge eL Edge eF

P (4, 1, F ) ē3 ē2 P (4, 1, L) e2 e1, ē1, e3
P (4, 2, F ) e3 e2

P (4, 2, L)
e1 e2, ē2, ē3

P (4, 3, F )
e1 e2, e3 ē1 e2, ē2, ē3
ē1 e2, e3 ē2 e1, ē1, ē3
ē2 e1, ē1, e3 P (4, 3, L) ē3 e2

P (4, 4, F ) e2 e1, ē1, ē3 P (4, 4, L) e3 ē2
P (4, 1, B) ē2 e3, ē3

P (4, 1, R)
e1 e2, e3

P (4, 2, B) e3 e2 ē1 e2, e3
P (4, 3, B) ē3 e1, ē1, e2 e2 e1, ē1, e3

P (4, 4, B)
e1 e2, ē2, ē3 P (4, 2, R) ē3 e1, ē1, e2, ē2
ē1 e2, ē2, ē3 P (4, 3, R) ē2 e3
e2 e1, ē1, ē3 P (4, 4, R) e3 ē2

In summary, there are 220 pairs of GF and GL for P (i, j, k). Thus, the 4-colored 5-cube
puzzle has 220 solutions.

It is also interesting to consider the puzzle that attaches n ∈ {1, 2, 3, 4} copies of the original
cubes to the stack from Instant Insanity, called a 4-colored (4 + n)-cube puzzle. We can use a
similar idea to develop an algorithm for the puzzle and find the number of the solutions.
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ปัญหาการพับแถบแสตมป์ n ดวง เมื่อ n = 2, 3, 4, 5, 6

ศิริญญา โปร่งจิตร์1,†,‡ ประกายแสง โคตรมิตร1 ทศพร สายเสมา1 และ วัชราภรณ์ อดทน1

1ภาควิชาวิทยาศาสตร์ทั่วไป คณะวิทยาศาสตร์และวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์
วิทยาเขตเฉลิมพระเกียรติ จังหวัดสกลนคร 47000

บทคัดย่อ

ในงานวิจัยนี้ เราได้แสดงคำตอบของข้อปัญหาในการพับแถบแสตมป์ n ดวง เมื่อ n = 2, 3, 4, 5, 6

คำตอบของข้อปัญหาซึ่งเราเรียกว่า n-ทบ อยู่ในรูปของการเรียงสับเปลี่ยนของสมาชิกในเซต {1, 2, . . . , n}

เราได้ศึกษาความสัมพันธ์ระหว่าง n-ทบ กับ การเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา ได้นิยาม แพทเทิร์นของ
n-ทบ เมื่อ n เป็นจำนวนนับที่มากกว่า 1 และได้เสนอทฤษฎีบทซึ่งเป็นผลลัพธ์จากการศึกษาความสัมพันธ์
ดังกล่าว

คำสำคัญ: การเรียงสับเปลี่ยน, ปัญหาการพับแสตมป์, โอริกามิ
2020 MSC: ปฐมภูมิ 05 ทุติยภูมิ 05A05

1 บทนำ
โอริกามิเป็นศิลปะรูปแบบหนึ่งซึ่งมีรากฐานอยู่ในทวีปเอเชียมานานกว่า 1000 ปี ในภาษาญี่ปุ่นคำว่า โอริกามิ มี
ความหมายตามตัวอักษรว่า พับ, กระดาษ ความสนใจในคณิตศาสตร์ที่ซ่อนในโอริกามิเพิ่งเกิดขึ้นในช่วงศตวรรษ
ที่ผ่านมาเท่านั้น มีการเผยแพร่บทความวิจัยทางคณิตศาสตร์ที่เกี่ยวข้องกับโอริกามิหลายบทความ เช่น บทความ
เรื่อง Folding a Strip of Stamps [3] เมื่อ ปี ค.ศ. 1968 เรื่อง On the Mathematics of Flat Origamis [1]
เมื่อ ปี ค.ศ. 1994 เรื่อง A method for Designing Crease Patterns for Flat-Foldable Origami with
Numerical Optimization [4] เมื่อ ปี ค.ศ. 2011 และเรื่อง An Application of A Theorem of Alter-
native to Origami เมื่อปี ค.ศ. 2017 [2] บทความวิจัยเรื่องนี้ เริ่มต้นมาจากข้อปัญหาในหนังสือ How to
Fold It [5] ซึ่งท้าทายให้หาจำนวนวิธีในการพับแถบแสตมป์ 4 ดวง ที่ตราหมายเลข 1, 2, 3, 4 ไว้บนแสตมป์โดย
เรียงลำดับจากแสตมป์ดวงซ้ายไปดวงขวา และตราหมายเลขไว้เพียงด้านเดียว กติกามีว่า เมื่อพับแถบแสตมป์
†ผู้นำเสนอ ‡ผู้แต่งหลัก
อีเมล: sirinya.pr@ku.th (ศิริญญา โปร่งจิตร์), prakaisang.k@ku.th (ประกายแสง โคตรมิตร),
todsaporn.sa@ku.th (ทศพร สายเสมา), watcharaporn.od@ku.th (วัชราภรณ์ อดทน).
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ตามแนวรอยปรุแล้วต้องวางทบแสตมป์โดยให้หมายเลข 1 หงายขึ้น แล้วอ่านหมายเลขจากทบแสตมป์โดยเรียง
ลำดับจากชั้นบนลงมาชั้นล่าง แน่นอนว่าลำดับหมายเลขที่อ่านได้นี้ต้องเป็นการเรียงสับเปลี่ยนอันใดอันหนึ่งใน
เซต {1, 2, 3, 4} แต่จริงหรือไม่ที่ทุก ๆ การเรียงสับเปลี่ยนในเซต {1, 2, 3, 4} จะทำให้เราสามารถพับเพื่อให้ได้
ทบแสตมป์ที่สอดคล้องกับการเรียงสับเปลี่ยนนั้นได้ ?

ในบทความนี้ เราได้แสดงคำตอบของข้อปัญหาดังกล่าว รวมถึงได้แสดงคำตอบจากการขยายข้อปัญหาไปสู่
กรณีแถบแสตมป์ n ดวง เมื่อ n = 2, 3, 4, 5, 6 จากความพยายามที่จะหาคำตอบของข้อปัญหาเมื่อ n เป็น
จำนวนนับใด ๆ ได้นำไปสู่การนิยาม การเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา เราได้ศึกษาความสัมพันธ์ระหว่าง
การเรียงสับเปลี่ยนที่เป็นคำตอบของข้อปัญหาดังกล่าว ซึ่งต่อไปเราจะเรียกว่า n-ทบ กับ การเรียงสับเปลี่ยนรอย
พับภูเขาหุบเขา เราได้เสนอทฤษฎีบทที่เกิดจากการอนุมานผลการศึกษาความสัมพันธ์ดังกล่าว และเพื่อพิสูจน์
ทฤษฎีบทเราได้นิยาม แบบจำลองสองมิติสำหรับ n-ทบ แพทเทิร์นของ n-ทบ และ ลำดับเรียงเส้นของ n-ทบ
ด้วย

2 ปัญหาการพับแสตมป์
เริ่มต้นด้วยข้อปัญหาในหนังสือ How to Fold It [5] ดังนี้
ข้อปัญหา 2.1. ถ้าคุณมีแถบแสตมป์ 4 ดวง ซึ่งมีหมายเลข 1, 2, 3 และ 4 ตราไว้บนแสตมป์โดยเรียงลำดับจาก
ซ้ายไปขวา (ภาพที่ 1 ซ้าย) เมื่อเราพับแถบแสตมป์ตามรอยปรุซ้อนกันเป็นทบแสตมป์แล้ว เรากำหนดทิศทาง
ของทบแสตมป์ โดยให้แสตมป์หมายเลข 1 หงายขึ้น (ไม่ว่าแสตมป์หมายเลข 1 จะอยู่ที่ชั้นใด) จากนั้นให้อ่าน
หมายเลขที่ตราไว้บนแสตมป์โดยเรียงลำดับจากชั้นบนลงมาชั้นล่าง เช่น ภาพที่ 1 ขวา ได้แสดงทบแสตมป์ที่
สัมพันธ์กับการเรียงสับเปลี่ยน 1234

คำถามคือ จากการเรียงสับเปลี่ยนของสมาชิกในเซต {1, 2, 3, 4} ซึ่งมีทั้งหมด 4! = 24 แบบนั้น จริงหรือไม่
ที่ทุก ๆ การเรียงสับเปลี่ยนสามารถเกิดทบแสตมป์ได้ ?

1 2 3 4

ภาพที่ 1: ทบแสตมป์สี่ดวงกับการเรียงสับเปลี่ยน 1234

หมายเหตุ 2.2. ในภาพที่ 1 ขวา ซึ่งเป็นตัวอย่างของทบแสตมป์ที่พับได้ เราถือว่าแสตมป์ชั้นบนสุดของทบแสตมป์
คือรูปสี่เหลี่ยมด้านหน้า ส่วนที่ระบายสีอ่อนคือด้านหน้าของแสตมป์ซึ่งตราหมายเลข ส่วนที่ระบายสีเข้มคือด้าน
หลังของแสตมป์ซึ่งไม่ตราหมายเลข แต่ด้วยข้อจำกัดของรูปเราจำเป็นต้องใส่หมายเลขไว้ตรงส่วนที่เป็นสีเข้มด้วย

2.1 4-ทบ
เราได้ทดลองพับแถบแสตมป์และพบว่า มีการเรียงสับเปลี่ยนของสมาชิกในเซต {1, 2, 3, 4} เพียง 16 แบบจาก
การเรียงสับเปลี่ยนทั้งหมด 24 แบบ ที่สอดคล้องกับทบแสตมป์ทั้งหมดที่พับได้ และได้แสดงคำตอบทั้งหมดนี้ใน
ภาพที่ 2

เราเรียกแต่ละการเรียงสับเปลี่ยนที่เกิดทบแสตมป์ในรูปที่ 2 ว่า 4-ทบ เช่น 2134 เป็น 4-ทบ แต่ 2314 ไม่เป็น
4-ทบ และถ้า n เป็นจำนวนนับที่มากกว่า 1 แล้ว n-ทบ หมายถึง การเรียงสับเปลี่ยน π บนเซต {1, 2, . . . , n}
ที่สามารถพับแถบแสตมป์ n ดวงให้สอดคล้องกับ π ได้
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1234 1243 1342 1432

2134 2143 2341 2431

3124 3214 3412 3421

4123 4213 4312 4321

ภาพที่ 2: 4-ทบ ทั้งหมด 16 แบบ

2.2 n-ทบ เมื่อ n = 2, 3, 4, 5, 6

เราได้ขยายข้อปัญหา 2.1 จากแถบแสตมป์ 4 ดวง เป็นแถบแสตมป์ n ดวง เมื่อ n = 2, 3, 4, 5, 6 และพบว่า
จำนวนของการเรียงสับเปลี่ยนของสมาชิกในเซต {1, 2, . . . , n} ที่เป็น n-ทบ คือ 2, 6, 16, 50, 144 เมื่อ
n = 2, 3, 4, 5, 6 ตามลำดับ (จะกล่าวโดยละเอียดในหัวข้อที่ 3 ) ตรงนี้จะสังเกตได้ว่า เมื่อแถบแสตมป์ไม่เกิน
3 ดวง ทุก ๆ การเรียงสับเปลี่ยนสามารถเกิดทบแสตมป์ได้ อย่างไรก็ตาม ตัวเลข 2, 6, 16, 50, 144 ที่เราค้นพบ
จากการทดลองพับจริงตรงกันกับข้อมูลในบทความวิจัยของ Koehler [3] หรืออาจกล่าวได้ว่า จากบทความวิจัย
ของ Koehler ทำให้เราสามารถสรุปคำตอบของข้อปัญหาดังกล่าวได้โดยอาศัยการพับด้วยมือเท่านั้น

การพยายามที่จะหาคำตอบของข้อปัญหาเมื่อ n เป็นจำนวนนับใด ๆ ได้นำไปสู่การนิยาม การเรียงสับเปลี่ยน
รอยพับภูเขาหุบเขา และศึกษาความสัมพันธ์ระหว่าง n-ทบ กับ การเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา ดังหัวข้อ
ถัดไป
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3 การเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา
พิจารณา 4-ทบ 1243 ดังภาพที่ 3 ซ้าย ถ้าเราคลี่ทบแสตมป์ออกโดยหงายด้านที่ตราหมายเลขขึ้น เราเรียกรอย
พับระหว่างแสตมป์ดวงที่ 1 กับดวงที่ 2 ว่า รอยพับภูเขา เรียกรอยพับระหว่างแสตมป์ดวงที่ 2 กับดวงที่ 3 และ
รอยพับระหว่างแสตมป์ดวงที่ 3 กับดวงที่ 4 ว่า รอยพับหุบเขา
นิยาม 3.1. กำหนดให้ M แทนรอยพับภูเขา และ V แทนรอยพับหุบเขา สำหรับจำนวนนับ n ใด ๆ การเรียง
สับเปลี่ยนรอยพับภูเขาหุบเขา คือการเรียงสับเปลี่ยน n สิ่งซํ้าได้ในเซต {M,V }

จาก 4-ทบ 1243 ซึ่งคลี่แล้ว ถ้าเราลากเส้นตรงตามแนวรอยปรุของแถบแสตมป์บนด้านที่ตราหมายเลข โดย
ให้เส้นประจุดแทนรอยพับภูเขา (M ) และเส้นประแทนรอยพับหุบเขา (V ) จะได้ภาพที่ 3 ขวา ในกรณีนี้เรากล่าว
ว่า 1243 สัมพันธ์กับการเรียงสับเปลี่ยนรอยพับภูเขาหุบเขาMV V หรือกล่าวโดยย่อว่า 1243 สัมพันธ์กับMV V

1 2 3 4

M V V

ภาพที่ 3: 1243 สัมพันธ์กับ MV V

เราศึกษาความสัมพันธ์ระหว่าง การเรียงสับเปลี่ยนที่เป็น n-ทบ กับ การเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา
เมื่อ n = 2, 3, 4, 5, 6 ได้ผลดังตารางที่ 1 และตารางที่ 2 ต่อไปนี้
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ตารางที่ 1: n-ทบ กับการเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา เมื่อ n = 2, 3, 4, 5

n n-ทบ การเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา
2 12 M

21 V

3 132, 312 MM
231, 213 V V

123 MV
321 VM

4 3124, 3412, 1342 MMM
4213, 2143, 2431 V V V

4312, 1432 MMV
2134, 2341 V VM

1234 MVM
4321 VMV

3214, 3421 VMM
1243, 4123 MV V

5 53124, 35412, 31254, 13542 MMMM
42135, 21453, 45213, 24531 V V V V
34512, 34152, 13452, 31245 MMMV
21543, 25143, 25431, 54213 V V VM

54312, 51432, 15432 MMVM
21345, 23415, 23451 V VMV
12354, 51234, 15234 MVMM
45321, 43215, 43251 VMV V

53214, 35421, 32154, 32514 VMMM
41235, 12453, 45123, 41523 MV V V
43125, 45312, 14532, 14325 MMV V
52134, 21354, 23541, 52341 V VMM

12345 MVMV
54321 VMVM

54123, 12543 MV VM
32145, 34521 VMMV
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ตารางที่ 2: 6-ทบ กับการเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา

6-ทบ การเรียงสับเปลี่ยน
รอยพับภูเขาหุบเขา

135642, 312564, 356412, 531246, 563124 MMMMM
246531, 465213, 214653, 642135, 421365 V V V V V

365412, 136542, 653124, 361254, 312654 MMMMV
214563, 245631, 421356, 452163, 456213 V V V VM

345612, 341562, 134562, 345126, 312456 MMMVM
216543, 265143, 265431, 621543, 654213 V V VMV

564312, 543612, 561432, 156432, 154362, 543126, 514326 MMVMM
213465, 216345, 234165, 234651, 263451, 621345, 623415 V VMV V

561234, 156234, 512634, 123564, 512346 MVMMM
432165, 432651, 436215, 465312, 643215 VMV V V

321564, 325614, 356412, 532146, 563214 VMMMM
465123, 416523, 124653, 641235, 412365 MV V V V

634512, 163452, 341652, 134562, 631245, 312465 MMMV V
215436, 254361, 256143, 256431, 542136, 564213 V V VMM

456312, 145632, 431256, 143256 MMV VM
213654, 236541, 652134, 652341 V VMMV

564123, 125643, 541236, 125436 MV VMM
321465, 346521, 632145, 634521 VMMV V

213564, 235641, 521346, 521634, 523416, 562134, 562341 V VMMM
465312, 146532, 643125, 436125, 614325, 432165, 143265 MMV V V

654312, 651432, 165432 MMVMV
213456, 234156, 234561 V VMVM

651234, 165234, 123654 MVMMV
432156, 432561, 456321 VMV VM

321654, 326514, 362154, 365421, 653214 VMMMV
456123, 415623, 451263, 124563, 412356 MV V VM

321465, 346521, 632145, 634521 VMMVM
564123, 125643, 541236, 125436 MV VMV

215643, 543216, 543621, 564321 VMVMM
346512, 612345, 126345, 123465 MVMMV

123456 MVMVM
654321 VMVMV
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4 แพทเทิร์นของ n-ทบ เมื่อ n ∈ N โดยที่ n ≥ 2

เพื่อวิเคราะห์ความสัมพันธ์ระหว่าง n-ทบ กับ การเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา เราได้สร้างแบบจำลอง 2
มิติสำหรับแต่ละ n-ทบ ขึ้นมา แล้วปรับแบบจำลองดังกล่าวให้เป็นแพทเทิร์นของ n-ทบ

4.1 แบบจำลองสองมิติ
เริ่มต้นที่ 2-ทบ ซึ่งมีเพียง 12 กับ 21 จากทบแสตมป์ใน 3 มิติ ที่วางโดยให้หมายเลข 1 หงายขึ้น เราจำลอง
เป็นลายเส้นใน 2 มิติได้ดังภาพที่ 4 จุดที่เส้นสองเส้นชนกันเป็นมุมแหลมคือรอยพับ เส้นแต่ละเส้นคือแสตมป์
แต่ละดวงซึ่งหมายเลขที่กำกับคือหมายเลขที่ตราบนแสตมป์ การกำกับหมายเลขมีทิศทางซึ่งสอดคล้องกับทบ
แสตมป์ใน 3 มิติ กล่าวคือ ถ้าเป็นรอยพับภูเขาเรากำกับหมายเลขไว้นอกมุม แต่ถ้าเป็นรอยพับหุบเขาเรากำกับ
หมายเลขไว้ในมุม หรืออีกนัยหนึ่ง เส้นตรงแต่ละเส้นมีสองด้าน ด้านที่ติดหมายเลขแทนด้านหน้าของแสตมป์
(ด้านที่ตราหมายเลข) ส่วนด้านที่ไม่ติดหมายเลขแทนด้านหลังของแสตมป์ เนื่องจากต้องวางทบแสตมป์โดยให้
แสตมป์หมายเลข 1 หงายขึ้นเสมอ ดังนั้นในแบบจำลองนี้หมายเลข 1 ต้องอยู่เหนือเส้นของมันเสมอ ส่วน
หมายเลขอื่น ๆ อาจจะอยู่เหนือเส้นหรืออยู่ใต้เส้นของมันก็ได้ ในภาพเรากำกับอักษร M และ V ไว้สำหรับ
รอยพับภูเขาและรอยพับหุบเขาตามลำดับ

1

M
2

หรือ12 มีแบบจำลองเป็น
1

M
2

2
V1 หรือ21 มีแบบจำลองเป็น 2

V 1

ภาพที่ 4: แบบจำลอง 2 มิติ สำหรับ 2-ทบ

สำหรับ 3-ทบ ซึ่งมีทั้งหมด 6 แบบ เราได้แบบจำลอง 2 มิติ ดังภาพที่ 5

การวาดแบบจำลองสองมิติสำหรับ n-ทบ
เราสามารถวาดแบบจำลองของ n-ทบ ดังนี้ นำ n-ทบ มาย้อมสีตรงเส้นขอบของดวงแสตมป์โดยย้อมต่อ

เนื่องไม่ยกมือ จากขอบแสตมป์ดวงที่ 1 ไปขอบแสตมป์ดวงที่ 2 จนถึงขอบแสตมป์ดวงที่ n แสตมป์แต่ละดวงถูก
ย้อมเพียงเส้นขอบเดียว จากนั้นตั้งทบแสตมป์โดยให้หมายเลข 1 หงายขึ้นตามกติกา แล้วประทับรอยสีย้อมบน
กระดาษโดยให้ส่วนที่เป็นมุมอยู่ทางขวาหรือทางซ้ายของกระดาษ เราจะได้ลายเส้นของแบบจำลองขึ้นมา แต่ละ
มุมที่เส้นชนกันเราเขียนอักษร M และ V กำกับไว้ สุดท้ายใส่หมายเลขโดยเริ่มที่เลข 1 ต้องอยู่เหนือเส้นของมัน
ตามด้วยหมายเลข 2, 3, . . . , n ซึ่งจะอยู่เหนือเส้นหรืออยู่ใต้เส้นของมันขึ้นอยู่กับว่าเป็นรอยพับภูเขาหรือรอยพับ
หุบเขา การย้อมสีดังกล่าวทำได้ 2 แบบ เราจะย้อมขอบบนหรือขอบล่างของแสตมป์ก็ได้ซึ่งส่งผลให้แต่ละ n-
ทบ มีแบบจำลองได้ 2 แบบ ดังภาพที่ 4 และภาพที่ 5
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123 มีแบบจำลองเป็น

1

M
2 V
3

หรือ

1

M
2V
3

132 มีแบบจำลองเป็น
M

M

1

2

3

หรือ
M

M

1

2

3

213 มีแบบจำลองเป็น

V
V

1
2

3

หรือ

V
V

1
2

3

231 มีแบบจำลองเป็น

V

V
1

2
3

หรือ

V

V
1

2
3

312 มีแบบจำลองเป็น
M

M

1

2

3

หรือ
M

M

1

2

3

321 มีแบบจำลองเป็น

3
M

2
V 1

หรือ

3
M

2
V1

ภาพที่ 5: แบบจำลอง 2 มิติ สำหรับ 3-ทบ

4.2 แพทเทิร์นของ n-ทบ
จากแบบจำลอง 2 มิติ สำหรับ 2-ทบ และ 3-ทบ ดังภาพที่ 4 และภาพที่ 5 จะพบว่า ถ้าเราตัดมุมที่เส้นชนกัน
ออกแล้วจัดเส้นให้เป็นแนวขนานกันโดยคงหมายเลขไว้ เราจะได้แพทเทิร์นของ 2-ทบ และ 3-ทบ ดังภาพที่ 6

1

2
2
1

2-ทบ 12 2-ทบ 21

1

2
3

1
3

2

2
1
3

2
3
1

3
1

2

3

2
1

3-ทบ 123 3-ทบ 132 3-ทบ 213 3-ทบ 231 3-ทบ 312 3-ทบ 321

ภาพที่ 6: แพทเทิร์นของ 2-ทบ และ 3-ทบ
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ดังนั้น แพทเทิร์นของ n-ทบ คือการจัดเรียงเส้นทั้งหมด n เส้นให้เป็นแนวขนานกันโดยมีหมายเลขกำกับ เริ่ม
จากหมายเลข 1 แทนแสตมป์ดวงที่ 1 ต้องเขียนไว้เหนือเส้นของมันเสมอ ถัดมาคือหมายเลข 2 จะอยู่เหนือเส้น
หรืออยู่ใต้เส้นของมันขึ้นอยู่กับรอยพับระหว่างแสตมป์ดวงที่ 1 กับแสตมป์ดวงที่ 2 ว่าเป็นรอยพับภูเขาหรือเป็น
รอยพับหุบเขา จนกระทั่งหมายเลข n ที่ต้องเทียบกับเส้นที่่ n− 1 ว่ารอยพับระหว่างแสตมป์ดวงที่ n กับ n− 1

เป็นแบบใด เราได้แจกแจงกรณีทั้งหมดที่เป็นไปได้ในแพทเทิร์นของ n-ทบ เมื่อตัดเฉพาะส่วนระหว่างแสตมป์
ดวงที่ k กับ ดวงที่ k + 1 (k = 2, 3, . . . , n− 1) มาพิจารณาดังภาพที่ 7

k + 1

k

k

k + 1

k + 1

k

k

k + 1

(a) รอยพับภูเขา (b) รอยพับภูเขา (c) รอยพับหุบเขา (d) รอยพับหุบเขา

ภาพที่ 7: แสตมป์ดวงที่ k กับ k + 1 ในแพทเทิร์น

ตัวอย่าง 4.1. เราจะแสดงการวาดแพทเทิร์นของ 4-ทบ 2134 ซึ่งสัมพันธ์กับการเรียงสับเปลี่ยน V VM ดังนี้
1. จัดเรียงเส้นทั้งหมด 4 เส้นให้เป็นแนวขนานกันดังภาพที่ 8 (a) หมายเลขทางขวาคือลำดับของดวงแสตมป์

ในแถบแสตมป์
2. เขียนหมายเลข 1 ไว้เหนือเส้นของมัน เนื่องจากรอยพับระหว่างแสตมป์ดวงที่ 1 กับดวงที่ 2 เป็นรอยพับ

หุบเขา ดังนั้นหมายเลข 2 ต้องอยู่ใต้เส้นของมันดังภาพที่ 8 (b)

3. เนื่องจากรอยพับระหว่างแสตมป์ดวงที่ 2 กับดวงที่ 3 เป็นรอยพับหุบเขา ดังนั้นหมายเลข 3 ต้องอยู่เหนือ
เส้นของมันดังภาพที่ 8 (c)

4. เนื่องจากรอยพับระหว่างแสตมป์ดวงที่ 3 กับดวงที่ 4 เป็นรอยพับภูเขา ดังนั้นหมายเลข 4 ต้องอยู่ใต้เส้น
ของมันดังภาพที่ 8 (d) เป็นแพทเทิร์นของ 4-ทบ 2134 ตามต้องการ

2
1
3
4

2
1

3
4

2
1
3

4

2
1
3

4
(a) (b) (c) (d)

ภาพที่ 8: แพทเทิร์นของ 4-ทบ 2134

ตัวอย่าง 4.2. ให้ π เป็น 4-ทบ ที่มีแพทเทิร์นดังภาพที่ 9 จะได้ว่า π คือ 3421 เพื่อหาการเรียงสับเปลี่ยนรอย
พับภูเขาหุบเขาของ π เราเริ่มที่เส้นหมายเลข 1 กับหมายเลข 2 ซึ่งจะพบว่าเป็นกรณีดังภาพที่ 7 (c) ดังนั้นรอย
พับระหว่างแสตมป์ดวงที่ 1 กับดวงที่ 2 เป็นรอยพับหุบเขา (V ) ต่อไปดูเส้นหมายเลข 2 กับหมายเลข 3 จะพบ
ว่าเป็นกรณีดังภาพที่ 7 (a) ดังนั้นรอยพับระหว่างแสตมป์ดวงที่ 2 กับดวงที่ 3 เป็นรอยพับภูเขา (M ) สำหรับเส้น
หมายเลข 3 กับหมายเลข 4 จะพบว่าเป็นกรณีดังภาพที่ 7 (b) ดังนั้นรอยพับระหว่างแสตมป์ดวงที่ 3 กับดวงที่
4 เป็นรอยพับภูเขา (M ) ดังนั้น π สัมพันธ์กับการเรียงสับเปลี่ยน VMM
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3

4
2
1

ภาพที่ 9: แพทเทิร์นของ 4-ทบ π

นิยาม 4.3. ให้ π เป็น n-ทบ ลำดับเรียงเส้น ในแพทเทิร์นของ π คือลำดับ ⟨
1x22x

3
3 . . . x

n
n

⟩ เมื่อ xk ∈ {Nk, Sk}
สำหรับ k = 2, 3, . . . , n โดย Nk หมายถึง เส้นหมายเลข k อยู่เหนือเส้นหมายเลข k − 1 และ Sk หมายถึง
เส้นหมายเลข k อยู่ใต้เส้นหมายเลข k − 1

ตัวอย่าง 4.4. จากภาพที่ 9 จะได้ลำดับเรียงเส้นของ 4-ทบ 3421 คือ ⟨1N2N3S4⟩

5 ทฤษฎีบท
จากตารางที่ 1 และตารางที่ 2 จะพบว่า นอกจากกรณี n = 2 แล้ว แต่ละการเรียงสับเปลี่ยนรอยพับภูเขา
หุบเขามีความสัมพันธ์กับ n-ทบ มากกว่าหนึ่งแบบ ยกเว้นการเรียงสับเปลี่ยนที่ M กับ V อยู่ติดกันและมีการ
เรียงสลับกันไป นั่นคือการเรียงสับเปลี่ยน MV, VM การเรียงสับเปลี่ยน MVM,VMV การเรียงสับเปลี่ยน
MVMV, VMVM และการเรียงสับเปลี่ยน MVMVM,VMVMV สำหรับกรณี n = 3, 4, 5, 6 ตามลำดับ
เราจึงอนุมานว่าในกรณีที่ n ≥ 2 ความสัมพันธ์ดังกล่าวควรจะเป็นไปในทำนองเดียวกัน และได้เสนอบทตั้งและ
ทฤษฎีบทดังต่อไปนี้

บทตั้ง 5.1. ให้ n ∈ N โดยที่ n ≥ 2 และให้ π เป็น n-ทบใด ๆ จะได้ว่า
(i) ถ้า π สัมพันธ์กับการเรียงสับเปลี่ยน MVM . . .MV หรือ MVM . . . V M แล้ว แพทเทิร์นของ π มี

ลำดับเรียงเส้นเป็น ⟨1S2S3 . . . Sn⟩
(ii) ถ้า π สัมพันธ์กับการเรียงสับเปลี่ยน VMV . . . V M หรือ VMV . . .MV แล้ว แพทเทิร์นของ π มี

ลำดับเรียงเส้นเป็น ⟨1N2N3 . . . Nn⟩

พิสูจน์. เราจะพิสูจน์โดยใช้หลักการอุปนัยเชิงคณิตศาสตร์แบบเข้มดังนี้ จากภาพที่ 6 เราได้ว่าบทตั้งเป็นจริง
สำหรับ n = 2, 3 สมมติว่าบทตั้งเป็นจริงสำหรับทุก ๆ จำนวนนับ k ≥ 3 ให้ π เป็น (k + 1)-ทบ

(i) เราแบ่งการพิสูจน์เป็น 2 กรณี ดังนี้
กรณีที่ 1 k เป็นจำนวนคู่

จะได้ว่า π สัมพันธ์กับการเรียงสับเปลี่ยน MVM . . .MV ถ้าเราติดกาวแสตมป์ดวงที่ k กับ k + 1 ให้เป็น
ดวงเดียว เราจะได้ k- ทบ ที่สัมพันธ์กับการเรียงสับเปลี่ยน MVM . . . V M โดยสมมติฐานการอุปนัยจะได้ว่า
แพทเทิร์นของ k-ทบ นี้มีลำดับเรียงเส้นเป็น ⟨1S2S3 . . . Sk⟩ ดังนั้น k-ทบ มีแพทเทิร์นดังภาพที่ 10 ซ้าย เนื่องจาก
รอยพับระหว่างแสตมป์ดวงที่ k กับ k+1 เป็นรอยพับหุบเขา ดังนั้นเมื่อลอกกาวออกเพื่อกลับคืนเป็น (k+1)-
ทบ π ดังเดิม จะได้แพทเทิร์นของ π ดังภาพที่ 10 ขวา ซึ่งมีลำดับเรียงเส้นเป็น ⟨1S2S3 . . . Sk+1⟩

กรณีที่ 2 k เป็นจำนวนคี่
จะได้ว่า π สัมพันธ์กับการเรียงสับเปลี่ยน MVM . . . V M ถ้าเราติดกาวแสตมป์ดวงที่ k กับ k + 1 ให้เป็นดวง
เดียว เราจะได้ k- ทบ ที่สัมพันธ์กับการเรียงสับเปลี่ยน MVM . . .MV ในทำนองเดียวกันกับกรณี k เป็น
จำนวนคู่ เราได้โดยสมมติฐานการอุปนัยว่า แพทเทิร์นของ k-ทบ นี้มีลำดับเรียงเส้นเป็น ⟨1S2S3 . . . Sk⟩ และมี
แพทเทิร์นดังภาพที่ 11 ซ้าย เนื่องจากรอยพับระหว่างแสตมป์ดวงที่ k กับ k + 1 เป็นรอยพับภูเขา ดังนั้นเมื่อ
ลอกกาวออกเพื่อกลับคืนเป็น (k + 1)-ทบ π จะได้แพทเทิร์นของ π ดังภาพที่ 11 ขวา ซึ่งมีลำดับเรียงเส้นเป็น
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⟨1S2S3 . . . Sk+1⟩ ตามต้องการ

(ii) สามารถพิสูจน์ได้ในทำนองเดียวกันกับ (i)

1

2
3

k-1

k

1

2
3

k-1

k
k+1

ภาพที่ 10: แพทเทิร์นของ k-ทบ และ (k + 1)-ทบ กรณี k เป็นจำนวนคู่

1

2
3

k-1
k

1

2
3

k-1
k

k+1

ภาพที่ 11: แพทเทิร์นของ k-ทบ และ (k + 1)-ทบ กรณี k เป็นจำนวนคี่

ทฤษฎีบท 5.2. ให้ n ∈ N โดยที่ n ≥ 2 และให้ π เป็น n-ทบ ใด ๆ จะได้ว่า
(i) ถ้า π สัมพันธ์กับการเรียงสับเปลี่ยน MVM . . . V M หรือ MVM . . .MV แล้ว π คือ n-ทบ 12 . . . n

(ii) ถ้า π สัมพันธ์กับการเรียงสับเปลี่ยน VMV . . .MV หรือ VMV . . . V M แล้ว π คือ n-ทบ
n(n− 1) . . . 1

พิสูจน์. (i) สมมติว่า π เป็น n-ทบ ที่สัมพันธ์กับการเรียงสับเปลี่ยน MVM . . . V M หรือ MVM . . .MV โดย
บทตั้ง 5.1 (i) จะได้ว่า แพทเทิร์นของ π มีลำดับเรียงเส้นเป็น ⟨1S2S3 . . . Sn⟩ เมื่ออ่านหมายเลขในแพทเทิร์น
จากด้านบนลงมาด้านล่าง จะได้ว่า π คือ n-ทบ 12 . . . n

(ii) สมมติว่า π เป็น n-ทบ ที่สัมพันธ์กับการเรียงสับเปลี่ยน VMV . . .MV หรือ VMV . . . V M โดยบท
ตั้ง 5.1 (ii) จะได้ว่า แพทเทิร์นของ π มีลำดับเรียงเส้นเป็น ⟨1N2N3 . . . Nn⟩ เมื่ออ่านหมายเลขในแพทเทิร์นจาก
ด้านบนลงมาด้านล่าง จะได้ว่า π คือ n-ทบ n(n− 1) . . . 1

ทฤษฎีบท 5.2 ได้พิสูจน์ว่าเป็นจริงเฉพาะเงื่อนไขที่เพียงพอสำหรับการเป็น n-ทบ 12 . . . n กับ n(n−1) . . . 1

ในส่วนของเงื่อนไขที่จำเป็นหรือบทกลับของทฤษฎีบทนั้นผู้วิจัยอนุมานได้ว่าเป็นจริง และยังอยู่ระหว่างการศึกษา
ตัวอย่าง 5.3 และตัวอย่าง 5.4 ต่อไปนี้ เราแสดงเพื่อสนับสนุนการอนุมานดังกล่าว ยิ่งไปกว่านั้นเรายังสนใจการ
วิเคราะห์ความสัมพันธ์ระหว่างการเรียงสับเปลี่ยนรอยพับภูเขาหุบเขา กับ n-ทบ อื่น ๆ ต่อไปด้วย
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ตัวอย่าง 5.3. เราจะแสดงว่า 7-ทบ 1234567 สัมพันธ์กับการเรียงสับเปลี่ยนMVMVMV โดยการวาดแพทเทิร์น
ดังนี้

1. จัดเรียงเส้นทั้งหมด 7 เส้นให้เป็นแนวขนานกันดังภาพที่ 12 (a) หมายเลขทางขวาคือลำดับของดวงแสตมป์
ในแถบแสตมป์

2. เขียนหมายเลข 1 ไว้เหนือเส้นของมัน สำหรับหมายเลข 2 เราต้องเทียบกับหมายเลข 1 จากภาพที่ 6 จะ
พบว่าเราต้องเขียนหมายเลข 2 ไว้ใต้เส้นของมันดังภาพที่ 12 (b)

3. สำหรับหมายเลข 3 ซึ่งต้องเทียบกับหมายเลข 2 จะพบว่าเป็นกรณีของภาพที่ 7 (d) ดังนั้นเราต้องเขียน
หมายเลข 3 ไว้เหนือเส้นของมันดังภาพที่ 12 (c)

4. ทำซํ้าตามขั้นตอนที่ 3 กับหมายเลข 4, 5, 6 และ 7 จะได้แพทเทิร์นของ 7-ทบ 1234567 ดังภาพที่ 12 (d)

ดังนั้น 7-ทบ 1234567 สัมพันธ์กับการเรียงสับเปลี่ยน MVMVMV

1
2
3
4
5
6
7

1

2 3
4
5
6
7

1

2
3

4
5
6
7

1

2
3

4
5

6
7

(a) (b) (c) (d)

ภาพที่ 12: แพทเทิร์นของ 7-ทบ 1234567

ตัวอย่าง 5.4. เราจะแสดงว่า 7-ทบ 7654321 สัมพันธ์กับการเรียงสับเปลี่ยน VMVMVM โดยการวาดแพทเทิร์น
ดังนี้

1. จัดเรียงเส้นทั้งหมด 7 เส้นให้เป็นแนวขนานกันดังภาพที่ 13 (a) หมายเลขทางขวาคือลำดับของดวงแสตมป์
ในแถบแสตมป์

2. เขียนหมายเลข 1 ไว้เหนือเส้นของมัน สำหรับหมายเลข 2 เราต้องเทียบกับหมายเลข 1 จากภาพที่ 6 จะ
พบว่าเราต้องเขียนหมายเลข 2 ไว้ใต้เส้นของมันดังภาพที่ 13 (b)

3. สำหรับหมายเลข 3 ซึ่งต้องเทียบกับหมายเลข 2 จะพบว่าเป็นกรณีของภาพที่ 7 (a) ดังนั้นเราต้องเขียน
หมายเลข 3 ไว้เหนือเส้นของมันดังภาพที่ 13 (c)

4. ทำซํ้าตามขั้นตอนที่ 3 กับหมายเลข 4, 5, 6 และ 7 จะได้แพทเทิร์นของ 7-ทบ 7654321 ดังภาพที่ 13 (d)

ดังนั้น 7-ทบ 7654321 สัมพันธ์กับการเรียงสับเปลี่ยน VMVMVM
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(a) (b) (c) (d)

ภาพที่ 13: แพทเทิร์นของ 7-ทบ 7654321
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Abstract

A secret sharing scheme is a process where a secret is divided into shares and distributed
to each of the n parties, where a group of these parties can reconstruct the secret only when
they satisfy some conditions. In the threshold secret sharing schemes, only a group of t parties
or more can recover the secret and a group of less than t parties have no information about
the secret. By associating parties and shares to blocks and treatments of a combinatorial
design, we can construct a threshold secret sharing scheme with the property that if a party
loses their share, they can recover it using a secure protocol with the help of some parties
involved in the scheme. The protocol used to recover the lost share is called the repairability
protocol, and a threshold secret sharing scheme with such protocol is called a repairable
threshold scheme or RTS. In this study, we constructed four new RTS’s using four different
designs with more flexible parameters and efficiency than the existing schemes.

Keywords: secret sharing, combinatorial design, share repairability.

2020 MSC: Primary 94A62; Secondary 05B15, 05B99.

1 Introduction
A secret sharing scheme is a process where a dealer chooses a secret and distributes shares to
each of the n parties, where a group of these parties can reconstruct the secret only when some
conditions are met. One of the most well-known secret sharing schemes is the threshold secret
sharing schemes. In this type of secret sharing scheme, only a group of t parties or more can
recover the secret and a group of less than t parties have no information about the secret. An
example of the threshold secret sharing schemes is the Shamir’s secret sharing scheme where
we view the secret as the constant term of a polynomial of degree t − 1 over a field F, where
the coefficients of other terms besides the constant term are randomly chosen from elements of
F. The share distribution of the scheme can be done by substituting i to the same polynomial
and then giving the result to the ith party, where i = 1, 2, ..., n. A group of t parties can recover
the secret through the Lagrange interpolation formula and a group of less than t parties do not
have any information about the secret since they can not reconstruct the polynomial [1]. The
threshold secret sharing schemes can be generalized into the ramp schemes where instead of
†Speaker. ‡Corresponding author.
Email: 6470174123@student.chula.ac.th (N. Somswasdi), wutichai.ch@chula.ac.th (W. Chongchitmate).
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having one threshold, a ramp scheme has two thresholds, denoted in this study by k1 and k2,
such that any group of more than or equal to k2 parties can reconstruct the secret and any group
of less than or equal to k1 have no information about the secret. A threshold secret sharing
scheme with threshold t is a ramp scheme with k2 = t and k1 = t− 1 [5].

There are many studies regarding secret sharing schemes, however, this study focuses on the
study of share repairability of threshold secret sharing schemes, as conducted by Stinson and
Wei [5]. The purpose of the studies of share repairability is to find a way to recover the share of
a party in case they lose it, without any help from the dealer. The protocol we execute to repair
the lost share is called the repairability protocol. We want these repairability protocols to be not
only able to repair the lost share but also want them to be secure, that is, any group of parties
that do not satisfy the conditions to reconstruct the secret still do not know the secret with
the information they have and all the information they sent and receive during the repairability
protocol, regardless of how many time the protocol is executed. We call a threshold secret
sharing scheme with a secure repairability protocol a repairable threshold Scheme (RTS) [5].

There are some parameters we need to be concerned with when considering an RTS other than
the threshold of the scheme, including the repairing degree, information rate, and communication
complexity defined by Stinson and Wei in [5] to determine the efficiency of an RTS. There is
also the repairability index which defined by Liang and Stinson in [6] to further determine the
properties of an RTS.

In [5], Stinson and Wei found an RTS that has the optimal information rate and repairability
index, but also has bad communication complexity which means that this scheme is inefficient to
execute. They then discovered a way to obtain new RTS’s with less communication complexity
by linking parties and shares to blocks and treatments of combinatorial designs.

A combinatorial design is a way of selecting subsets called blocks from a finite set of treatments
in such a way that satisfies some conditions [7]. Stinson and Wei defined the distribution designs
that have the conditions they need to obtain new RTS’s with better communication complexity.
An RTS with repairability protocol that uses a distribution design to repair the lost share is
called the combinatorial RTS by Kacsmar and Stinson in [2]. Some known designs, including the
balanced incomplete block designs and τ−designs, are considered as distribution designs in the
work of Stinson and Wei [5] and a work of Kacsmar and Stinson [2]. However, some parameters in
the combinatorial RTS constructed by Stinson and Wei are not flexible, meaning those schemes
only work in very few cases. And while Kacsmar and Stinson obtained new schemes with more
flexible parameters, they do not have very good efficiency compared to schemes in [5]. So, in
this study, we use different designs as distribution designs to construct RTS’s with more flexible
parameters and more efficiency than the existing ones.

In Section 2, we give more details about the secret sharing and combinatorial designs as well
as the process of share repairability using the designs. We will also give some more details about
the previous works of Stinson and Wei and Kacsmar and Stinson mentioned above. Section 4
contains our main results and the comparison between our results and the previous works.

2 Preliminaries
In this section, we provide proper definitions and some facts about combinatorial designs, secret
sharing schemes, and share repairability mentioned in the introduction. We also talk about
some existing schemes and their parameters as well as introduce the designs used to construct
new schemes.

2.1 Notations

Let S be a set. We write |S| to denote the number of elements in S. The notation S → a means
that we uniformly sample an element from S. Additionally, if B and C are sets, a randomized
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algorithm A : B → C is an algorithm on an input x ∈ B that calculates a function f(x, r)
mapping from B × R to C, where r ∈ R is obtained by A uniformly sampling an element from
R. We write A(x) → y to denote that we give A an input x and receive y as a result.

2.2 Combinatorial Designs
First, we cover the definitions of the combinatorial design as well as the definitions of designs
that are used to construct the new schemes in this study and some later theorems [4] [7].

Definition 2.1. A combinatorial design (on set S) is a way of selecting subsets from a finite
set S in such a way that some specified conditions are satisfied. S is called the support set of
the design, the members of S are called treatments, the chosen subsets of S in the design are
called blocks, and the collection (i.e., multiset) of all blocks of a design is called the block set.

Definition 2.2. Let D be a design on support set S.

1. D is incomplete if at least one block does not contain all treatments from S.

2. D is regular if every block of D has the same size and each treatment occurs equally often
in the design.

3. D is called a balanced design if any two treatments occur together in precisely λ blocks,
where λ is a constant.

Definition 2.3. A balanced incomplete block design (BIBD) is a design that is incom-
plete, regular, and balanced.

We refer to a BIBD by using five parameters (m, b, r, k, λ), each parameter is defined as
follows;

• m is the size of the support set,

• b is the number of blocks in the design,

• r is the number of blocks that contain each treatment of the design,

• k is the size of blocks in the design and

• λ is the number of blocks that contain each pair of different treatments.

We denote a BIBD with those parameters by (m, b, r, k, λ)- BIBD. Note that we can define
parameters m and b similarly in any general design, and r also exists in a regular design that is
not a BIBD. However, not all designs have all blocks in the same size and we can find a constant
λ only in the balanced designs.

Using the defined conditions of regular designs and BIBDs, one can obtain the following
properties regarding parameters m, b, r, k, and λ.

Theorem 2.4 (Theorem 1.1 of [7]). In a regular design,

bk = mr

Theorem 2.5 (Theorem 1.2 of [7]). In an (m, b, r, k, λ)− BIBD,

r(k − 1) = λ(m− 1)

As we can always find other parameters from m, k and λ, we sometimes denote an (m, b, r, k, λ)-
BIBD by (m, k, λ)- BIBD.

The following are some special types and properties of BIBDs that will be mentioned again
afterward [7].
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Definition 2.6. BIBDs with k = 3 and λ = 1 are called Steiner triple systems (STS). We
denote a Steiner triple system with the support set of size m by STS(m).

Definition 2.7. A symmetric balanced incomplete block design (SBIBD) is an (m, b, r, k, λ)-

BIBD with m = b and r = k, denoted by (m, k, λ)-SBIBD.

Theorem 2.8 (Corollary 2.10.2 of [7]). The intersection of two distinct blocks of an (m, k, λ)-
SBIBD always contains λ treatments.

Definition 2.9. A design is called resolvable if one can divide its blocks into disjoint partitions,
where each treatment of the design appears in each partition exactly once. Such partition is
called a parallel class.

For example, an STS(9) with the block set β = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7},
{2, 5, 8}, {3, 6, 9}, {1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}} is resolvable since its blocks
can be divided into the following parallel classes:

• {1, 2, 3}, {4, 5, 6}, {7, 8, 9}

• {1, 4, 7}, {2, 5, 8}, {3, 6, 9}

• {1, 5, 9}, {2, 6, 7}, {3, 4, 8}

• {1, 6, 8}, {2, 4, 9}, {3, 5, 7}

Note that a design does not need to be a BIBD to be resolvable, but in this study, we will
consider only resolvable BIBDs.

The next definition is for the design used in [2] and a theorem used to calculate the parameters
of some schemes from the same article.

Definition 2.10. A τ-(m, k, λ)-design is a design where:
1. The support set is of size m.
2. Each block contains exactly k treatments.
3. Every set of τ treatments from the support set occurs in exactly λ blocks.

Theorem 2.11 (Theorem 1.10 of [2]). The ith replication number, denoted ri, of a τ−(m, k, λ)-
design is the number of blocks containing any given set of i treatments. It is known that

ri =
λ
(
m−i
τ−i

)(
k−i
τ−i

) ,

for 1 ≤ i ≤ τ

Lastly, we will cover some of the objects that are initially not a design but can be considered
as or used to construct one [7].

Definition 2.12. An affine plane consists of a set P of objects called points and a set L of
nonempty subsets of P called lines such that:

1. Given any two distinct points P and Q, there is exactly one line that contains them both.
2. There is a set of four points, not three of which belong to one common line.
3. Given any point P and given any line q, that does not contain P , there is exactly one line

that contains P and contains no point of q.
A finite affine plane is an affine plane with finite P .

Theorem 2.13 (Lemma 3.2 of [7]). In a finite affine plane, there is a parameter n such that
every line contains n points and every point lies on n+ 1 lines. We denote a finite affine plane
with parameter n by AG(2, n).
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According to [7], we can always construct an AG(2, n) from a finite field of order n, so if such
a field exists, then AG(2, n) exists. Thus, we can always find an AG(2, n) when n is a prime
power.

An affine plane can be considered as a resolvable BIBD as stated in Theorem 2.14 and it has
some similar properties to a resolvable design as stated in Theorem 2.15.

Theorem 2.14 (Theorem 3.3 of [7]). If “points” are identified with “treatments” and “lines”
are identified with “blocks”, then a finite affine plane with parameter n is precisely a resolvable
BIBD with parameters (n2, n2 + n, n+ 1, n, 1).

Theorem 2.15 (Corollary 3.12.2 of [7]). The lines of AG(2, n) can be partitioned into n + 1
subsets of size n, called parallel classes, such that two lines meet if and only if they are in
different parallel classes.

Theorem 2.16 (Theorem 3.13 of [7]). There exists an AG(2, n) if and only if there exists an
(n2 + n+ 1, n+ 1, 1)− SBIBD.

Since an AG(2, n) exists when n is a prime power, by Theorem 2.16, we get that an (n2 +
n+ 1, n+ 1, 1)− SBIBD exists when n is a prime power.

Another important object is the Room square defined as the following [7].

Definition 2.17. Let S be a set of r + 1 elements. A Room square of side r (or of order
r + 1) is an r × r array such that:

1. Each cell is either empty or contains an unordered pair of symbols chosen from S.

2. Each row and each column contains each element of S precisely once.

3. Each of the
(
r+1
2

)
possible distinct pairs of symbols occurs exactly once in a cell of the

square.

It follows that r must be odd, that is, r = 2n − 1 for some n ∈ N, and each row and each
column of a room square of side r = 2n − 1 has n non-empty cells and n − 1 empty cells. We
often use S = {1, 2, ..., 2n− 1} ∪ {∞} [7].

Theorem 2.18 (Chapter 15 of [7]). A Room square of side r = 2n− 1 exists when n ≥ 4.

2.3 Secret Sharing
There are various types of secret sharing schemes, but the ones we focus on are threshold secret
sharing schemes and ramp secret sharing schemes. According to [3], the threshold secret sharing
Scheme (sometimes the name was shortened to secret sharing schemes) can be formally defined
as the following. Note that, if V = (v1, v2, ..., va) is an a-tuple and I = {i1, i2, ..., ib} is an
index set, V |I denotes the projection of V onto its ith1 , ith2 , ..., ithb position. For example, if
V = (v1, v2, v3, v4, v5) and I = {1, 3, 4}, then V |I = (v1, v3, v4).

Definition 2.19. Let D be the domain of secrets and D1 be the domain of shares. Let Shr :
D → Dn

1 be a randomized sharing algorithm, and Rec : Dk
1 → D be a reconstruction algorithm.

Let t and n be positive integers such that n ≥ t. A (t, n)- (threshold) secret sharing
scheme is a pair of algorithms (Shr,Rec) that satisfies these two properties:

• Reconstruction. For all s ∈ D, if Shr(s) → (s1, s2, , sn) then

Rec(si1 , si2 , , sik) = s,

for all {i1, i2, , ik} ⊆ {1, 2, , n} where k ≥ t.
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• Secrecy. For any two secrets a, b ∈ D, any index set I = {i1, i2, , ik} ⊆ {1, 2, , n} and any
possible vector of shares v = (v1, v2, , vk) ∈ Dk

1 , such that k < t,

Pr[v = Shr(a)|I ] = Pr[v = Shr(b)|I ],

where Pr denotes the probability on randomness of the sharing algorithm.

This concept of the threshold secret sharing schemes can be generalized in the form of ramp
schemes as follows [3] [5].

Definition 2.20. Let D be the domain of secrets and D1 be the domain of shares. Let Shr :
D → Dn

1 be a randomized sharing algorithm, and Rec : Dk
1 → D be a reconstruction algorithm.

Let k1 and k2 be positive integers such that k2 > k1. A (k1, k2, n)-ramp scheme is a pair
of algorithms (Shr,Rec) that satisfies these two properties:

• Reconstruction. For all s ∈ D, if Shr(s) → (s1, s2, , sn) then

Rec(si1 , si2 , , sik) = s,

for all {i1, i2, , ik} ⊆ {1, 2, , n} where k ≥ k2.

• Secrecy. For any two secrets a, b ∈ D, any index set I = {i1, i2, , ik} ⊆ {1, 2, , n} and any
possible vector of shares v = (v1, v2, , vk) ∈ Dk

1 , such that k ≤ k1,

Pr[v = Shr(a)|I ] = Pr[v = Shr(b)|I ],

where Pr denotes the probability on randomness of the sharing algorithm.

Note that a (t, n)- threshold secret sharing scheme is a (t− 1, t, n)- ramp scheme.
Now, let l1, l2 and m be positive integers such that m ≥ l2 > l1. We can always construct

a (l1, l2,m)-ramp scheme using the following construction, where the construction takes place
over a finite field FQ of order Q ≥ m+ 1 [5]:

1. In the Initialization Phase, the dealer, denoted by P , chooses n distinct, non-zero
elements of FQ, denoted xi, where 1 ≤ i ≤ m. The values xi are public for 1 ≤ i ≤ m.

2. Let l = l2 − l1. In the Share Distribution phase, P chooses a secret

s = (a0, a1, ..., al−1) ∈ Fl
Q.

Then define Shr : Fl
Q → Fn

Q as Shr(s) → (a(x1), a(x2), ..., a(xm)), where a(x) =

l2−1∑
j=0

ajx
j

and Fl1
Q → (al, al+1, ..., al2−1). In other words, P secretly chooses (independently and

uniformly at random) al, al+1..., al2−1 ∈ FQ, then for 1 ≤ i ≤ n, P computes yi = a(xi),

where a(x) =

l2−1∑
j=0

ajx
j , and gives it to Pi, where Pi is the ith party that receive the ith

share of the ramp scheme.
Reconstruction is easily accomplished using the Lagrange interpolation formula. That
is, Rec : Fk

Q → Fl
Q where Rec(yi1 , yi2 , ..., yik) = (c0, c1, ..., cl−1), c0 is the constant and

c1, c2, ..., cl−1 are the coefficients of x, x2, ..., xl−1 of the polynomial
(x−xi2

)(x−xi3
)...(x−xil2

)

(xi1
−xi2

)(xi1
−xi3

)...(xi1
−xil2

)yi1 +
(x−xi1

)(x−xi3
)...(x−xil2

)

(xi2
−xi1

)(xi2
−xi3

)...(xi2
−xil2

)yi2 + ...

+
(x−xi1

)(x−xi2
)...(x−xil2

−1)

(xil2
−xi1

)(xil2
−xi2

)...(xil2
−xil2−1

)yil2 , as k ≥ l2.
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In this study, the size of an object (such as secrets, shares, etc.) is considered as the number
of the object’s FQ components. For example, the size of each share in the ramp scheme is 1 and
the size of the secret in the ramp scheme is k = l2 − l1, this makes the size of the secret in the
threshold scheme 1. We can convert the size of an object as defined above into bit length by
multiplying ⌈log2Q⌉ to the size.

3 Combinatorial Repairability for Threshold Scheme
The problem of share repairability is that a certain party Pl in a secret sharing scheme loses its
share. The goal is to find a secure protocol involving Pl and a subset of the other parties that
allows the missing share xl to be reconstructed [5].

We consider protocols that operate in two phases:

1. In the message exchange phase, a d-subset of parties other than Pl exchange messages
among themselves.

2. In the repairing phase, these same d parties each send a message to Pl. The messages
received by Pl allow Pl’s share to be reconstructed. We consider protocols that appoint
the same number of parties to help reconstruct each party’s share, that is, d is constant
for any Pl. We call this constant d the repairing degree of the protocol.

The protocol above is called the repairability protocol. This study only focuses on the
repairability protocols for threshold secret sharing schemes.

In a (t, n)- threshold scheme, a repairability protocol is said to be secure if any coalition of
t− 1 parties cannot reconstruct the secret with all information they have, including their shares
and all messages they sent or received during the repairability protocol, regardless of how many
time it is executed [5]. We note that d ≥ t is a necessary condition for a secure repairability
protocol with repairing degree to exist for a (t, n)- threshold scheme. Otherwise, if d ≤ t − 1,
then a group of t− 1 parties have enough information to reconstruct another share, making this
t− 1 parties hold t shares and can obtain the secret which is a contradiction to the condition of
threshold schemes.

If a (t, n)- threshold scheme has a repairability protocol with d repairing degree that satisfies
the above security requirement, then we say that it is a (t, n, d)- repairable threshold scheme
((t, n, d)-RTS) [5].

We say that a (t, n, d)-RTS has universal repairability if any subset of d parties can repair
Pl’s share.

Some parameters can be used to determine the efficiency of an RTS, first is the information
rate. It is the ratio of the size of the secret to the maximum size of a share [5]. The high
information rate means that we can share a large-size secret with small-size shares, and the
small-size shares make it easier for the dealer to send them to parties or for a party to send
them to another party. Hence, the higher the information rate of a secret sharing scheme, the
better. According to [5], the information rate of a threshold scheme is always less than or equal
to 1.

The next parameter is the communication complexity. The communication complexity
of a repairability protocol is the sum of the sizes of all messages transmitted during the protocol
divided by the size of the secret [5]. High communication complexity means that there are a lot
of shares (or shares of large size) transmitted during the protocol, making the execution of the
protocol inefficient. So the lower the communication complexity of a repairability protocol, the
better.

The last parameter is the repairability index. The repairability index, denoted by κ, of
a (t, n, d)-RTS is the ratio of the number of d-subsets of n − 1 parties excluding Pl that can
repair Pl’s share to the number of all possible d-subsets of n− 1 parties besides Pl, considering
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conditions of the repairability protocol. If the repairability index is high, it means that a party
can rely on many groups of d parties to repair their share, so the higher the reliability index of
an RTS, the better.

The repairability index was first defined in [6] by Laing and Stinson with a slightly different
name. There, it is called the repairability and also denoted by κ. However, we decided to change
the name of the parameter to repairability index to avoid confusion with the share repairability
which is what we call the initial problem.

In [5], Stinson and Wei constructed a (t, n, t)- RTS with universal repairability with the
information rate 1 using Shamir’s secret sharing scheme. But the communication complexity
is t2 which is quite high. They showed in [5] that there are RTS’s with lower communication
complexity, although we have to trade off the universal repairability and high information rate.
These schemes can be constructed with the help of combinatorial designs, with the following
definition as a key.

Definition 3.1. Let l1 and l2 be positive integers such that l2−l1 ≥ 1. A (t, l1, l2)- distribution
design is a design that satisfies the following two properties [5]:

1. The union of any t blocks contains at least l2 elements.
2. The union of any t− 1 blocks contains at most l1 elements.

Let t, d, n, l1, l2 and m be positive integers such that d ≤ t ≤ n, m ≥ l2 > l1 and m ≥ n.
With a (t, l1, l2)- distribution design and an (l1, l2,m)- ramp scheme, we can construct a (t, n, d)-
RTS using the following process [5]:

1. Consider a (t, l1, l2)- distribution design with each block of size d and the support set of
size m such that there are n blocks of the design that contain all of the treatments, with
each treatment appears in at least two of these blocks. We start with an (l1, l2,m)- ramp
scheme called the “base scheme”, the shares of this scheme are called “subshares”.

2. We label each of the m subshares with a treatment of the (t, l1, l2)- distribution design so
that two distinct subshares are labeled as two different treatments of the design. Then
assign d subshares to each of the n parties we want in the result RTS in a way that each
party holds subshares that are labeled by d treatments that contain in the same block in
the (t, l1, l2)- distribution design. If a party Pi holds subshares labeled by treatments from
block Bj , we say that Pi represents block Bj . We must assign subshares to the n parties
in such a way that two distinct parties represent two different blocks and the n blocks of
the distribution design that the n parties represent must have each treatment appear in
at least two of these blocks. The design used in this construction is public information,
that is, every party knows what design was used to distribute subshares and which block
each party represents but each party only knows the subshares it holds itself.

3. Suppose that we want to repair the share of Pl that represent block Bl of the (t, l1, l2)-
distribution design. For each treatment x ∈ Bl, since each treatment occurs in at least 2
blocks out of the n blocks represented by the n parties, we can find another party that
represents a block containing x. That party can send the subshare labeled x to Pl whose
share is being repaired. Since each party holds d subshares, we can assign d parties to
help reconstruct Pl’s share. So the result scheme has the repairing degree d. Since each
party represents a block in the (t, l1, l2)- distribution design, we know that t parties hold
at least l2 subshares in total and t−1 parties hold at most l1 subshares in total. Using the
same secret as in the (l1, l2,m)- ramp scheme, since each subshare is a share of a (l1, l2,m)-
ramp scheme and a group of t or more parties hold at least l2 subshares in total, we know
that any group of more than or equal to t parties can reconstruct the secret. Furthermore,
since a group of less than or equal to t − 1 parties holds at most l1 subshares, any group
of less than or equal to t− 1 parties has no information about the secret. Thus, the result
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is a (t, n, d)- RTS where each party has a share that contains d subshares and the shared
secret is the same secret we share in the base scheme.

Note that the d subshares sent to Pl do not need to be from d different parties as a party
may hold more than one common subshare with Pl. In this case, it is possible to have that party
send two subshares and add another party that does not have to send its subshare so that the
group that helps reconstruct Pl’s share is still a group of d parties. However, in our result, we
will have each party send exactly one subshare to Pl since we want to distribute the work equally
between all the parties. Whether we can do this depends on the design used as a distribution
design in the above construction. We will see in Section 4 that we can always choose d blocks
in our results that can repair a share this way. It is obvious that the distribution designs that
Stinson and Wei used in their work in [5] and distribution designs that Kacsmar and Stinson
used in [2] also give results RTS’s that allow Pl’s share to be reconstructed by having each party
send exactly one subshare to Pl. So, in this study, when we count the d-sets of parties that can
repair the share of a party when computing the repairability index of RTS’s constructed by this
construction, we count only the set of d parties that can repair the share by having each of them
send exactly one subshare.

The property that every treatment occurs in at least 2 out of n blocks in the (t, l1, l2)- dis-
tribution design used for the reconstruction of shares is a necessary and sufficient condition for
this kind of repairability to be possible. Therefore, if this property is satisfied, we say that the
distribution design is repairable. An RTS with the repairability protocol constructed by the
previous construction is called a combinatorial repairable threshold scheme (combina-
torial RTS) by Kacsmar and Stinson in [2].

Since we can always construct a (l1, l2,m)- ramp scheme over FQ using the construction in
Subsection 2.3 when Q ≥ m + 1, if we can find a repairable (t, l1, l2)- distribution design, then
we can construct a (t, n, d)- RTS using the construction above as stated in the following theorem
by Stinson and Wei [5].

Theorem 3.2 (Theorem 4.1 of [5]). Suppose that there exists a repairable (t, l1, l2)- distribution
design on m treatments, having n blocks of size d, and suppose that Q ≥ m+ 1. Then, there is
a (t, n, d)- RTS having information rate l2−l1

d and communication complexity d
l2−l1

, where every
share is in Fd

Q as FQ is a finite field of order Q.

The following theorems show us some combinatorial designs that can be considered as a
distribution design, and so can be used to construct an RTS according to [5].

Theorem 3.3 (Theorem 5.1 of [5]). Suppose that m ≡ 3 (mod 6), Q is a prime power such that
Q ≥ m+1 and 2m

3 ≤ n ≤ m(m−1)
6 . Then there exists a (2, n, 3)- RTS with restricted repairability,

with shares from F3
Q, having information rate 2

3 and communication complexity 3
2 .

Theorem 3.4 (Theorem 5.2 of [5]). Suppose that m ≡ 4 (mod 12), Q is a prime power such that
Q ≥ m+1 and m

2 ≤ n ≤ m(m−1)
12 . Then there exists a (2, n, 4)- RTS with restricted repairability,

with shares from F4
Q, having information rate 3

4 and communication complexity 4
3 .

Theorem 3.5 (Theorem 5.3 of [5]). Suppose that m ≡ 5 (mod 20) and there exists a resolvable
(m, 5, 1)-BIBD. Let Q be a prime power such that Q ≥ m+1 and 2m

5 ≤ n ≤ m(m−1)
20 . Then, the

following RTS exists:

1. A (2, n, 5)- RTS with restricted repairability, with shares from F5
Q, having information rate

4
5 and communication complexity 5

4 .

2. A (3, n, 5)- RTS with restricted repairability, with shares from F5
Q, having information rate

2
5 and communication complexity 5

2 .
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Theorem 3.6 (Theorem 5.4 of [5]). Suppose that m ≡ 8 (mod 56) and there exists a resolvable
(m, 8, 1)-BIBD. Let Q be a prime power such that Q ≥ m+ 1 and m

4 ≤ n ≤ m(m−1)
56 . Then, the

following RTS exists:

1. A (2, n, 8)- RTS with restricted repairability, with shares from F8
Q, having information rate

7
8 and communication complexity 8

7 .

2. A (3, n, 8)- RTS with restricted repairability, with shares from F8
Q, having information rate

5
8 and communication complexity 8

5 .

3. A (4, n, 8)- RTS with restricted repairability, with shares from F8
Q, having information rate

1
4 and communication complexity 4.

Aside from these schemes, we also get other schemes from 3− (m, 4, 1)-designs as follows.

Theorem 3.7 (Theorem 1.9 & 3.1 of [2]). Suppose that m ≡ 2, 4 (mod 6) and Q is a prime
power such that q ≥ m+ 1. Then we can construct a (2, n, 4)- RTS with restricted repairability,
with shares from F4

Q from a 3− (m, 4, 1)− design.

This theorem can be generalized using τ − (m, d, 1)− designs as in the next theorem.

Theorem 3.8 (Theorem 3.3 of [2]). Suppose that τ − (m, d, 1)− designs exist and Q is a prime
power such that q ≥ m+ 1. Then there exists a (t, n, d)- RTS with restricted repairability, with
shares from Fd

Q, where t, d, τ ∈ N t ≥ 2, τ ≥ 3, n =
(m
τ
)

(d
τ
)

and d ≥
(
t
2

)
(τ − 1) + 1.

Unlike the schemes in [5], Kacsmar and Stinson use a threshold scheme as the base scheme
for the construction of the previous two schemes, so the size of the secret is only 1. Thus,
the information rate and communication complexity of the scheme in Theorem 3.7 is 1

4 and 4
respectively. Similarly, the information rate and communication complexity of the scheme in
Theorem 3.8 are 1

d and d respectively.
Returning to the repairability index of combinatorial repairable threshold schemes, the def-

inition Laing and Stinson gave us in [6] concerns only the case when the number of parties is
equal to the number of all blocks in the distribution designs. For example, in theorem 1.3.2
where 2m

3 ≤ n ≤ m(m−1)
6 , we will calculate the repairability index of the scheme in the case that

n = m(m−1)
6 . We have the following theorem from [6] that helps us calculate the repairability

index of a combinatorial RTS.

Theorem 3.9 (Theorem 4.4 of [6]). A randomly chosen subset of d parties in a (t, n, d)- RTS,
constructed using an underlying (m, d, 1)- BIBD with n = b parties, has probability

κ =
(r − 1)d(

n−1
d

)
of successfully repairing the share of a party Pl, where r is the replication number of the BIBD
as defined in Subsection 2.2.

Table 1 shows us the parameters of all the schemes in this section. Note that, since a pair of
treatments can occur together in various blocks, the number of d-subset that can repair a party’s
share when using a τ − (m, d, 1)-design as distribution design is up to the blocks in the design
and thus, is very complicated to find in general cases. So the columns “repairability index” of
Scheme (6) and (7) are marked with a hyphen.
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Table 1: Parameters of the existing schemes

Design/Method used Result Information rate Communication
complexity Rapairability index

(1) STS(m) (Thm.3.3)
(Stinson and Wei [5])

(2, n, 3)-RTS with
shares from F3

Q

2
3

3
2

(m−3)3

8(
m(m−1)

6 −1

3
)

(2) (m, 4, 1)-BIBD
(Thm.3.4)

(Stinson & Wei [5])

(2, n, 4)-RTS with
shares from F4

Q

3
4

4
3

(m−4)4

81(
m(m−1)

12 −1

4
)

(3) (m, 5, 1)-BIBD
(Thm.3.5)

(Stinson & Wei [5])

(2, n, 5)-RTS with
shares from F5

Q

4
5

5
4

(m−5)5

45(
m(m−1)

20 −1

5
)

(3, n, 5)-RTS with
shares from F5

Q

2
5

5
2

(4) (m, 8, 1)-BIBD
(Thm.3.6)

(Stinson & Wei [5])

(2, n, 8)-RTS with
shares from F8

Q

7
8

8
7 (m−8)8

78(
m(m−1)

56 −1

8
)

(3, n, 8)-RTS with
shares from F8

Q

5
8

8
5

(4, n, 8)-RTS with
shares from F8

Q

1
4

4

(5) Shamir’s secret
sharing scheme

(Stinson & Wei [5])

(t, n, t)-RTS with
shares from FQ

having universal
repairability

1 d2 1

(6) 3− (m, 4, 1)- design
(Thm.3.7)

(Kacsmar & Stinson [2])

(2, n, 4)-RTS with
shares from F4

Q

1
4

4 -

(7) τ − (m, d, 1)- design
(Thm (3.8)

(Kacsmar & Stinson [2])

(t, n, d)-RTS with
shares from Fd

Q

1
d

d -

4 Main Results

This section contains the structure, conditions, and construction of new schemes obtained during
this study. The designs used for the construction and parameters of those schemes are gathered
in Table 2, we will cover the details of each scheme, including the conditions and constructions,
in Subsection 4.1 - 4.4. There are two main parts in the construction of these schemes, first,
we need to verify that the design we want to use is a distribution design, then we use Theorem
3.2 and the process in Subsection 3 to construct the scheme and find its parameters. We then
compare the scheme with those in Table 1 at the end of each subsection.

The parameter l in Table 2 is an integer greater than or equal to 4. Unlike in Scheme (b),
l is not the repairing degree of the result RTS, instead, in the final result, we obtain d = 2l − 1
and n = d+ 1 = 2l.

Note that, though it is not shown in Table 2, the parameter n of Scheme (a) depends on the
parameter d as will be explained in Subsection 4.1. Additionally, the parameter n of Scheme
(d) also depends on d as well as the parameter λ. We will discuss the relation between these
parameters of Scheme (d) in Subsection 4.4.
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Table 2: Parameters of newly constructed schemes

Design used Result Information
rate

Communication
complexity Repairability index

(a) Affine plane
(AG(2, d))

(t, n, d)-RTS with
shares from Fd

Q

1− t(t−1)
2d

2d
2d−t(t−1)

dd

(d2+d−1
d )

(b) Room square of
side r = 2d− 1 (Ver.1)

(t, 4d− 2, d)-RTS
with shares from Fd

Q

1− 1
d
⌈ t
2
⌉⌊ t

2
⌋ d

d−⌈ t
2
⌉⌊ t

2
⌋

1

(4d−3
d )

(c) Room square of
side r = 2l − 1 (Ver.2)

(t, d+ 1, d)-RTS
with shares from

Fn−1
Q

d+1
2d

2d
d+1

1

(d) (n, d, λ)- SBIBD
(d1) (2, n, d)-RTS

with shares from Fd
Q

(d1) 1− λ
d

(d1) d
d−λ (d−1)d

(n−1
d )

, when λ = 1

(d2) (3, n, d)-RTS
with shares from Fd

Q

(d2) 1− 2λ
d

(d2) d
d−2λ

4.1 Scheme (a), Constructed by an Affine Plane
Scheme (a) in Table 2 is constructed by an affine plane of order d. As stated in Subsection 2.2, if
d is a prime power, then an AG(2, d) exists. However, there may be some affine plane of order d
when d is not a prime power. The construction in this subsection works with those affine planes
as well.

First, we need to verify AG(2, d) as a distribution design. This will be done in the following
lemma.
Lemma 4.1. Suppose that d is a prime power and t is a positive integer such that t(t−1) < 2d.
Let D be a design where the support set is the set of points of an AG(2, d) and the block set is
the set of lines in the same AG(2, d), then D is a (t, d(t− 1), dt−

(
t
2

)
) - distribution design over

the support set of size d2

Proof. Since d is a prime power, we know that an affine plane of order d exists. Denote t blocks
of D by L1, L2, ..., Lt.

We know by Theorem 2.14 that there are d2 points and d2 + d lines in AG(2, d). So D has
the support set of size d2. Furthermore, since each line of an AG(2, d) contains exactly d points
and lines in the same parallel class do not intersect each other (thus contain the most points),

we have
∣∣∣∣t−1⋃
i=1

Li

∣∣∣∣ ≤ d(t− 1).

Note that
∣∣∣∣ t⋃
i=1

Li

∣∣∣∣ is the smallest when there are the most intersecting points. So
∣∣∣∣ t⋃
i=1

Li

∣∣∣∣ is

the smallest when Li intersects Lj for all i, j = 1, 2, ..., t such that i ̸= j.
Since 1 line of an AG(2, d) contains d points, any 2 lines intersect at most 1 point and there

are
(
t
2

)
ways to pair any 2 of t lines, we have

∣∣∣∣ t⋃
i=1

Li

∣∣∣∣ ≥ dt−
(
t
2

)
.

Since t(t− 1) < 2d, we get that d(t− 1) < dt−
(
t
2

)
.

Thus, D is a (t, d(t− 1), dt−
(
t
2

)
) - distribution design over the support set of size d2.

Now, using Lemma 4.1, we can obtain Scheme (a) as in Theorem 4.2.
Theorem 4.2. Suppose that d is a prime power, Q is a prime power such that Q ≥ d2 +1, and
t is a positive integer such that t(t − 1) < 2d, then there exists an (t, n, d) - RTS with shares
from Fd

Q that has restricted repairability, where n is an integer such that 2d ≤ n ≤ d2 + d.
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Proof. Let D be the same design as in Lemma 4.1. Then we know that D is a (t, d(t−1), dt−
(
t
2

)
)

- distribution design over the support set of size d2.
Since lines of AG(2, d) can be partitioned into parallel classes of size d (each line contains

exactly d points) where lines in each class do not intersect each other and there are exactly d2

points in an AG(2, d), each parallel class contains all the points of AG(2, d).
Thus, each treatment occurs in exactly 2 blocks of 2d blocks from 2 parallel classes of D. So

D is repairable and we can accommodate any number of n parties such that 2d ≤ n ≤ d2 + d.
By Theorem 3.2, since D is a (t, d(t − 1), dt −

(
t
2

)
) - distribution design and is repairable with

blocks of size d, we can use D and a (d(t − 1), dt −
(
t
2

)
, d2) - ramp scheme defined over FQ to

construct a (t, n, d) - RTS with shares from Fd
Q having restricted repairability, information rate

1− t(t−1)
2d and communication complexity 2d

2d−t(t−1) , where 2d ≤ n ≤ d2 + d.
Furthermore, by Theorem 3.9 and Theorem 2.14, we obtain the repairability index of this

scheme which is equal to dd

(d2+d−1
d

)
.

In Table 3, we will compare Scheme (a) to schemes from Table 1 in terms of information
rate, communication complexity, and repairability index for each possible t and d for Scheme
(a), and considering n in the same range or value of each comparing scheme.

From now on, in this subsection and all the following subsections, if we write (i) < (j), it
means that the parameter of that cell in the Scheme (i) is less than the same parameter in the
Scheme (j), same goes for (i) = (j), (i) > (j), (i) ≤ (j), etc. Also, if a cell is colored green,
it means that our scheme gives better results than the comparing scheme from Table 1. If a
cell is colored red, it means that the scheme from Table 1 gives better results. And if a cell is
white, it means that the parameter of our scheme is equal to the parameter of the scheme from
Table 1. Note that, since Scheme (6) and (7) have no comparable repairability index, the cells
of tables that compare the repairability index of schemes from Table 2 with Scheme (6) and (7)
are marked with a hyphen just like in Table 1.

As we observe from Table 3, Scheme (a)’s parameters, including information rate, commu-
nication complexity, and repairability index, are mostly better than or equal to parameters
of schemes from Table 1, except Scheme (7)’s information rate and communication complex-
ity which are better than Scheme (a) in some cases and Scheme (5)’s information rate and
repairability index which has the greatest possible value. However, the communication com-
plexity of Scheme (a) is smaller compared to Scheme (5) just as we hoped. Scheme (a) is also
more flexible than Scheme (1) - (4) in terms of t and d, but Scheme (1) - (4) are more flexible in
terms of n. Note that there is always an m for each of Scheme (1) - (4) that makes Scheme (a)’s
information rate, communication complexity, and repairability index equal to the parameters of
that scheme.
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Table 3: Comparison of Scheme (a) to schemes in Table 1

Threshold
and

Repairing
degree

Scheme (a)’s
parameters

Comparing
scheme

Parameters of the
comparing

scheme
corresponding to

(a)

Information rate
comparison

Communication
complexity
comparison

κ com-
parison

t = 2,
d = 2

4 ≤ n ≤ 6 (5) 4 ≤ n ≤ 6 (5) > (a) (5) > (a) (5) ≥ (a)

t = 2,
d = 3

6 ≤ n ≤ 12 (1)
m = 9,

(6 ≤ n ≤ 12) (1) = (a) (1) = (a)
(1) = (a)

m = 15,
(10 ≤ n ≤ 35)

(1) < (a)

(7) τ = 3, m = 5,
n = 10

(7) < (a) (7) > (a) -

t = 2,
d = 4

8 ≤ n ≤ 20

(2)

m = 16,
(8 ≤ n ≤ 20)

(2) = (a) (2) = (a)

(2) = (a)

m = 28,
(14 ≤ n ≤ 63)

(2) < (a)

m = 40,
(20 ≤ n ≤ 130)

(2) < (a)

(6) m = 8, n = 14 (6) < (a) (6) > (a) -

t = 2
or 3,
d = 5

10 ≤ n ≤ 30

(3)

m = 25,
(10 ≤ n ≤ 30)

(3) = (a) (3) = (a)

(3) = (a)

m = 45,
(18 ≤ n ≤ 99)

(3) < (a)

m = 65,
(26 ≤ n ≤ 208)

(3) < (a)

(7) τ = 5, m = 7,
n = 21

(7) < (a) (7) > (a) -

t = 2, 3
or 4,
d = 8

16 ≤ n ≤ 72

(4)

m = 64,
(16 ≤ n ≤ 72)

(4) = (a) (4) = (a)

(4) = (a)

m = 120,
(30 ≤ n ≤ 255)

(4) < (a)

m = 176,
(44 ≤ n ≤ 550)

(4) < (a)

m = 232,
(58 ≤ n ≤ 957)

(4) < (a)

m = 288,
(72 ≤ n ≤ 1476)

(4) < (a)

(7) τ = 8, m = 10,
n = 45

(7) < (a) (7) > (a) -

Other t,d
satisfying

(a)’s
conditions

2d ≤ n ≤ d2 + d

(7)

2d ≤ n =
(m
τ
)

(d
τ
)

≤ d2 + d, as m, τ
satisfying
conditions of
Scheme (7)

(7) < (a) when
2(d− 1) > t(t− 1)

(7) > (a) when
2d− t(t− 1) > 2

-
(7) = (a) when

2(d− 1) = t(t− 1)
(7) = (a) when

2d− t(t− 1) = 2

(7) > (a) when
2(d− 1) < t(t− 1)

(7) < (a) when
2d− t(t− 1) < 2
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4.2 Scheme (b), Constructed by a Room Square of Order r (Version 1)
We use a Room square to construct both Scheme (b) and (c), but the parameters of the Room
square in this subsection and in Subsection 4.3 are slightly different. In this subsection, when
we say a Room square of order r, we define r = 2d − 1 as d is the repairable degree of the
final scheme. Furthermore, the designs used in this subsection and Subsection 4.3, although
both used a Room square to construct, are different. These are the reasons we label the two
constructions “Version 1” and “Version 2” with the construction in this subsection being Version
1. We define the design used in this subsection, as well as the proof that it is a distribution
design, in Lemma 4.3.

Lemma 4.3. Let t and d be positive integers where d ≥ 4 and ⌊ t
2⌋⌈

t
2⌉ < d, R be a Room square

of side r = 2d− 1 and D be a design over the support set S and the block set β, where S is the
set of all possible unordered pairs of elements from {1, 2, ..., 2d− 1}∪ {∞} and β = A∪B where
A = {{xy : xy ∈ S and xy contains in the ith row of R} : 1 ≤ i ≤ 2d− 1}, and
B = {{xy : xy ∈ S and xy contains in the jth column of R} : 1 ≤ j ≤ 2d− 1}.

Then D is a (t, d(t− 1), dt− ⌊ t
2⌋⌈

t
2⌉) - distribution design.

Proof. Since d ≥ 4, By Theorem 2.18 we know that a Room square of side r = 2d− 1 exists.
Since there are d nonempty cells in each row and each column of a Room square, we know

that the union of any t− 1 blocks of D contains at most d(t− 1) treatments.
Since blocks from A do not intersect one another and blocks from B do not intersect one

another, we know that the union of t blocks from D contains the least treatments when some
blocks are from A and some are from B. Note that a block from A and a block from B have at
most 1 common treatment.

So, if a blocks are from A and b blocks are from B, where a+ b = t, we know that there are
at most ab treatments that belong to 2 blocks.

Let k ∈ N, if t is even, then ⌊ t
2⌋⌈

t
2⌉ =

(
t
2

) (
t
2

)
= t2

4 and
(
⌊ t
2⌋+ k

) (
⌈ t
2⌉ − k

)
=

(
t
2 + k

) (
t
2 − k

)
=

t2

4 − k2. Thus, ab is the largest when a = ⌊ t
2⌋ and b = ⌈ t

2⌉ (or vice versa).
Similarly, if t is odd, then we have ⌊ t

2⌋⌈
t
2⌉ =

(
t−1
2

) (
t+1
2

)
= t2−1

4 ,
(
⌊ t
2⌋ − k

) (
⌈ t
2⌉+ k

)
=

t2−1
4 − k − k2 and

(
⌊ t
2⌋+ k

) (
⌈ t
2⌉ − k

)
= t2−1

4 − k − k2. So ab is the largest when a = ⌊ t
2⌋ and

b = ⌈ t
2⌉ (or vice versa).

Thus, the union of t blocks contains at least dt − ⌊ t
2⌋⌈

t
2⌉ treatments. So we can conclude

that D is a (t, d(t− 1), dt− ⌊ t
2⌋⌈

t
2⌉) - distribution design.

With the distribution design from Lemma 4.3, we obtain an RTS as in the following theorem.

Theorem 4.4. Let t and d be positive integers where d ≥ 4 and ⌊ t
2⌋⌈

t
2⌉ < d, Q is a prime power

such that Q ≥ d2 − d+1. Then there exists an (t, 4d− 2, d) - RTS with shares from Fd
Q that has

restricted repairability.

Proof. Let D be the same design as in Lemma 4.3. Then we know that D is a (t, d(t− 1), dt−
⌊ t
2⌋⌈

t
2⌉) - distribution design.

Note that there are r + r = 4d− 2 blocks in β, each block of size d. Note also that the size
of the support set S of D is

(
2d
2

)
= 2d2 − 1.

By the definition of Room squares, we know that each treatment in S occurs in exactly 2
blocks, one from A and one from B. Thus, D is repairable.

By Theorem 3.2, since D is a (t, d(t− 1), dt−⌊ t
2⌋⌈

t
2⌉) - distribution design and is repairable

with 4d−2 blocks of size d, we can use D and a (d(t−1), dt−⌊ t
2⌋⌈

t
2⌉, 2d

2−2) - ramp scheme to
construct a (t, 4d− 2, d) - RTS with shares from Fd

Q having restricted repairability, information
rate d−⌊ t

2
⌋⌈ t

2
⌉

d and communication complexity d
d−⌊ t

2
⌋⌈ t

2
⌉ .

We also obtain that the repairability index of this scheme is 1

(4d−3
d
)
.
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Just like in the previous subsection, we now compare Scheme (b) with schemes from Table
1 for each possible t and d for Scheme (b), then consider n that has the same value for both
schemes, where the color code has the same meaning as in the previous section. Table 4 is the
said comparison.

Table 4: Comparison of Scheme (b) to schemes in Table 1

Threshold
and

Repairing
degree

Scheme
(b)’s pa-
rameters

Comparing
scheme

Parameters of the
comparing scheme

corresponding to (b)

Information rate
comparison

Communication
complexity
comparison

κ com-
parison

t = 2,
d = 4

n = 14 (2) m = 16, (8 ≤ n ≤ 20) or
m = 28, (14 ≤ n ≤ 63)

(2) = (b) (2) = (b) (2) > (b)

(6) m = 8, n = 14 (6) < (b) (6) > (b) -

t = 2
or 3,
d = 5

n = 18 (3)
m = 25, (10 ≤ n ≤ 30)

or
m = 45, (18 ≤ n ≤ 99)

(3) = (b)
when t = 2

(3) = (b)
when t = 2 (3) > (b)

(3) < (b)
when t = 3

(3) > (b)
when t = 3

t = 2,3
or 4,
d = 8

n = 30 (4)
m = 64, (16 ≤ n ≤ 72)

or
m = 120, (30 ≤ n ≤ 255)

(4) = (b)
when t = 2

(4) = (b)
when t = 2 (3) > (b)

(4) < (b)
when t = 3, 4

(4) > (b)
when t = 3, 4

Other t, d

satisfying
Scheme

(b)’s
conditions

n = 4d− 2

(7)

n =
(mτ )
(dτ)

= 4d− 2, as
m, τ satisfying

conditions of Scheme (7)

(7) < (b) when
1
d

(
1 + ⌈ t

2⌉⌊
t
2⌋
)
< 1

(7) > (b) when
d− ⌈ t

2⌉⌊
t
2⌋ > 1

-
(7) = (b) when

1
d

(
1 + ⌈ t

2⌉⌊
t
2⌋
)
= 1

(7) = (b) when
d− ⌈ t

2⌉⌊
t
2⌋ = 1

(7) > (b) when
1
d

(
1 + ⌈ t

2⌉⌊
t
2⌋
)
> 1

(7) < (b) when
d− ⌈ t

2⌉⌊
t
2⌋ < 1

Similar to Scheme (a), Scheme (b)’s information rate and communication complexity are
mostly better than or equal to schemes from Table 1 except Scheme (7) in some cases. It is
noteworthy that those two parameters of Scheme (b) are better than most of those from Table
1 when t > 2. Scheme (b)’s repairability index, however, is less than all of the schemes since we
need very specific d parties to reconstruct a lost share.

4.3 Scheme (c), Constructed by a Room Square of Order r (Version.2)

As mentioned in Section 4.2, we also use a Room square to construct Scheme (c), but in a
different way than Scheme (b). For starter, we define the order of a Room square r to be 2l− 1
in this section, where l is an integer that is greater or equal to 4 while the repairing degree of
this scheme is n − 1 where n = 2l. Furthermore, the design we use in this section is different
than the one in Section 4.2, the design is defined as follows.

Let t, l ∈ N where l ≥ 4 and 2 ≤ t ≤ 2l−1 and let Q be a prime power such that Q ≥ 2l2−l+1.
Since l ≥ 4, we know by Theorem 2.18 that the Room square of side r = 2l − 1 exists.

Let R be a Room square of side r = 2l − 1 over the set {1, 2, ..., 2l − 1} ∪ {∞}.
Let D be a design over the support set S and the block set β, where S is the set of positions

of non-empty cells in R and β is the set of subsets of S that contains i, for each i ∈ {1, 2, ..., 2l−
1} ∪ {∞}.

Example : Consider a Room square of r = 7 as follows
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We have S = {(1, 1), (1, 5), (1, 6), (1, 7)..., (7, 2), (7, 3), (7, 5), (7, 7)}. And
β = {{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)}, {(1, 1), (2, 3), (3, 4), (4, 2), (5, 6), (6, 7), (7, 5)},
..., {(1, 6), (2, 3), (3, 5), (4, 1), (5, 2), (6, 4), (7, 7)}} as (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) and (7, 7)
are positions of cells that contain ∞, (1, 1), (2, 3), (3, 4), (4, 2), (5, 6), (6, 7) and (7, 5) are positions
of cells that contain 1, and so on.

Note that |S| = lr = 2l2 − l, |β| = 2l and each block is of size r = 2l − 1. We verify D as a
distribution design and use it to construct an RTS in Theorem 4.5.

Theorem 4.5. There exist an (t, n, n − 1)−RTS with shares from Fn−1
Q that has restricted

repairability, where n = 2l.

Proof. Since R contains every unordered pair of elements of {1, 2, ..., 2l−1}∪{∞} exactly once,
we know that every pair of blocks in β has exactly one common treatment. So the union of
t blocks contains at least tl −

(
t
2

)
treatments and the union of t − 1 blocks contains at most

(t− 1)l −
(
t
2

)
treatments.

That is D is a (t, (t− 1)l −
(
t
2

)
, tl −

(
t
2

)
)−distribution design.

Since each non-empty cell of a Room square contains 2 elements of {1, 2, ..., 2l − 1} ∪ {∞},
we know that each treatment occurs in exactly 2 blocks of D. Thus, D is repairable.

Let the base scheme be a ((t − 1)l −
(
t
2

)
, tl −

(
t
2

)
, 2l2 − l)−ramp scheme and n = 2l, then,

by Theorem 3.2 and since D is repairable with 2l blocks of size 2l − 1 = n − 1, we can use
D to construct a (t, n, n − 1)−RTS with information rate l

2l−1 = n
2(n−1) and communication

complexity 2l−1
l = 2(n−1)

n .
Note that, since this scheme uses all the other parties to repair a lost share, it trivially has

universal repairability and so κ of this scheme is 1.

As we mentioned in Section 3, in each scheme and for each party Pl that lost a share, we
want d parties that repair the share to be able to do so by sending exactly one share per party to
Pl. We claimed in Section 3 that our results can do so and now that we know the construction
of Scheme (a), (b), and (c), it is time we prove that claim. Note that the only case where this
way of repairing a share cannot be done is when there exist subshares x1 and x2 of Pl such that
x1 and x2 are held by another party Pk and no other party besides Pl and Pk has x1 or x2.
However, this case cannot happen in Scheme (a), (b), and (c) since, in the distribution design
used for these schemes, each pair of treatments can be together in only one block, i.e. x1 and
x2 can be together only in Pl so they have to be held by two different parties, not including Pl.
Thus, in Scheme (a), (b), and (c), there are d parties that can repair the share of Pl in the way
we want.

Just as before, we now compare Scheme (c) with schemes in Table 1 for each possible t and
d for Scheme (c). Note that, since l ≥ 4 and n = 2l in Scheme (c), we get that d = n− 1 must
be an odd number and d ≥ 7.
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Table 5: Comparison of Scheme (c) to schemes in Table 1

Threshold
and

Repairing
degree

Comparing
scheme

Parameters of the
comparing scheme
corresponding to

(c)

Information
rate

comparison

Communication
complexity
comparison

κ
comparison

d is an
odd

number
such that
d ≥ 7 and

t = d

(5) d+ 1 ∈ N (5) > (c) (5) > (c) (5) = (c)

d is an
odd

number
such that
d ≥ 7 and

t < d

(7) n = d+ 1 =
(mτ )
(dτ)

,
as m, τ satisfying

conditions of
Scheme (7)

(7) < (c) (7) > (c) (7) ≤ (c)

We can see from Table 5 that Scheme (c)’s parameters, including information rate, com-
munication complexity, and repairability index, are better than the parameters of Scheme (5)
and (7), except Scheme (5)’s information rate which is more than (c), again, this is not very
surprising since the information rate of Scheme (5) has the highest possible value.

4.4 Scheme (d), Constructed by a Symmetric Balanced Incomplete Block
Design (SBIBD)

We obtain Scheme (d) from an (n, d, λ)-SBIBD with Theorem 2.8 playing an important part
in the proof. Scheme (d) consists of Scheme (d1) and (d2), as an SBIBD can be both a
(2, d, 2d − λ)−distribution design and, with an additional condition, can also be a (3, 2d −
λ, 3d− 3λ)−distribution design as shown in Lemma 4.6.
Lemma 4.6. Let n, d, λ ∈ N where d ≥ 2, 0 < λ < d. Suppose that an (n, d, λ)−SBIBD exists,
then we obtain the following facts :

1. An (n, d, λ)−SBIBD is a (2, d, 2d− λ)−distribution design.
2. If d > 2λ, then an (n, d, λ)−SBIBD is a (3, 2d− λ, 3d− 3λ)−distribution design.

Proof. 1. Since the intersection of any 2 distinct blocks of an (n, d, λ)−SBIBD contains exactly
λ treatments by Theorem 2.8, we know that the union of 2 blocks contains at least 2d − λ
treatments while 1 block contains at most d treatments. Since d > λ, we have 2d − λ > d. So
an (n, d, λ)−SBIBD is a (2, d, 2d− λ)−distribution design.

2. Suppose that d > 2λ. Consider the union of 3 arbitrary blocks of an (n, d, λ)−SBIBD.
suppose that the intersection of those 3 blocks contains x treatments, where x ≤ λ. Then, since
the intersection between any 2 blocks contains exactly λ treatments, we know that the union of
those 3 blocks contains 3d− 3λ+ x treatments. Thus, the union of any 3 blocks of D contains
at least 3d− 3λ treatments (which is when x = 0).

Furthermore, by Theorem 2.8, we know that the union of any 2 blocks contains exactly 2d−λ
treatments.

Since d < 2λ, we have 3d − 3λ > 2d − λ. So an (n, d, λ)−SBIBD is a (3, 2d − λ, 3d −
3λ)−distribution design.

We still cannot construct RTS for t > 3 using an SBIBD since Theorem 2.8 only tells us
about the intersection between two blocks. With what we have, we can construct an RTS with
t = 2 and t = 3 as in Theorem 4.7.
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Theorem 4.7. Suppose there exist an (n, d, λ)−SBIBD over the support set S and the block set
β, where n, d, λ ∈ N, d ≥ 2 and 0 < λ < d. Let D be the said SBIBD and Q be a prime power
such that Q ≥ n+ 1. Then

1. There exist a (2, n, d)−RTS with shares from Fd
Q having restricted repairability.

2. If d > 2λ, then there exist a (3, n, d)−RTS with shares from Fd
Q having restricted re-

pairability.

Proof. Since D is an (n, d, λ)−SBIBD over S with the block set β, we know that there are
n treatments in S, there are n total blocks in β and each block in β contains d treatments.
Furthermore, since the repetition number d of D is greater or equal to 2, we know that each
treatment of S is contained in at least 2 blocks of D. Thus, D is repairable.

1. By Lemma 4.6, we know that D is a (2, d, 2d − λ)−distribution design with n blocks of
size d. So, by Theorem 3.2, we can use D and a (d, 2d− λ, n)−ramp scheme defined over FQ to
construct a (2, n, d)−RTS having restricted repairability with information rate d−λ

d = 1− λ
d and

communication complexity d
d−λ .

Furthermore, by Theorem 3.9, we get that the repairability index of this scheme when λ = 1

is (d−1)d

(n−1
d
)

. We denote this scheme we obtained from 1. by (d1).
2. Suppose that d > 2λ, then we know by Lemma 4.6 that D is a Let the base scheme be a a

(3, 2d− λ, 3d− 3λ)−distribution design with n blocks of size d. So, by Theorem 3.2, we can use
D and a (2d− λ, 3d− 3λ, n)−ramp scheme defined over FQ to construct a (3, n, d)−RTS having
restricted repairability with information rate d−2λ

d = 1 − 2λ
d and communication complexity

d
d−2λ .

Moreover, just like in 1., we know that the repairability index of this scheme when λ = 1 is
(d−1)d

(n−1
d
)

. We denote this scheme in 2. by (d2).

We know by Theorem 2.5 that if an (n, d, λ)− SBIBD exists then d(d − 1) = λ(n − 1),
conversely, if d(d−1) ̸= λ(n−1), then we know that the (n, d, λ)− SBIBD does not exist and so
we need not concern ourselves with that case of n, d, λ. Note that just because a case of n, d,
and λ satisfies the equation above does not mean the (n, d, λ)− SBIBD exists, just that it may
exist. However, when λ = 1 and n = d(d− 1) + 1, we obtain by substituting n in Theorem 2.16
with d− 1 and using the fact that an AG(2, d − 1) exists when d− 1 is a prime power that an
(d(d− 1) + 1, d, 1)− SBIBD exists when d− 1 is a prime power. Thus, by Theorem 4.7, we can
always find a (2, n, d)−RTS when d− 1 is a prime power and n = d(d− 1) + 1. Furthermore, if
d ≥ 3, we can find a (3, n, d)−RTS when d − 1 is a prime power and n = d(d − 1) + 1. So we
obtain the following corollary.

Corollary 4.8. Let d ∈ N such that d− 1 is a prime power and Q be a prime power such that
Q ≥ d2 − d+ 2. Then

1. There exist a (2, d2 − d+ 1, d)−RTS with shares from Fd
Q having restricted repairability.

2. If d ≥ 3, then there exist a (3, d2 − d+ 1, d)−RTS with shares from Fd
Q having restricted

repairability.

Now, as we have done for Scheme (a), (b), and (c), we have to check whether Scheme (d)
can repair the share of Pl the way we want, that is, whether there are d parties that can repair
Pl’s share by sending exactly one share per party to Pl. Recall that there would be a problem
only when there exist subshares x1 and x2 of Pl such that x1 and x2 are held by another party
Pk and no other party besides Pl and Pk has x1 or x2. In Scheme (d), this case may happen
when d = 2 since d is also the repetition number of the SBIBD used in the scheme, but since
λ < d in Scheme (d), we get that, when d = 2, λ can only be 1, meaning that no other party
besides Pl can have both x1 and x2.

Next, we compare Scheme (d1) and (d2) with schemes from Table 1 for each possible t and
d for Scheme (d1) and (d2), and consider n that has the same value in both schemes just like
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in the previous sections. Since the information rate and communication complexity depend
on different parameters than the repairability index, we will separate the comparing table of
repairability index from the other two parameters. The comparison of the information rate and
communication complexity of Scheme (d1) and (d2) with schemes from Table 1 is shown in Table
6 and Table 7 respectively.

We can see from Table 6 and Table 7 that the common n’s between Scheme (d1) and (d2) are
mostly pair with λ = 1. We obtain from Table 6 that the information rate and communication
complexity of Scheme (d1) is equal to Scheme (1) - (4). On the other hand, when there are
common n’s that pair with λ = 2, the parameters of Scheme (d1) are worse than (1) - (4).
However, (d1) still has better communication complexity than Scheme (5) and better information
rate and communication complexity than Scheme (7) just like our previous schemes.
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Table 6: Comparison of information rate and communication complexity of Scheme (d1) to
schemes in Table 1

Threshold
and

Repairing
degree

Scheme (d1)’s
parameters

Comparing
scheme

Parameters of the
comparing scheme
corresponding to

(d1)

Information
rate comparison

Communication
complexity
comparison

t = 2,
d = 2

n = 3, λ = 1 (5) n = 3 (5) > (d1) (5) > (d1)

t = 2,
d = 3

n = 7 when λ = 1,
n = 3 when λ = 2

(1) m = 9, n = 7
(1) = (d1) when

λ = 1
(1) = (d1) when

λ = 1

t = 2,
d = 4

n = 13 when λ = 1,
n = 7 when λ = 2,
n = 5 when λ = 3

(2) m = 16, n = 13
(2) = (d1) when

λ = 1
(2) = (d1) when

λ = 1

t = 2,
d = 5

n = 21 when λ = 1,
n = 11 when λ = 2,
n = 6 when λ = 4

(3) m = 25,
n = 11, 21

(3) = (d1) when
λ = 1

(3) = (d1) when
λ = 1

(3) > (d1) when
λ = 2

(3) < (d1) when
λ = 2

(7) τ = 5, m = 6,
n = 6 and τ = 5,
m = 7, n = 21

(7) < (d1) (7) > (d1)

t = 2,
d = 8

n = 57 when λ = 1,
n = 29 when λ = 2,
n = 15 when λ = 4,
n = 9 when λ = 7

(4) m = 64, n = 29, 57

(4) = (d1) when
λ = 1

(4) = (d1) when
λ = 1

(4) > (d1) when
λ = 2

(4) < (d1) when
λ = 2

(7) τ = 7, m = 10,
n = 15

(7) < (d1) (7) > (d1)

Other cases
of t, d

n ∈ N such that
(n, d, λ)−SBIBD

exists where
0 < λ < d

(7) n =
(
m
τ

)/(
d
τ

)
, as

m, τ satisfying
conditions of
Scheme (7)

(7) < (d1) when
λ < d− 1

(7) > (d1) when
λ < d− 1

(7) = (d1) when
λ = d− 1

(7) = (d1) when
λ = d− 1
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Table 7: Comparison of information rate and communication complexity of Scheme (d2) to
schemes in Table 1

Threshold
and

Repairing
degree

Scheme (d2)’s
parameters

Comparing
scheme

Parameters of the
comparing scheme

corresponding to (d2)

Information
rate

comparison

Communication
complexity
comparison

t = 3,
d = 3

n = 7, λ = 1 (5) n = 7 (5) > (d2) (5) > (d2)

t = 3,
d = 5

n = 21 when λ = 1,
n = 11 when λ = 2 (3) m = 25, n = 11, 21

(3) < (d2) when
λ = 1

(3) > (d2) when
λ = 1

(3) > (d2) when
λ = 2

(3) < (d2) when
λ = 2

t = 3,
d = 8

n = 57 when λ = 1,
n = 29 when λ = 2 (4) m = 64, n = 29, 57

(4) < (d2)
when λ = 1

(4) > (d2)
when λ = 1

(4) > (d2)
when λ = 2

(4) < (d2)
when λ = 2

Other cases
of t, d

n ∈ N such that
(n, d, λ)−SBIBD

exists where
0 < λ < d

2

(7) n =
(
m
τ

)/(
d
τ

)
, as m, τ

satisfying conditions
of Scheme (7)

(7) < (d2) when
2λ < d− 1

(7) > (d2) when
2λ < d− 1

(7) = (d2) when
2λ = d− 1

(7) = (d2) when
2λ = d− 1

In Table 8, we compare the repairability index of Scheme (d1) and (d2) to schemes in Table
1. Since (d1) and (d2) have the same repairability index, in Table 8, we will write (d) to refer
to both schemes. In this table, we only use the case of n where λ = 1 to calculate κ since the
formula we have in Table 2 only applies for λ = 1. This works well for us since we know for sure
by the proof of Corollary 4.8 that a (d(d − 1) + 1, d, 1)− SBIBD exists when d − 1 is a prime
power. Note that we also know that the (3, 2, 1)− SBIBD for the case t = d = 2 exists despite
d− 1 not being a prime power because if we let the blocks set be the set of all possible pairing
of 3 treatments, it satisfies all the conditions of an SBIBD.

From Table 8, we learn that the repairability index of Scheme (d) is greater than Scheme (1)
- (4) for all possible n’s that satisfy the condition of Corollary 4.8. However, similar to Scheme
(a), we have (5) > (d) when t = d = 3. We get (5) = (d) when t = d = 2 since the SBIBD used
in this case has very few blocks that trivially achieve universal repairability.
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Table 8: Comparison of Scheme (d)’s repairability index to schemes in Table 1

Threshold
and

Repairing
degree

Scheme (d)’s
parameters

Comparing
scheme

Parameters of the
comparing scheme

corresponding to (d)

Repairability index (κ)
comparison

t = 2,
d = 2

n = 3 (5) n = 3 (5) = (d)

t = 3,
d = 3

n = 7 (5) n = 7 (5) > (d)

t = 2,
d = 3

n = 7 (1) m = 9, n = 7 (1) < (d)

t = 2,
d = 4

n = 13 (2) m = 16, n = 13 (2) < (d)

t = 2 or 3,
d = 5

n = 21 (3) m = 25, n = 21 (3) < (d)

t = 2 or 3,
d = 8

n = 57 (4) m = 64, n = 57 (3) < (d)

5 Comparison Between the Main Results

Now that we cover all the details of schemes in Table 2, we then compare their parameters
between themselves. Recall that, in Section 4, we compare schemes from Table 1 and Table 2
for each t and d when considering n in the same values or intervals. However, we cannot do
the same comparing the four schemes in Table 2 since we cannot find any mutual n for all four
schemes when considering d and t in the same values. So, in this section, we compare the four
schemes when the parameters d and t are the same while n varies between the four schemes,
depending on the conditions of each scheme. We choose to consider d and t instead of n because
the information rate, communication complexity, and repairability index of the schemes in Table
2 depend on t and d more than n.

In Table 9, we calculate and compare their information rate in some cases of t, d, and λ.
Since the communication complexity of schemes from Table 2 is the reciprocal of the information
rate, we can obtain the comparison of communication complexity from Table 9 as well. The
cells that are colored green in each row mean that the scheme in the cell’s column has the best
result for that row’s case.

We can obtain directly from Table 2 that the information rate of Scheme (d1) and (d2) will
only decrease as λ gets bigger, and if λ = 1, the information rate of Scheme (d1) is equal to
Scheme (a) and (b) (as in row 3) and the information rate of Scheme (d2) is equal to Scheme
(b) (as in row 5). Furthermore, when λ = 1, we obtain that Scheme (a)’s information rate is
less than Scheme (d2) which means that, at the same d and t, (a) < (b) in term of information
rate. In fact, (a) ≤ (b) for all t, d with the equality holds only when t = 2. When λ > 1, we
also obtain that the information rate of Scheme (d1) and (d2) is less than Scheme (a) and (b).
So we can conclude that (b) ≥ (a) ≥ (d1) for any t, d, λ in terms of information rate (and the
opposite for communication complexity). Furthermore, in terms of information rate, (b) ≥ (a)
> (d2) for all d when 1 < λ < d

2 and (b) = (d2) > (a) for all d when λ = 1.
Scheme (c) is a little complicated to compare with the other schemes, in the third and fourth
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rows of the table, the information rate of (c) is the lowest but then in rows 5 and 6, (c)’s
information rate becomes the greatest.

From the expressions in Table 2, we get that, in terms of information rate, (c) > (a) when
t(t − 1) > n − 2 (as in row 7 to 9), (c) > (b) when t2 > 2(n − 2) (as in row 7), (c) > (d1)
when λ < n−2

2 (as in row 1) and (c) > (d2) when λ < n−2
4 (as in row 2). So we need to

consider the comparison of Scheme (c) case by case, however, from all the previous inequality,
we can practically say that (c) has better results in terms of information rate and communication
complexity compared to other schemes from Table 2 if t’s value is close enough to n (which is
equal to d+ 1 for Scheme (c)).

Table 9: Comparison of information rate in some cases of t, d and λ between schemes from Table
2

Cases
Scheme (a) (b) (c) (d1) (d2)

t = 2, d = 9,
λ = 6

8
9

8
9

5
9

3
9

-

t = 3, d = 9,
λ = 3

2
3

7
9

5
9

- 1
3

t = 2, d = 11,
λ = 1

10
11

10
11

6
11

10
11

-

t = 2, d = 11,
λ = 2

10
11

10
11

6
11

9
11

-

t = 3, d = 11,
λ = 1

8
11

9
11

6
11

- 9
11

t = 3, d = 11,
λ = 2

8
11

9
11

6
11

- 7
11

t = 4, d = 7
1
7

3
7

4
7 - -

t = 4, d = 9
1
3

5
9

5
9 - -

t = 4, d = 11
5
11

7
11

6
11 - -

Next, we will compare the repairability index of schemes from Table 2 in some cases of d.
Since the repairability index of Scheme (c) is 1 which is the highest possible value, we know that
the repairability index of Scheme (c) is always the highest among schemes from Table 2. Thus,
in Table 10, we only compare κ of the Scheme (a), (b), and (d) (as (d1) and (d2) both have the
same κ, we will refer to both schemes as Scheme (d)). Again, the scheme in the column that is
colored green is the best in each case.

Just like in Subsection 4.4, we only use λ = 1 and n that satisfies the conditions of Corollary
4.8. Furthermore, since we only confirmed the existence of (n, d, 1)− SBIBD when d − 1 is a
prime power, we will consider only the case of d such that d − 1 is a prime power in Table 10.
Additionally, d must also be a prime power that is greater or equal to 4 so that it satisfies the
conditions of Scheme (a) and (b) as well. We still obtain κ of Scheme (a) and (b) in the regular
way which is by substituting d.
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Table 10: Comparison of repairability index in some cases of d between schemes from Table 2

Cases
Scheme (a) (b) (d)

d = 4 ≈ 0.066 ≈ 0.0014 ≈ 0.1636

d = 5 ≈ 0.02631 ≈ 0.00016 ≈ 0.066

d = 8 ≈ 0.00158 ≈ 2.3×10−7 ≈ 0.00406

d = 9 ≈ 0.00061 ≈ 2.6×10−8 ≈ 0.00158

In these cases of d, we can see that Scheme (d) gives the best result, with Scheme (a) as the
second runner-up. Since we obtained Corollary 4.8, that is, the existence of a (d(d−1)+1, d, 1)−
SBIBD from AG(2, d−1), we get that the number of blocks n of an AG(2, d−1) and the number
of blocks of (d(d− 1) + 1, d, 1)− SBIBD are equal. So κ of Scheme (d) in the case of Corollary
4.8 when calculating at d is equal to κ of Scheme (a) at d− 1 as we can see in Table 10.

In conclusion, Scheme (b) is the best for optimizing the information rate and communication
complexity, while Scheme (c) has the best repairability index since it has universal repairability.
However, Scheme (c)’s property of universal repairability is trivial since, when a party Pl loses
its share, it requires all other parties to repair the lost share. Scheme (d), on the other hand,
does not involve all other parties besides Pl in the reconstruction of Pl’s share, and the results in
Table 10 lead us to think that it has second-best repairability index next to Scheme (c), though
more study is required to confirm this fact.

Notice that, of all schemes in Table 2, Scheme (a) is the only one with various possible n’s
for each t and d while the other schemes have fixed n. So even though Scheme (a) does not
have optimal information rate, communication complexity, or repairability index, the flexibility
of its parameter makes it useful when we need an RTS for some specific t, d, and n that does
not satisfy the conditions of Scheme (b), (c), or (d).
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Abstract

Since the late 1990s, low-density parity-check (LDPC) codes have emerged as highly
efficient error-correcting codes and extensively utilized in communication systems. Tanner
graphs are considered one of the powerful LDPC codes representations. In this work, we
consider tanner graphs for ternary LDPC codes over finite fields and integer residue rings.
In particular, we expand the method for constructing tanner graphs of binary LDPC codes
proposed by Polak and Zhupa into a ternary Tanner graph over a finite field and integer
residue rings. This extension introduces a novel approach within the field, aiming to explore
the potential benefits and applications of ternary LDPC codes.

Keywords: low-density parity-check (LDPC) codes, tanner graphs, binary LDPC codes, ternary
LDPC codes.
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1 Introduction
Low-density parity-check (LDPC) codes are a class of error-correcting codes widely used

in modern digital communication systems. These codes were initially proposed by Robert G.
Gallager [3, 4] in 1960 but gained practical significance in the early 2000s due to the discovery
of efficient decoding algorithms. LDPC codes are characterized by their sparse parity check
matrices, which enable efficient decoding. They offer excellent error correction performance,
approaching the theoretical limits defined by Shannon’s channel coding theorem [1]. LDPC
codes are employed in various communication standards and applications, including wireless
communication, digital video broadcasting, satellite communication, and storage systems. De-
coding LDPC codes involves iteratively exchanging messages between variable nodes and check
nodes, gradually improving the estimates of the transmitted codeword until convergence. Over-
all, LDPC codes play a crucial role in enabling reliable data transmission over noisy channels in
modern communication systems.
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Parity check is a technique used in digital communication systems to verify whether transmit-
ted data has been corrupted during transmission. It involves adding extra bits to the transmitted
data to ensure accuracy. By employing parity check, the system can detect errors in the trans-
mitted data and, in some cases, correct them. The Tanner graph, introduced by Michael Tanner
in 1981 [6], provides a graphical representation of the relationships between the bits and parity
check equations in a code. This bipartite graph consists of variable nodes representing bits and
check nodes representing parity check equations, with edges denoting the connections between
them. Understanding the structure of LDPC codes through Tanner graphs is crucial for devel-
oping efficient decoding algorithms and optimizing code performance in various communication
systems.

Research on ternary LDPC codes has explored their design, performance analysis, decod-
ing algorithms, and applications. Methods include protograph-based designs, progressive edge
growth algorithms, and density evolution techniques. Performance evaluation involves simu-
lations and theoretical analysis under different channel conditions. Decoding algorithms like
belief propagation and sum-product algorithm are proposed to efficiently decode ternary LDPC
codes. Potential applications include high-speed communication over noisy channels, optical
communication systems, and storage systems employing multi-level flash memory.

2 Preliminaries
In this section, we will review the article’s fundamental content, which is divided into two

parts: linear codes and Tanner graphs.

2.1 Linear Codes
Let n be a fixed positive integer and let the input and output symbols of the channel belong

to Fq the finite field with q elements. The set of q-ary vectors is denoted by Fn
q .

A distance between two vectors x and y in Fn
q is the number of coordinates, where x and y

differ.

Definition 2.1. The Hamming distance between x = x1x2 . . . xn and y = y1y2 . . . yn in Fn
q ,

denoted by d(x, y), is the number of positions in which x and y are different. That is

d(x, y) = |{i ∈ {1, 2, . . . , n} : xi ̸= yi}|

We often abbreviate ‘Hamming distance’ to ‘distance’.

Example 2.2. d(000, 011) = 2, d(10101, 11110) = 3.

A q-ary block code C of length n is any nonempty subset of Fn
q . The elements of C are called

codewords. If |C| = 1, the code is called trivial. The minimum distance d of a non-trivial code
C is given by d = min{d(x, y) : x ∈ C, y ∈ C, x ̸= y}. One often refers to a ‘block code’ as a
‘code’. A linear subspace C of Fn

q is called a linear code.
If C has dimension k and minimum distance d, one says that C is an [n, k, d] code. The

parameter d in the notation [n, k, d] is sometimes omitted.
A code over the code alphabet F3 = {0, 1, 2} is called a ternary code, while the term qua-

ternary code is sometimes used for a code over the code alphabet F4. However, a code over the
code alphabet Z4 = {0, 1, 2, 3} is also sometimes referred to as a quaternary code.

There are two standard ways of describing a k-dimensional linear subspace: one by means
of k independent basis vectors; the other uses n− k linearly independent equations.
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Definition 2.3. A generator matrix G of an [n, k, d] code C is a k × n matrix, of which the k
rows form a basis of C.

Example 2.4. The matrix G =

(
0 1 1 0
1 1 1 1

)
is a generator matrix of the linear binary codes

C = {0000, 1001, 0110, 1111}.

Definition 2.5. A parity-check matrix H of an [n, k, d] code C is an (n−k)×n matrix, satisfying

c ∈ C ⇔ cHt = 0,

where Ht denotes the transpose of H and 0 is the all-zeros word of length n− k.

In other words C is the null space (solution space) of the n−k linearly independent equations
cHt = 0.

Example 2.6. Show that H =

(
0 1 1 0
1 0 0 1

)
is a parity check matrix of the linear binary code

C = {0000, 1001, 0110, 1111}.
Solution. Consider all possible binary words of length 4. We have

(0000)Ht = 00, (0100)Ht = 10, (1000)Ht = 01, (1100)Ht = 11,
(0001)Ht = 01, (0101)Ht = 11, (1001)Ht = 00, (1101)Ht = 10,
(0010)Ht = 10, (0110)Ht = 00, (1010)Ht = 11, (1110)Ht = 01,
(0011)Ht = 11, (0111)Ht = 01, (1011)Ht = 10, (1111)Ht = 00.

Definition 2.7. Let G(V1 ∪ V2, E) be a bipartite graph.
• If each vertex in both parts has degrees s and r, respectively, then if s = r, G is called a
regular s-graph, denoted by s-graph.
• If each vertex in both parts has degrees s and r, respectively, and s ̸= r, then G is called a
bi-regular graph (s, r), denoted by bi-regularity - (s, r), and (s, r) is referred to as the bi-degree.

Example 2.8. The following graph is an example of a regular graph and a bi-regular graph.

Figure 1: 2 - regular

Figure 2: bi-regular - (2, 3)
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Theorem 2.9 ( [7], Theorem 4.5.6). Let C be a linear code and let H be a parity-check matrix
for C. Then d(C) equals to minimum number of columns that give zero linear combination.

Example 2.10. The minimum distance d(C) of linear binary code C with parity check matrix

H =

(
0 1 1 0
1 0 0 1

)
is 2.

Theorem 2.11 ( [5], Definition 2.1.2). A code with distance d can detect up to d− 1 errors and
correct up to ⌊d− 1

2
⌋ errors.

Example 2.12. Let H =

(
0 1 1 0
1 0 0 1

)
is a parity check matrix of the linear binary code

C = {0000, 1001, 0110, 1111}.
Solution. Suppose u = 1001 was sent and v = 1111 was recieved.
We have uHt = 0 and vHt = 0.
Thus, errors cannot be detected (and cannot be corrected).

Definition 2.13. A low-density parity-check (LDPC) codes is a linear code for which the parity-
check matrix H has a low density of 1’s.

Definition 2.14. A regular (n, k) LDPC codes is a linear code whose parity-check matrix H
contains constant number of 1’s in each column, denoted by Wc and contains constant number
of 1’s in each row, denoted by Wr = Wc(n/n− k) 1’s per row, where Wc << n− k.

Example 2.15. H is a parity check matrix for a regular (8, 4) LDPC codes where Wr = 2 and
Wc = 1.

H =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


2.2 Tanner Graph

In 1981, Tanner [6] introduced a highly effective graphical representation for LDPC codes
known as the Tanner graph. This graphical model [9] is bipartite, meaning it consists of two
distinct sets of vertices: V1, representing the codeword bits, and V2, representing the parity
checks. A vertex from V1 is connected to a vertex from V2 if and only if the bit corresponding
to the V1 vertex is involved in the parity check corresponding to the V2 vertex.

Let V (G) be the set of vertices and E(G) be the set of edges of a graph G.

Definition 2.16. Vertices u, v are adjacent in G if {u, v} ∈ E(G).

Definition 2.17. An edge e ∈ E(G) is incident to a vertex v ∈ V (G) if v is an endpoint of e.

Definition 2.18. The number of edges incident to a vertex v in a graph is called the degree of
vertex v, denoted by deg(v).

Definition 2.19. A bipartite graph is a graph (nodes or vertices connected by undirected edges)
whose nodes may be separated into two classes, and where edges may only connect two nodes
not residing in the same class.
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Definition 2.20. Tanner graph of a code is a bipartite graph containing the two classes of nodes,
the n variable nodes (or bit nodes) and the n − k check nodes (or function nodes). The graph
drawn according to the following rule: check node j is connected to variable node i whenever
element hji in H is 1.

Example 2.21. The Tanner graph represents the parity-check matrix H, where the presence
of 1 in the matrix corresponds to connections between check nodes and bit nodes. Highlighted
in magenta, the graph illustrates the connection between check node A and bit node 2.

1 2 3 4 5 6 7 8 9 10

H =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


A
B
C
D
E

check nodes

bit nodes

A B C D E

1 2 3 4 5 6 7 8 9 10

n = 10
m = 5
k = 6
Wr = 4
Wc = 2

Figure 3: Tanner graph represented parity-check matrix H

The Tanner graph serves as a visual depiction of the parity check equations within a code.
There exists a conventional method for constructing error-correcting codes based on the adja-
cency matrix of a bipartite, bi-regular graph. The parity check matrix H is extracted from the
adjacency matrix A of the graph, possessing specified properties essential for code generation:

A =

(
0 H
Ht 0

)
The establishment of a matrix H defines the code configuration. Nonetheless, the parity

check matrix is not singular. Rearranging columns does not alter the code characteristics,
providing an equivalent code.

A code represented by a sparse matrix or a sparse Tanner graph is known as an LDPC
code [2]. A matrix is considered sparse when the number of ones it contains is significantly
smaller than the number of zeros. LDPC codes are characterized by having a very sparse parity
check matrix. A sparse graph exhibits a low ratio of edges to vertices. A straightforward
expression describing the graph density G(V,E) is as follows:

D =
2|E|

|V |(|V | − 1)
(2.1)

where |E| is the number of edges and |V | the number of vertices of graph G.

The 28th Annual Meeting in Mathematics (AMM2024)

145



Definition 2.22. A cycle of length ℓ in a Tanner graph is a path comprising ℓ edges which
closes back on itself.

Example 2.23. The Tanner graph represents the parity-check matrix H, where the presence of
1 indicates connections between check nodes and bit nodes. Highlighted in magenta, the graph
illustrates a cycle pattern of length 6, indicating interconnections between nodes in both check
and bit nodes.

H =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1



Figure 4: A cycle of length six as seen in both the Tanner graph and the parity check matrix

Definition 2.24. The girth of a Tanner graph is the minimum cycle length of the graph.

Remark. [8] The girth of Tanner graph must be more than 4.

3 Main Results
In this section, we will discuss the steps involved in constructing a bipartite graph that can

be used as a Tanner graph.
Assume that q is a prime power. The quadratic extension of Fq is Fq2 . Ustimenko and

Woldar [9] introduced the family of F = F (Fq,Fq2). Those graphs are bipartite with a set of
vertices V = V1 ∪ V2, where V1 ∩ V2 = ϕ. They have girths of at least 8 and very different
bi-regularities (q, q2). Due to geometric construction, one partition set, V1 = P , is traditionally
referred to as the set of points, and one, V2 = L, as the set of lines:

P = {(a, b, c) : a ∈ Fq, b ∈ Fq2 , c ∈ Fq}
L = {[x, y, z] : x ∈ Fq2 , y ∈ Fq2 , z ∈ Fq}

Two types of brackets are used to distinguish points and lines. We say point (p) is incident
to line [l] in graph F (Fq,Fq2), and we define incidence relation I (between (p) and [l]) as:
(a, b, c)I[x, y, z] iff {

y − b = ax

z − c = ay + ayq
(3.1)

The set of vertices is V (F ) = P ∪ L, and the set of edges consists of all pairs ((p), [l]), for
which (p)I[l]. Because a ∈ Fq, b ∈ Fq2 , c ∈ Fq, x ∈ Fq2 , y ∈ Fq2 , z ∈ Fq, we have |P | = q4,
|L| = q5, and |V (F )| = q5 + q4 = q4(q + 1).
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Instead of using elements of fields Fq2 and Fq as coordinates, Polak and Zhupa [2] propose
to use two rings Zn2 ,Zn and modulo operations. In this case, the graph F (Zn,Zn2) has sets P
and L are the following:

P = {(a, b, c) : a ∈ Zn, b ∈ Zn2 , c ∈ Zn}
L = {[x, y, z] : x ∈ Zn2 , y ∈ Zn2 , z ∈ Zn}

They define the incidence relation I (between (p) and [l]) as: (a, b, c)I[x, y, z] iff{
(y − b) ≡ (ax) (mod n2)

(z − c) ≡ (ay + ayn) (mod n)
(3.2)

Graphs with coordinates specified in terms of finite rings are bipartite, bi-regularity (n, n2),
and girth at least 6 (possibly 8, but not tested). In this case, they are not affine parts of
generalized quadrangles. There are n elements in the set L, and |P | = n4. There are |V | =
n4(n+ 1) elements in the set of vertices and n6 elements in the set of edges.

Building upon the foundation laid by Polak and Zhupa, who introduced equations 3.1 and
3.2 elucidating the relationship between a set of points and a set of lines, we have formulated a
novel equation aimed at further refining the categorization of connections between these entities.
In accordance with this equation:

(a+ c) ≡ (x+ z) (mod 2) (3.3)

If the computations follow the equations given above, the edges between the set of points
and the set of lines denoted by dashed lines. Otherwise, they will be marked with normal lines.

Example 3.1. Constructing the code of the graph F (Z2,Z4):

• Z2 = {0, 1} is a ring with addition and multiplication identities represented by 0 and 1,
respectively. Addition and multiplication operations are carried out under the modulus of
2.

• Z4 = {0, 1, 2, 3} is a ring with 4 elements, where addition and multiplication operations
are performed under the modulus of 4.

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1
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Each point (a, b, c) where a ∈ Z2, b ∈ Z4, and c ∈ Z2 is adjacent to the line [x, y, z]
where x ∈ Z4, y ∈ Z4, and z ∈ Z2, satisfying the conditions: y − b ≡ ax (modn2), and
z − c ≡ ay + ay2 (mod n), where the components of matrix is 2 when a+ c ≡ x+ z (mod 2).

H =



2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1
1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2
0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0
0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0


Figure 5: The low-density parity-check matrix H of the graph F (Z2,Z4) (where 0 indicates
no edge between vertex-point pairs, 1 indicates the presence of an edge between vertex-point
pairs, and 2 indicates an edge between vertex-point pairs satisfying the condition (a + c) ≡
(x+ z) (mod 2)

3.2. Code construction. In graphs F (Zn,Zn2): We denote with [N,K] the code with
code words length N and K information bits. In such a code there are R = N −K parity check
equations. The ratio K/N is called code rate and is denoted by RC .

A set of lines is larger than a set of points. Lines correspond to code word bits, while points
correspond to parity checks. We decide whether to include one or zero in the parity check matrix
by determining whether relations 3.2 between the corresponding points and lines hold. Every
bit of the codeword is checked for parity using q checks. In this case, the parity check matrix H
is part of the graph’s adjacency matrix. Since |L| = n5 and |P | = n4, the size of H is n4 × n5

and

RC =
n5 − n4

n5
=

n4(n− 1)

n5
=

n− 1

n
.

4 Conclusion
Our work extends the method for constructing Tanner graphs of binary LDPC codes proposed

by Polak and Zhupa into a ternary Tanner graph over a finite field and integer residue rings.
Ternary LDPC codes are constructed based on the modified family of graphs. The resulting
Tanner graphs have girth at least 6 and the resulting ternary LDPC codes have rate at least
(n− 1)/n.

Acknowledgment. The authors wish to express their sincere gratitude to the Applied Math-
ematics Program, Department of Mathematics, Chiang Mai University, for their invaluable
support and guidance throughout this paper. I am deeply thankful to all the faculty members
who have contributed to this work with their expertise and insights. Thank you all for your
unwavering support and encouragement.

The 28th Annual Meeting in Mathematics (AMM2024)

148



References
[1] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., pp. 372–423,

623–656, 1948.
[2] M. Polak and E. Zhupa, Graph based linear error correcting codes, Albanian Journal of

Mathematics, Volume 10, Number 1, Pages 37–45 ISSN: 1930-1235; (2016).
[3] R. G. Gallager, Low-density parity-check codes. IRE Transactions on information theory,

8(1), 21-28, (1962).
[4] R. G. Gallager, Low-Density Parity Check Codes. Cambridge, MA: MIT Press, 1963.
[5] R. Hill, A first course in coding theory. Oxford University Press, 1986.
[6] R. Tanner, A recursive approach to low complexity codes. IEEE Transactions on information

theory, 27(5), 533-547, (1981).
[7] S. Ling and C. Xing, Coding theory: a first course. Cambridge University Press, 2004.
[8] T. R. Halford, A. J. Grant, and K. M. Chugg, Which Codes Have 4-Cycle-Free Tanner

Graphs?. IEEE transactions on information theory, 52(9) (2006), 4219-4223.
[9] V. A. Ustimenko and A. J. Woldar, Extremal properties of regular and affine generalized

m-gons as tactical configurations, European J. Combin. 24, no. 1, 99–111, (2003).

The 28th Annual Meeting in Mathematics (AMM2024)

149



(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(0, 2, 0)

(0, 2, 1)

(0, 3, 0)

(0, 3, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(1, 2, 0)

(1, 2, 1)

(1, 3, 0)

(1, 3, 1)

[0, 0, 0]

[1, 0, 0]

[2, 0, 0]

[3, 0, 0]

[0, 0, 1]

[1, 0, 1]

[2, 0, 1]

[3, 0, 1]

[0, 1, 0]

[1, 1, 0]

[2, 1, 0]

[3, 1, 0]

[0, 1, 1]

[1, 1, 1]

[2, 1, 1]

[3, 1, 1]
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[3, 2, 0]
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[1, 2, 1]

[2, 2, 1]

[3, 2, 1]

[0, 3, 0]

[1, 3, 0]

[2, 3, 0]

[3, 3, 0]

[0, 3, 1]

[1, 3, 1]

[2, 3, 1]

[3, 3, 1]

Figure 6: From the graph representing the connectivity from the matrix H in Figure 5, it
can be concluded that to depict the edges between vertex-vertex pairs (on the left-hand side:
P = (a, b, c)) and vertex-edge pairs (on the right-hand side: L = [x, y, z]) in the graph F (Z2,Z4),
normal and dashed lines represent adherence to the equation (a+ c) ≡ (x+ z) (mod 2), respec-
tively
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Abstract

(n2 − 1)-puzzle is a puzzle within square board with n×n unit square cells where n ≥ 3,
labelled as cell c ∈ {1, 2, 3, . . . , n2}, in order from left to right, and then from the upper row
to the lower row. Each of the first n2− 1 cells contains a unit square tile labelled by number
t ∈ {1, 2, 3, . . . , n2 − 1}. The other cell at the bottom-right corner contains a single hole.
Beginning with an initial configuration of the board, a player has to make moves by switching
the hole and a tile next to the hole, so that we can transform the board to the configuration
that all tiles are arranged in order from 1 to n2 − 1 with the hole in the bottom-right corner
cell. The more challenging puzzle is when a board consists of some fixed cells. The tile
located at a fixed cell cannot be moved. This research focuses on solvability conditions of an
initial configuration of a board with a single fixed cell and a board with two fixed cells. We
conclude that for an n× n board with a fixed cell, any even configuration is solvable if and
only if the fixed cell is not in {2, n− 1, n+ 1, 2n, n2 − 2n+ 1, n2 − n, n2 − n+ 2, n2 − 1}. As
for a board with two fixed cells, we give conditions on the positions of the fixed cells where
not all even configuration are solvable. Moreover, some sufficient conditions that make all
even configurations solvable are provided.

Keywords: (n2 − 1)-puzzle, solvability, permutation.

2020 MSC: Primary 91A46; Secondary 05A05, 20B05.

1 Introduction
15-puzzle is a puzzle within square board with 4 × 4 unit square cells. These cells are called
cell c, where c = 1, 2, 3, . . . , 16, located in order from left to right, and then from the upper
row to the lower row. In each of the first fifteen cells, there is a unit square tile with label t
where t = 1, 2, 3, . . . , 15. We shortly name the tile labelled by number t as tile t. The other
cell contains a single hole. The game starts with an initial configuration of the board, where a
†Speaker. ‡Corresponding author.
Email: waitin.sint@gmail.com (W. Sinthu-urai), psripratak@gmail.com (P. Sripratak).
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player makes a move which is to switch the hole, located at cell 16, and a tile next to the hole.
The goal of the game is to transform the board to the target configuration. In this research, the
target configuration, called the standard configuration, is the board that tile t is located in cell
t for all t = 1, 2, 3, . . . , 15 and cell 16 in the bottom-right-corner of the board is left for the hole.
The standard configuration is shown in Figure 1.

Figure 1: standard configuration of 15-puzzle

An initial configuration of the board is said to be solvable if there is a sequence of moves
that transforms the initial configuration to the target configuration which is the standard con-
figuration. Otherwise, it is said to be unsolvable. In the 1870s, Sam Loyd proposed a dramatic
problem of 15-puzzle throughout the world. He came up with a 15-puzzle whose initial config-
uration was set as Figure 2; the tiles were arranged in order except tile 14 and tile 15 being
switched. This famous problem was named after him as Sam Loyd’s puzzle or 14-15 puzzle. His
problem has inspired lots of mathematicians and computational scientists since it was discov-
ered to be unsolvable [8]. Hence, at the beginning, many of the researchers were interested in
solvability of the puzzle [2, 6].

Figure 2: initial configuration of Sam Loyd’s puzzle

Afterwards, 15-puzzle has been generalized to (n2 − 1)-puzzle with n2 − 1 unit square tiles
labelled by number 1, 2, 3, . . . , n2 − 1 for the positive integer n ≥ 3. These tiles and a single
hole are located within the square board with n × n unit square cells. The results for the
original 15-puzzle can be easily extended to the (n2 − 1)-puzzle. Various appearances of the
board have been examined for solvability as well. Johnson and Story [8] and Muralidharan [10]
provided necessary and sufficient conditions for solvability of the m × n (rectangular) board.
Davies [4] examined solvability of the m × n (rectangular) board where the numbers on the
tiles are printed diagonally. Liebeck [9] considered solvability of the rotated board. Recently,
Hamersma [5] analyzed solvability of the board with hexagonal cells.

Thenceforth, several related problems have been considered. Berenbom et al. [3], Archer [1]
and Yang [13] studied the generalized 15-puzzle with graph and vertices instead of board and
tiles. One of those vertices is called a blank vertex. The problem is determining whether an initial
configuration can be transformed into a target configuration by swapping the blank vertex with
its adjacent vertex through the incident line. Berenbom et al. [3] and Archer [1] applied algebra
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to analyze the problem whereas Yang [13] did it in graph theoretical way. Besides, Schwartz [12]
considered the 4×4 board with colored tiles instead of numbered tiles and modified the objective
of the game: no two tiles of the same color are in the same line.

The more challenging case of the game is solving the puzzle in a board that consists of a
fixed cell. The tile located at the fixed cell cannot be moved, that is a player cannot switch the
position of the hole and the tile in the fixed cell. This generalization of the puzzle is found in a
mobile application, 15 Puzzle Polygon. This application, released in 2020, contains several styles
of board structures and shapes of cells. Boards with a fixed cell have been considered in this
application as well. This research focuses on solvability conditions of an initial configuration of
the board with a single fixed cell and the board with two fixed cells.

2 Preliminaries
Some algebra definitions and theorems are applied in this research. Let Sn be a set of bijiections
from {1, 2, . . . , n} to {1, 2, . . . , n}. The set Sn is a group under function composition ◦ with the
identity ι, ι(i) = i for each i ∈ {1, 2, . . . , n}, and the inverse of an element τ is denoted by τ−1. Sn

is called a symmetric group whose elements are called permutations. We denote (a1, a2, . . . , ak)
as the permutation such that a1 7→ a2, a2 7→ a3, . . . , ak−1 7→ ak and ak 7→ a1 while ai 7→ ai for
all i /∈ {a1, a2, . . . , ak} where a1, a2, . . . , ak are distinct elements in {1, 2, . . . , n} and k ≤ n. Such
permutation is said to be a cycle of length k or a k-cycle. In particular, a 2-cycle is said to be
a transposition. We usually denote a product of permutations τ ◦ σ as τσ. It was proved that
every permutation can be written as a product of transpositions [7]. A permutation is said to
be even (odd) if it can be written as a product of an even (odd) number of transpositions. Next,
we provide an interesting property of the parity of the number of transpositions.

Theorem 2.1. [11] Let ω be a permutation that can be expressed as products of transpositions
ω = τkτk−1 . . . τ2τ1 and ω = σmσm−1 . . . σ2σ1 for some transpositions τi and σj for i = 1, 2, . . . , k
and j = 1, 2, . . . ,m, and some distinct positive integers k and m. If k is even (odd), then m is
even (odd).

According to Theorem 2.1, we also have the following result.

Theorem 2.2. [7] For n ≥ 2, a permutation in Sn cannot be both even and odd.

We can conclude from Theorem 2.2 that the parity of any permutation is unique. Moreover,
the next theorem gives a nice property of even permutations.

Theorem 2.3. [11] For n ≥ 3, an even permutation in Sn can be written as a product of
3-cycles.

In a board, a permutation (a1, a2, . . . , ak) transfers the tile in cell ai to replace the tile in
cell ai+1, for i = 1, 2, . . . , k − 1, and transfers the tile in cell ak to replace the tile in cell a1.

An initial configuration which is constructed by taking even (odd) permutation from the
target configuration is called an even (odd) initial configuration. Theorem 2.3 leads to the
following important results for solvability of 15-puzzle.

Theorem 2.4. [8] For 15-puzzle, every even initial configuration is solvable.

Theorem 2.5. [8] For 15-puzzle, every odd initial configuration is unsolvable.

3 Main Results
As the original problem, 15-puzzle, is proved to be solvable if and only if the initial configuration
is even, we consider the effect of fixing some cells in the board on the solvability of even initial
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configuration. We offer conditions on the positions of the fixed cells that determine whether all
even configurations are solvable or not. The first and the second sections are devoted for the
results for a board with one fixed cell and two fixed cells, respectively. The last section provides
the construction of the sequences of moves that play important roles in our solvability proofs.

3.1 Characteristic of Solvable Boards with 1 Fixed Cell
We identify a sufficient condition on the position of the fixed cell that allows unsolvable even
configurations. For solvable configurations, we apply abstract algebra to provide sufficient con-
ditions on the position of the fixed cell and the parity of initial configuration.

Theorem 2.5, for the original 15-puzzle, implies that a solvable initial configuration is even.
We offer similar result for (n2 − 1)-puzzle where n ≥ 3.

Theorem 3.1. For an n× n board where n ≥ 3, if an initial configuration is solvable, it is an
even initial configuration.

Proof. We follow the proof of the (4 × 4)-board case. Let ω be a solvable initial configuration.
Then ω = τmτm−1 . . . τ2τ1 for some moves τi where i = 1, 2, . . . ,m. Both in initial configuration
and target configuration, the hole has to be located in the same cell. Thus, the number of moves
shifting the hole to the left equals to the number of moves shifting the hole to the right, and
the number of moves shifting the hole up equals to the number of moves shifting the hole down.
Hence, the total number of moves has to be even. Then m is even. Therefore, ω is an even
initial configuration.

Equivalently, if an initial configuration is odd, then it is unsolvable. Due to this reason, we
consider solvability conditions for even initial configurations only.

However, there are some cells in the board that cannot be fixed, otherwise there exists an
unsolvable even initial configuration. We call them forbidden cells. The set of forbidden cells
for an n × n board with a fixed cell is denoted by Fn

1 . Note that by the definition, given the
board with a fixed cell f , if all even initial configurations are solvable, then f /∈ Fn

1 .
Let En

1 = {2, n− 1, n+1, 2n, n2 − 2n+1, n2 − n, n2 − n+2, n2 − 1}. We will show that this
is the set of all forbidden cells for an n × n board with a fixed cell, that is En

1 = Fn
1 , starting

from the following proposition.

Proposition 3.2. For an n× n board with a fixed cell, En
1 ⊆ Fn

1 where n ≥ 4.

Proof. We claim that the cells in En
1 are forbidden cells. Consider the case of cell 2. Assume

that cell 2 is fixed. Then there is an even initial configuration where the tile located in cell 1 is
not tile 1, named tile t 6= 1. To solve such puzzle, we have to take tile t away from cell 1 and
take tile 1 to cell 1 instead. First, we have to transfer the hole to cell n+ 1 as Figure 3. Then
move the hole up to swap the hole and tile t. Now, the hole is locked in cell 1. After that, we
cannot make any moves in the board without the hole. Hence, we have to take the hole out of
cell 1, and the only way is moving it down to cell n+1. That makes tile t get back to cell 1 and
cannot be transferred to cell t. Thus, the configuration is unable to solve. Therefore, cell 2 is a
forbidden cell. The cases of cells in {n− 1, n+ 1, 2n, n2 − 2n+ 1, n2 − n+ 2} can be proved in
a similar way due to the symmetry of the board.

Consider the case of cell n2−n. Assume that cell n2−n is fixed. There exists an even initial
configuration where the tile located in cell n2 − 1 is not cell n2 − 1, named tile t′ 6= n2 − 1. To
solve such puzzle, we have to take tile t′ away from cell n2 − 1 and take tile n2 − 1 to cell n2 − 1
instead. First, we move the hole to the left to swap the hole and tile t′. Now, tile t′ is locked
in cell n2. Whatever moves we make, we finally have to transfer the hole back to cell n2 − 1 so
that we can return the hole to cell n2. This only way makes tile t′ back to cell n2−1 and cannot
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Figure 3: an n× n board with cell 2 being fixed

be transferred to cell t′. Thus, the configuration is unable to solve. Therefore, cell n2 − n is a
forbidden cell. The case of cell n2 − 1 can be proved in a similar way due to the symmetry of
the board. Hence, En

1 ⊆ Fn
1 .

Note that Theorem 2.3 is only available for the board without fixed cells. We will provide
an important theorem, which is similar to Theorem 2.3, for the board with fixed cells.

Theorem 3.3. The even permutation representing an initial configuration of a board with fixed
cells can be written as a product of 3-cycles where each 3-cycle does not contain any fixed cells.

Proof. Let ω be the permutation representing a given even initial configuration of a board B
with k fixed cells. It is known that ω can be written as a product of disjoint cycles. Then
ω = γmγm−1 . . . γ2γ1 for some disjoint cycles γi’s of length at least 2 where i = 1, 2, . . . ,m.
Since the tiles in fixed cells cannot be transferred, γi in this product cannot contain fixed
cells. Note that each γi = (a1, a2, . . . , ap) can be written as a product of p − 1 transpositions
(a1, ap) (a1, ap−1) · · · (a1, a3) (a1, a2). Then we can transform ω to a product of transpositions
without fixed cells. Since ω is the even permutation, from Theorem 2.1, it is guaranteed that the
product we obtain also consists of even number of transpositions. Next, we consider transposi-
tions in such product in pairs. We will transform each pair of transpositions to 3-cycles. For a
pair of transpositions that contains one identical cell, we observe that (a, b) (a, c) = (a, c, b). For
a pair of transpositions that contains distinct cells, we observe that (a, b) (c, d) = (c, b, a) (a, c, d).
Then we obtain ω as the product of 3-cycles that does not contain any fixed cells.

Next, we intend to prove that Fn
1 ⊆ En

1 by contrapositive.
We need to deal with an even initial configuration containing no fixed cells in En

1 . According
to Theorem 3.3, we can write the permutation representing the configuration as a product of
3-cycles without any appearances of the fixed cells. Then we offer a process to transform any
3-cycle to a product of transpositions where each transposition represents a move in the game,
which is switching the hole and a tile next to the hole. Hence, the product of 3-cycles denotes the
sequence of moves leading the board to the standard configuration. Therefore, we can conclude
that the initial configuration is solvable.

The solvability of most of the even initial configurations with such condition can be proved
by applying the process that we provide in Theorem 3.4. Nevertheless, there are some positions
of the fixed cell that still counteract the process. Hence, we have to modify some steps to deal
with the specific case in Theorem 3.5. Therefore, to prove the hypothesis, we separate it into
Theorem 3.4 and Theorem 3.5.

Theorem 3.4. For an n×n board B with a fixed cell, if the fixed cell is not in En
1 ∪{n2− 2n−

1, n2 − n− 1, n2 − 2}, then all even initial configurations of the board B are solvable.

The 28th Annual Meeting in Mathematics (AMM2024)

155



Proof. Let ω be an even initial configuration of the board B. By Theorem 3.3, ω can be written
as a product of 3-cycles with no fixed cells appearing. We will prove that any 3-cycle (i, j, k)
with no fixed cells where i, j, k /∈ {n2 −n− 1, n2 −n} can be obtained via the puzzle’s moves by
modifying a routine construction from the (4 × 4)-board case. Then we prove that any 3-cycle
(i, j, k) with no fixed cells where at least one of i, j, k is in {n2 − n− 1, n2 − n} can be obtained
via the puzzle’s moves as well.

Case 1: i, j, k /∈ {n2 − n− 1, n2 − n}.
Let i be a cell in the board that is neither cell n2 − n − 1 nor cell n2 − n. We claim that(

n2 − n− 1, n2 − n, i
)

can be obtained by the puzzle’s moves. For i = n2 − 1, we can construct
σ =

(
n2 − n− 1, n2 − n, n2 − 1

)
by

σ =
(
n2, n2 − 1

) (
n2 − 1, n2 − n− 1

) (
n2 − n− 1, n2 − n

) (
n2 − n, n2

)
.

For i = n2, we can construct α =
(
n2 − n− 1, n2 − n, n2

)
by

α =
(
n2 − n− 1, n2 − n

) (
n2 − n, n2

)
.

Then we will construct a sequence of moves in the game that represents the permutation(
n2 − n− 1, n2 − n, i

)
where cell i is not a cell in {n2 − n − 1, n2 − n, n2 − 1, n2}. Let β be a

permutation transferring a tile in cell i to cell n2 − 1 without passing the fixed cell, cell n2 − n,
and cell n2, and the hole is in cell n2 − n− 1 at the beginning and goes back to the same cell at
the end. Claim that we can construct β for all configurations of the board B, which is shown
in the appendix. If we get the claim, we obtain a permutation α−1β−1ασα−1βα which is a
sequence of moves in the game.

By such permutation, the tiles in some cells are transferred. The tile in cell n2 − n− 1 goes
to cell n2 − n and back to cell n2 − n− 1 by α and α−1 respectively. Next, it goes to cell n2 − n
by σ. After that, it goes to cell n2 and back to cell n2 − n by α and α−1 respectively. The tile
in cell n2 − n goes to cell n2 and back to cell n2 − n by α and α−1 respectively. Next, it goes to
cell n2 − 1 by σ and to cell i by β−1 at the end. The tile in cell i goes to cell n2 − 1 by β. Next,
it goes to cell n2 − n− 1 by σ. After that, it goes to cell n2 − n and back to cell n2 − n− 1 by
α and α−1 respectively. After applying βα, the tiles in all cells that are transferred by β except
cell i go to other cells that are not cells in {n2 − n − 1, n2 − n, n2 − 1, n2} and they rest there
throughout the permutation ασα−1. Then they go back to their initial cells by β−1 and are not
affected by α−1. The hole in cell n2 goes to cell n2 − n − 1 and back to cell n2 by α and α−1,
respectively. It is not relocated by σ. After that, it again goes to cell n2−n− 1 and back to cell
n2 by α and α−1, respectively. The remaining tiles end up at their initial cells. That implies(

n2 − n− 1, n2 − n, i
)
= α−1β−1ασα−1βα.

Thus, we can construct
(
n2 − n− 1, n2 − n, i

)
by a sequence of moves in the puzzle where

i /∈ {n2 − n− 1, n2 − n}. Note that(
n2 − n− 1, j

) (
n2 − n, k

)
=

(
n2 − n− 1, n2 − n, j

) (
n2 − n− 1, n2 − n, k

)
.

Hence, for i, j, k /∈ {n2 − n− 1, n2 − n},

(i, j, k) =
(
n2 − n− 1, j

) (
n2 − n, k

) (
n2 − n− 1, n2 − n, i

) (
n2 − n− 1, j

) (
n2 − n, k

)
=
(
n2 − n− 1, n2 − n, j

) (
n2 − n− 1, n2 − n, k

) (
n2 − n− 1, n2 − n, i

)(
n2 − n− 1, n2 − n, j

) (
n2 − n− 1, n2 − n, k

)
.

Case 2: At least one of i, j, k is in {n2 − n− 1, n2 − n}.
It is enough to show that we can obtain 3-cycles which are in the forms

(
n2 − n, n2 − n− 1, i

)
,(

n2 − n− 1, j, k
)

and
(
n2 − n, j, k

)
where i, j, k /∈ {n2 −n− 1, n2 −n} via the puzzle’s moves as

well.
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Note that
(
n2 − n, n2 − n− 1, i

)
is the inverse of

(
n2 − n− 1, n2 − n, i

)
. Hence,(

n2 − n, n2 − n− 1, i
)
=

(
n2 − n− 1, n2 − n, i

)−1

= (α−1β−1ασα−1βα)−1

= α−1β−1ασ−1α−1βα.

Thus, the 3-cycle
(
n2 − n, n2 − n− 1, i

)
can be constructed by a sequence of moves in the

puzzle where i /∈ {n2 − n− 1, n2 − n}.
Furthermore, we can construct

(
n2 − n− 1, j, k

)
and

(
n2 − n, j, k

)
by applying 3-cycles(

n2 − n− 1, n2 − n, i
)

and
(
n2 − n, n2 − n− 1, i

)
. Then(

n2 − n− 1, j, k
)
=

(
n2 − n, n2 − n− 1, k

) (
n2 − n− 1, j

) (
n2 − n, k

)
=

(
n2 − n, n2 − n− 1, k

) (
n2 − n− 1, n2 − n, j

) (
n2 − n− 1, n2 − n, k

)
and (

n2 − n, j, k
)
=

(
n2 − n− 1, n2 − n, k

) (
n2 − n, j

) (
n2 − n− 1, k

)
=

(
n2 − n− 1, n2 − n, k

) (
n2 − n, n2 − n− 1, j

) (
n2 − n, n2 − n− 1, k

)
where j, k /∈ {n2 − n− 1, n2 − n}.

Thus, the 3-cycles in the forms
(
n2 − n− 1, j, k

)
and

(
n2 − n, j, k

)
can be constructed by a

sequence of moves in the puzzle where j, k /∈ {n2 − n− 1, n2 − n}.

Therefore, any 3-cycle can be obtained via the puzzle’s moves. Thus, ω can be obtained via
the puzzle’s moves as well. Then ω is solvable.

It remains to show that any even initial configuration of the board with a fixed cell in
{n2 − 2n− 1, n2 − n− 1, n2 − 2} is solvable by modifying the previous process.

Theorem 3.5. For an n× n board B with a fixed cell in {n2 − 2n− 1, n2 − n− 1, n2 − 2}, all
even initial configurations of the board B are solvable.

Proof. Let ω be an even initial configuration of the board B, and δ be a permutation which
transfers the hole from cell n2 to cell n throughout the rightmost column by repeatedly switching
the hole with the tile in the above cell n − 1 times, and then transfers the hole from cell n to
cell 1 throughout the uppermost row by repeatedly switching the hole with the tile in the left
cell n− 1 times, that is

δ = (1, 2) (2, 3) · · · (n− 1, n) (n, 2n) (2n, 3n) · · ·
(
n2 − 2n, n2 − n

) (
n2 − n, n2

)
.

Since δ is the product of 2(n − 1) transpositions, δ is an even permutation. We define a per-
mutation ω′ which is a configuration after transferring the hole from cell n2 to cell 1 by δ, that
is ω′ = δω. Since ω is an even configuration, and δ makes even puzzle’s moves, ω′ is an even
configuration as well. Claim that ω′ can be obtained via the puzzle’s moves. If we get the claim,
then ω = δ−1ω′ can be obtained via the puzzle’s moves as well. We prove such claim by following
the idea of Theorem 3.4’s proof.

Note that ω′ is an even configuration containing a fixed cell in {n2−2n−1, n2−n−1, n2−2}
with the hole at cell 1. By Theorem 3.3, ω′ can be written as a product of 3-cycles. We will
prove that any 3-cycle (i, j, k) with no fixed cells where i, j, k /∈ {n+ 1, n+ 2} can be obtained
via the puzzle’s moves by modifying a routine construction from the previous case. Then we
prove that any 3-cycle (i, j, k) with no fixed cells where at least one of i, j, k is in {n+ 1, n+ 2}
can be obtained via the puzzle’s moves as well.
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Case 1: i, j, k /∈ {n+ 1, n+ 2}.
Let i be a cell in the board that is neither cell n + 1 nor cell n + 2. We claim that

(n+ 2, n+ 1, i) can be obtained by the puzzle’s moves. For i = 1, we can construct α′ =
(n+ 2, n+ 1, 1) by α′ = (n+ 2, n+ 1) (n+ 1, 1). For i = 2, we can construct σ′ = (n+ 2, n+ 1, 2)
by σ′ = (1, 2) (2, n+ 2) (n+ 2, n+ 1) (n+ 1, 1).

Then we will construct a sequence of moves in the game that represents the permutation
(n+ 2, n+ 1, i) where cell i is not a cell in {1, 2, n+1, n+2}. Let β′ be a permutation transferring
a tile in cell i to cell 2 without passing cell 1, cell n+1 and the fixed cell, and the hole is in cell
n+ 2 at the beginning and goes back to the same cell at the end. Claim that we can construct
β′ for all boards with a fixed cell in {n2 − 2n − 1, n2 − n − 1, n2 − 2}, which is shown in the
appendix. If we get the claim, we obtain a permutation (α′)−1(β′)−1α′σ′(α′)−1β′α′ which is a
sequence of moves in the game.

By such permutation, it implies that (n+ 2, n+ 1, i) = (α′)−1(β′)−1α′σ′(α′)−1β′α′.
Thus, we can construct (n+ 2, n+ 1, i) by a sequence of moves in the puzzle where i /∈

{n + 1, n + 2}. Note that (n+ 2, j) (n+ 1, k) = (n+ 2, n+ 1, j) (n+ 2, n+ 1, k). Hence, for
i, j, k /∈ {n+ 1, n+ 2},

(i, j, k) = (n+ 2, j) (n+ 1, k) (n+ 2, n+ 1, i) (n+ 2, j) (n+ 1, k)

= (n+ 2, n+ 1, j) (n+ 2, n+ 1, k) (n+ 2, n+ 1, i) (n+ 2, n+ 1, j) (n+ 2, n+ 1, k) .

Case 2: At least one of i, j, k is in {n+ 1, n+ 2}.
It is enough to show that we can obtain 3-cycles in the forms (n+ 1, n+ 2, i), (n+ 1, j, k)

and (n+ 2, j, k) where i, j, k 6= n+ 1 and i, j, k 6= n+ 2 via the puzzle’s moves as well.
Note that (n+ 1, n+ 2, i) is the inverse of (n+ 2, n+ 1, i). Hence,

(n+ 1, n+ 2, i) = (n+ 2, n+ 1, i)−1

= ((α′)−1(β′)−1α′σ′(α′)−1β′α′)−1

= (α′)−1(β′)−1α′(σ′)−1(α′)−1β′α′.

Thus, the 3-cycle (n+ 1, n+ 2, i) can be constructed by a sequence of moves in the puzzle
where i /∈ {n+ 1, n+ 2}.

Furthermore, we can construct (n+ 1, j, k) and (n+ 2, j, k) by applying 3-cycles (n+ 2, n+ 1, i)
and (n+ 1, n+ 2, i). Then

(n+ 1, j, k) = (n+ 2, n+ 1, k) (n+ 1, j) (n+ 2, k)

= (n+ 2, n+ 1, k) (n+ 1, n+ 2, j) (n+ 1, n+ 2, k) ,

and

(n+ 2, j, k) = (n+ 1, n+ 2, k) (n+ 2, j) (n+ 1, k)

= (n+ 1, n+ 2, k) (n+ 2, n+ 1, j) (n+ 2, n+ 1, k)

where j, k /∈ {n+ 1, n+ 2}.
Thus, the 3-cycles in the forms (n+ 1, j, k) and (n+ 2, j, k) can be constructed by a sequence

of moves in the puzzle where j, k /∈ {n+ 1, n+ 2}.

Therefore, any 3-cycle with no fixed cells can be obtained via the puzzle’s moves. Thus, ω′

can be obtained via the puzzle’s moves as well. Hence, ω can be obtained via the puzzle’s moves,
and is solvable.

By Proposition 3.2, Theorem 3.4 and Theorem 3.5, we obtain the following theorem.
Theorem 3.6. For an n×n board with a fixed cell f , all even configurations are solvable if and
only if f /∈ Fn

1 = {2, n− 1, n+ 1, 2n, n2 − 2n+ 1, n2 − n, n2 − n+ 2, n2 − 1} where n ≥ 4.
For example, in case of a 4× 4 board with a fixed cell, Fn

1 = {2, 3, 5, 8, 9, 12, 14, 15}.
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3.2 Solvability Conditions of Boards with 2 Fixed Cells
In this section, we expand similar theorems in the case of 2 fixed cells. Firstly, we provide some
necessary definitions and notations.

From this section on, the positions of cells in the board are sometimes rewritten in ordered
pairs. The position of the cell c in the row ch (from the top) and the column cv (from the left)
is denoted by 〈ch, cv〉 where ch, cv ∈ {1, 2, 3, . . . , n}. Note that ch = d c

ne and cv = c − nb c
nc.

Moreover, for convenience, we name some cells specifically. A cell Bm is defined by

Bm =



〈n−m− 1, n− 1〉 ;m = 0, 1

〈n−m,n〉 ; 2 ≤ m ≤ n− 1

〈1, 2n−m− 1〉 ;n ≤ m ≤ 2n− 2

〈m− 2n+ 3, 1〉 ; 2n− 1 ≤ m ≤ 3n− 3

〈n,m− 3n+ 4〉 ; 3n− 2 ≤ m ≤ 4n− 5

B0 ;m = 4n− 4

where m = 0, 1, 2, . . . , 4n− 4.
The distance between cells c and d in the board is defined by

D(c, d) = max{|ch − dh| , |cv − dv|}.

In the previous section, we defined the forbidden cells for the board with 1 fixed cell. However,
for the board with 2 fixed cells, there are some sets of two cells such that their elements cannot
be fixed simultaneously; otherwise, there exists an unsolvable even initial configuration. For an
n×n board with 2 fixed cells, a 2-element set whose elements cannot be fixed simultaneously is
called a forbidden 2-set. The set of all forbidden 2-sets for an n × n board with 2 fixed cells is
denoted by Fn

2 .

Proposition 3.7. Let c and d be the only 2 fixed cells in an n × n board. If {c, d} satisfies at
least one of these conditions:

(i) c ∈ Fn
1 or d ∈ Fn

1

(ii) {c, d} ∈ {{3, 2n+ 1}, {n− 2, 3n}, {n2 − 3n+ 1, n2 − n+ 3}}

(iii) {c, d} = {n2 − 2n, n2 − 2}

(iv) D(c, d) = 2 where ch = dh ∈ {1, n} or cv = dv ∈ {1, n}

(v) |ch − dh| = |cv − dv| = 1 where {c, d} ∩ {B2,B3, . . . ,B4n−5} 6= ϕ,

then {c, d} ∈ Fn
2 where n ≥ 4.

Proof. (i) Suppose that c ∈ Fn
1 or d ∈ Fn

1 . The proof of Proposition 3.2 is still available.
There exists a configuration that is unable to solve. Hence, {c, d} is a forbidden 2-set and
then is in Fn

2 .

(ii) Claim that the pairs of cells {3, 2n + 1}, {n − 2, 3n} and {n2 − 3n + 1, n2 − n + 3} are
forbidden 2-sets. Consider the case of {3, 2n+ 1}. Assume that cell 3 and cell 2n+ 1 are
fixed and the tiles located in cell 1 and cell 2 are tile 2 and tile 1, respectively. To solve
such puzzle, the tiles in those cells have to be swapped. Firstly, we have to transfer the
hole to cell n + 2. From this position, there are two ways for the hole to move, going up
and going to the left. Without loss of generality, we move the hole up, swapping the hole
and tile 1 to move tile 1 out of cell 2. To avoid the repetition, the only way for the second
move is moving to the left. Now the hole is in cell 1 and tile 2 is in cell 2. Similar to the
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previous step, we move the hole down to cell n + 1. Then, to transfer tile 1 to cell 1, we
move the hole to the right, swapping with tile 1. This process changes the tiles in cell 1,
cell 2 and cell n+1 from tile 2, tile 1 and tile n+1 to tile n+1, tile 2 and tile 1, respectively.
If we repeat the process, the tiles in cell 1, cell 2 and cell n + 1 are changed into tile 1,
tile n + 1 and tile 2, respectively. If we again repeat the process, the tiles in those cells
are transferred back to their initial cells. Notice that we cannot transfer tile 1 and tile 2
to cell 1 and cell 2, respectively. Thus, the configuration is unable to solve. Therefore,
{3, 2n+1} is a forbidden 2-set. The other cases can be proved in a similar way due to the
symmetry of the board. Hence, {3, 2n+ 1}, {n− 2, 3n}, {n2 − 3n+ 1, n2 − n+ 3} ∈ Fn

2 .

(iii) Assume that cell n2 − 2n and cell n2 − 2 are fixed and the tiles located in cell n2 − n− 1
and cell n2 − 1 are tile n2 − 1 and tile n2 − n− 1, respectively. To solve such puzzle, the
tiles in those cells have to be swapped. From the initial position of the hole, there are two
ways for the hole to move, going up and going to the left. Without loss of generality, we
move the hole to the left, swapping the hole and tile n2 − n − 1 to move tile n2 − n − 1
out of cell n2− 1. To avoid the repetition, the only way for the second move is moving up.
Now the hole is in cell n2 − n− 1 and tile n2 − 1 is in cell n2 − 1. Similar to the previous
step, we move the hole to the right to cell n2 − n. Then, to transfer tile n2 − n− 1 to cell
n2 − n− 1, we move the hole down, swapping with tile n2 − n− 1. This process changes
the tiles in cell n2 − n − 1, cell n2 − n and cell n2 − 1 from tile n2 − 1, tile n2 − n and
tile n2 − n − 1 to tile n2 − n, tile n2 − n − 1 and tile n2 − 1, respectively. If we repeat
the process, the tiles in cell n2 − n − 1, cell n2 − n and cell n2 − 1 are changed into tile
n2 − n − 1, tile n2 − 1 and tile n2 − n, respectively. If we again repeat the process, the
tiles in those cells are transferred back to their initial cells. Notice that we cannot transfer
tile n2 − n − 1 and tile n2 − 1 to cell n2 − n − 1 and cell n2 − 1, respectively. Thus, the
configuration is unable to solve. Therefore, {n2 − 2n, n2 − 2} is a forbidden 2-set. Hence,
{n2 − 2n, n2 − 2} ∈ Fn

2 .

(iv) Consider the case that ch = dh ∈ {1, n}. Since D(c, d) = 2, without loss of generality, let
c = 〈1, cv〉 and d = 〈1, cv + 2〉 = c+ 2 where cv /∈ {2, n− 3}. Assume that cell c and d are
fixed and the tile located in cell c+ 1 is not tile c+ 1, named tile t 6= c+ 1. To solve such
puzzle, we have to take tile t away from cell c+ 1 and take tile c+ 1 to cell c+ 1 instead.
First, we have to transfer the hole to cell n + c + 1. Then move the hole up to swap the
hole and tile t. Now, the hole is locked in cell c + 1. After that, we cannot make any
moves in the board without the hole. Hence, we have to take the hole out of cell c+1, and
the only way is moving it down to cell n+ c+ 1. That makes tile t get back to cell c+ 1
and cannot be transferred to cell t. Thus, the configuration is unable to solve. Therefore,
{c, d} is a forbidden 2-set. The other cases can be proved similarly. Hence, {c, d} ∈ Fn

2 .

(v) Without loss of generality, let c ∈ {B2,B3, . . . ,B4n−5}. We first consider the case when
c = 〈1, cv〉 and d = 〈2, cv + 1〉 where cv 6= n. Moreover, cv 6= n−1 since the case cv = n−1
is considered in (i). Assume that cell c and d are fixed and the tile located in cell c + 1
is not tile c + 1, named tile t 6= c + 1. To solve such puzzle, we have to take tile t away
from cell c+ 1 and take tile c+ 1 to cell c+ 1 instead. First, we have to transfer the hole
to cell c + 2. Then move the hole to the left to swap the hole and tile t. Now, the hole
is locked in cell c + 1. After that, we cannot make any moves in the board without the
hole. Hence, we have to take the hole out of cell c + 1, and the only way is moving it to
the right to cell c+ 2. That makes tile t get back to cell c+ 1 and cannot be transferred
to cell t. Thus, the configuration is unable to solve. Therefore, {c, d} is a forbidden 2-set.
The other cases can be proved similarly. Hence, {c, d} ∈ Fn

2 .

In an n×n board, let En
2 be the set of pair of cells {c, d} which satisfies at least one of these
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conditions:

(i) c ∈ Fn
1 or d ∈ Fn

1

(ii) {c, d} ∈ {{3, 2n+ 1}, {n− 2, 3n}, {n2 − 3n+ 1, n2 − n+ 3}}

(iii) {c, d} = {n2 − 2n, n2 − 2}

(iv) D(c, d) = 2 where ch = dh ∈ {1, n} or cv = dv ∈ {1, n}

(v) |ch − dh| = |cv − dv| = 1 where {c, d} ∩ {B2,B3, . . . ,B4n−5} 6= ϕ

According to Proposition 3.7, En
2 ⊆ Fn

2 . We provide sufficient conditions for the positions of the
two fixed cells that make all even initial configurations solvable in Theorem 3.8 and Theorem
3.9.

Theorem 3.8. For an n × n board B with 2 fixed cells c and d, if {c, d} /∈ En
2 and c, d /∈

{n2 − 2n− 1, n2 − n− 1, n2 − 2}, then all even initial configurations of the board B are solvable.

Proof. Let B be an n × n board with 2 fixed cells c and d where {c, d} /∈ En
2 and c, d /∈

{n2 − 2n− 1, n2 − n− 1, n2 − 2}, and ω be an even initial configuration of B. The proof can be
demonstrated by following the proof of Theorem 3.4 with the claim that we can construct β for
all configurations of B, which is shown in the appendix. Note that cell n2 − n − 1 is not fixed
because we cannot have fixed cells in {n2−2n−1, n2−n−1, n2−2}. Cell n2−n and cell n2−1
cannot be fixed since both cells are in Fn

1 ; otherwise, a pair of cells that contains cell n2−n or cell
n2 − 1 is in En

2 . Cell n2 is the position of the hole. Therefore, σ =
(
n2 − n− 1, n2 − n, n2 − 1

)
and α =

(
n2 − n− 1, n2 − n, n2

)
are still available for B. Finally, it results that ω can be

obtained via the puzzle’s moves. Therefore, ω is solvable.

Theorem 3.9. For an n × n board B with 2 fixed cells c and d in which {c, d} /∈ En
2 , if

c, d ∈ {n2 − 2n − 1, n2 − n − 1, n2 − 2}, then all even initial configurations of the board B are
solvable.

Proof. Let B be an n × n board with 2 fixed cells c and d where {c, d} /∈ En
2 and c, d ∈

{n2 − 2n− 1, n2 − n− 1, n2 − 2}, and ω be an even initial configuration of B. The proof can be
demonstrated by following the proof of Theorem 3.5 with the claim that we can construct β′ for
all configurations of B, which is shown in the appendix. Note that cells in {1, 2, n + 1, n + 2}
are not fixed since c, d ∈ {n2 − 2n− 1, n2 − n− 1, n2 − 2}. Therefore, σ′ = (n+ 2, n+ 1, 2) and
α′ = (n+ 2, n+ 1, 1) are still available for B. Finally, it results that ω can be obtained via the
puzzle’s moves. Therefore, ω is solvable.
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4 Appendix
In this part, we construct β and β′. We show the algorithms to construct β and β′ for an n× n
board with 1 or 2 fixed cells. Now, we provide some more definitions and notations.

Let ϵ be the number of fixed cells in an n × n board and F = {f e : 1 ≤ e ≤ ϵ} be the set
of all fixed cells in the board. The position of the fixed cell f e is denoted by 〈f e

h, f
e
v 〉 and the

position of cell i is denoted by 〈ih, iv〉.
The set of cells located around cell c is called the neighborhood of cell c, which is defined as

Nv = {x : D(x, c) = 1}. The elements in Nv are called the neighbors of cell c. Furthermore, the
set of (non-fixed) neighbors of all fixed cells in F is called the neighborhood of F , defined by
NF =

∪
fe∈F

Nfe\F .

4.1 Construction of β

The main idea refers to a sequence of cells, called the boundary route. In case of β, the
boundary route is a sequence of cells B0,B1,B2, . . . ,B4n−4 as defined in Section 3.2. We
denote B = {Bm : m = 0, 1, 2, . . . , 4n− 4}.

To construct β, we have to establish a closed route of hole containing cell i (position 〈ih, iv〉),
cell n2−n− 1 (position 〈n− 1, n− 1〉), and cell n2− 1 (position 〈n, n− 1〉). Through this closed
route, β transfers the tile in 〈ih, iv〉 to 〈n, n− 1〉 by shifting the hole from 〈n− 1, n− 1〉 to the
next cell along this closed route consecutively until the tile in 〈ih, iv〉 arrives at 〈n, n − 1〉, and
the hole gets back to 〈n− 1, n− 1〉. Here comes an algorithm that constructs β.

Our route begins at 〈n − 1, n − 1〉, we keep stepping the hole to the following cell in the
boundary route as long as the following cell is not fixed. If the fixed cells are not in the boundary
route, the method can be done repeatedly until we reach 〈n−1, n−1〉 again, and then we obtain
the closed route. If there are fixed cells in the boundary route, we do “AvoidFixedCell” to go
through the neighbors of fixed cells instead, and then get back to the boundary route and go
forward as before.

If 〈ih, iv〉 is in the boundary route, such boundary route is actually the closed route that
contains 〈ih, iv〉 as desire. If 〈ih, iv〉 is not in the boundary route, we step along the boundary
route until we are in the same row or column as 〈ih, iv〉. Note that there are at least 4 cells in the
boundary route that is in the same row or column as 〈ih, iv〉. The board we considered contains
at most 2 fixed cells. Hence, it is guaranteed that there are cell a and cell b in the boundary

The 28th Annual Meeting in Mathematics (AMM2024)

162



route such that we can take path from cell a along row ih or column iv to reach 〈ih, iv〉, and
then take path from 〈ih, iv〉 along row ih or column iv to cell b in the boundary route, without
any appearances of fixed cells along the path. After that, we continue along the boundary route
to complete the closed route.

The pseudocode representing the whole method are shown below.

Procedure: Main
Set k := 0, j := 1, 〈xh, xv〉 := B0, β0 := B0. Input F .
while k ≤ 4n− 5 do

if 〈ih, iv〉 /∈ B and xh = ih
if iv = n− 1 and ∃f1, f2 ∈ F such that f1

v = iv, f1
h < ih and f2

h = ih
repeat Set 〈xh, xv〉 := Bk+1, βj := 〈xh, xv〉, j := j + 1. until xh = ih
Set 〈xh, xv〉 := 〈ih, iv〉, βj := 〈xh, xv〉, j := j + 1.
repeat Set 〈xh, xv〉 := 〈xh + 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = n− 3
Set 〈xh, xv〉 := 〈xh, xv − 1〉, βj := 〈xh, xv〉, j := j + 1.
repeat Set 〈xh, xv〉 := 〈xh + 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = n

end if
if ∃f e ∈ F such that f e

h = xh and iv < f e
v < xv

repeat Set 〈xh, xv〉 := Bk+1, βj := 〈xh, xv〉, j := j + 1. until xv = iv
if ∃f e ∈ F such that f e

v = xv and xh < f e
h < ih

repeat Set 〈xh, xv〉 := Bk+1, βj := 〈xh, xv〉, j := j + 1. until xh = ih
repeat Set 〈xh, xv〉 := 〈xh, xv + 1〉, βj := 〈xh, xv〉, j := j + 1. until xv = iv
repeat Set 〈xh, xv〉 := 〈xh + 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = n

else
repeat Set 〈xh, xv〉 := 〈xh + 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = ih
if ∃f e ∈ F such that f e

h = xh and f e
v < xv

repeat Set 〈xh, xv〉 := 〈xh+1, xv〉, βj := 〈xh, xv〉, j := j+1. until xh = n
else

repeat Set 〈xh, xv〉 := 〈xh, xv−1〉, βj := 〈xh, xv〉, j := j+1. until xv = 1
else

repeat Set 〈xh, xv〉 := 〈xh, xv − 1〉, βj := 〈xh, xv〉, j := j + 1. until xv = iv
if ∃f e ∈ F such that f e

v = xv and f e
h < xh

if ∃f e ∈ F such that f e
h = xh and f e

v < xv
repeat Set 〈xh, xv〉 := 〈xh+1, xv〉, βj := 〈xh, xv〉, j := j+1. until xh = n

else
repeat Set 〈xh, xv〉 := 〈xh, xv−1〉, βj := 〈xh, xv〉, j := j+1. until xv = 1

else
repeat Set 〈xh, xv〉 := 〈xh − 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = 1

Let k be the index such that Bk = 〈xh, xv〉.
end if
if Bk+1 = 〈f e

h, f
e
v 〉 for some f e ∈ F

Perform “AvoidFixedCell(〈xh, xv〉, q)”.
Let k be the index such that Bk = 〈xh, xv〉. Set j := j + q + 1.

end if
Set 〈xh, xv〉 := Bk+1, βj := 〈xh, xv〉, j := j + 1.

end while
“Construct β”

If the following cell in the boundary route is fixed, we need to choose another route by
applying “AvoidFixedCell”. At the end of “AvoidFixedCell”, the hole is back in the boundary
route again to continue the main method.
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Procedure: AvoidFixedCell
If Bk+1 = f e for some f e ∈ F , then Bk ∈ Nfe ⊆ NF . Note that there is a non-fixed cell

Bl 6= Bk in B ∩ NF . Starting from Bk, we then step to the other cell in NF that is next to
the current cell in clockwise direction around the fixed cells. We keep doing this until we reach
Bl. Assume that it takes p steps from B0 to Bk and we need q steps from Bk to Bl via this
process. Let βp = Bk and βp+q be the cell that the hole is in after q steps in this process. Note
that βp+q = Bl. At the end of the process, it outputs the final position 〈xh, xv〉 of the cell that
the hole is in and the number of steps q.

Procedure: Construct β
According to the procedure, we obtain the sequence of cells β0, β1, β2, . . . , βs for some positive

integer s. Then we construct β by letting

B = (β0, βs) (βs, βs−1) · · · (β2, β1) (β1, β0) .

After applying B, the hole goes along the route, which contains cell i, from cell n2−n−1 and get
back to cell n2−n− 1 without passing any fixed cells, the tile located at cell βj is moved to cell
βj−1 for j = 2, 3, 4, . . . , s and the tile at cell β1 is moved to cell βs. Hence, to obtain β, we apply B
repeatedly until tile i is in cell n2−1 and the hole is in cell n2−n−1. We then obtain β as desire.

4.2 Construction of β′

In case of β′, the boundary route is a sequence of cells B′
0,B

′
1,B

′
2, . . . ,B

′
4n−4 where B′

m is
defined by

B′
m =



〈m+ 2, 2〉 ;m = 0, 1

〈m+ 1, 1〉 ; 2 ≤ m ≤ n− 1

〈n,m− n+ 2〉 ;n ≤ m ≤ 2n− 2

〈3n−m− 2, n〉 ; 2n− 1 ≤ m ≤ 3n− 3

〈1, 4n−m− 3〉 ; 3n− 2 ≤ m ≤ 4n− 5

B′
0 ;m = 4n− 4.

We denote B′ = {B′
m : m = 0, 1, 2, . . . , 4n−4}. To construct β′, similar to the previous case, we

have to establish a closed route of hole containing cell i (position 〈ih, iv〉), cell 2 (position 〈1, 2〉),
and cell n+2 (position 〈2, 2〉). Through this closed route, β′ transfers the tile in 〈ih, iv〉 to 〈1, 2〉
by shifting the hole from 〈2, 2〉 to the next cell along this closed route consecutively until the
tile in 〈ih, iv〉 arrives at 〈1, 2〉 and the hole gets back to 〈2, 2〉. An algorithm constructing β′

follows the idea of the algorithm for β by changing the initial cell from 〈n − 1, n − 1〉 to 〈2, 2〉
and considering B′ and β′

j instead of B and βj , respectively.
The pseudocode representing the whole method are shown below.

Procedure: Main
Set k := 0, j := 1, 〈xh, xv〉 := B′

0, β0 := B′
0. Input F .

while k ≤ 4n− 5 do
if 〈ih, iv〉 /∈ B′ and xh = ih

if iv = 2 and ∃f1, f2 ∈ F such that f1
v = iv, f1

h > ih and f2
h = ih

repeat Set 〈xh, xv〉 := B′
k+1, βj := 〈xh, xv〉, j := j + 1. until xh = ih

Set 〈xh, xv〉 := 〈ih, iv〉, βj := 〈xh, xv〉, j := j + 1.
repeat Set 〈xh, xv〉 := 〈xh − 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = 4
Set 〈xh, xv〉 := 〈xh, xv + 1〉, βj := 〈xh, xv〉, j := j + 1.
repeat Set 〈xh, xv〉 := 〈xh − 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = 1
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end if
if ∃f e ∈ F such that f e

h = xh and xv < f e
v < iv

repeat Set 〈xh, xv〉 := B′
k+1, βj := 〈xh, xv〉, j := j + 1. until xv = iv

if ∃f e ∈ F such that f e
v = xv and ih < f e

h < xh
repeat Set 〈xh, xv〉 := B′

k+1, βj := 〈xh, xv〉, j := j + 1. until xh = ih
repeat Set 〈xh, xv〉 := 〈xh, xv − 1〉, βj := 〈xh, xv〉, j := j + 1. until xv = iv
repeat Set 〈xh, xv〉 := 〈xh − 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = 1

else
repeat Set 〈xh, xv〉 := 〈xh − 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = ih
if ∃f e ∈ F such that f e

h = xh and f e
v > xv

repeat Set 〈xh, xv〉 := 〈xh−1, xv〉, βj := 〈xh, xv〉, j := j+1. until xh = 1
else

repeat Set 〈xh, xv〉 := 〈xh, xv+1〉, βj := 〈xh, xv〉, j := j+1. until xv = n
else

repeat Set 〈xh, xv〉 := 〈xh, xv + 1〉, βj := 〈xh, xv〉, j := j + 1. until xv = iv
if ∃f e ∈ F such that f e

v = xv and f e
h > xh

if ∃f e ∈ F such that f e
h = xh and f e

v > xv
repeat Set 〈xh, xv〉 := 〈xh−1, xv〉, βj := 〈xh, xv〉, j := j+1. until xh = 1

else
repeat Set 〈xh, xv〉 := 〈xh, xv+1〉, βj := 〈xh, xv〉, j := j+1. until xv = n

else
repeat Set 〈xh, xv〉 := 〈xh + 1, xv〉, βj := 〈xh, xv〉, j := j + 1. until xh = n

Let k be the index such that B′
k = 〈xh, xv〉.

end if
if B′

k+1 = 〈f e
h, f

e
v 〉 for some f e ∈ F

Perform “AvoidFixedCell(〈xh, xv〉, q′)”.
Let k be the index such that B′

k = 〈xh, xv〉. Set j := j + q′ + 1.
end if
Set 〈xh, xv〉 := B′

k+1, βj := 〈xh, xv〉, j := j + 1.
end while
“Construct β′”

If the following cell in the boundary route is fixed, we need to choose another route by
applying “AvoidFixedCell”. At the end of “AvoidFixedCell”, the hole is back in the boundary
route again to continue the main method.

Procedure: AvoidFixedCell
If B′

k+1 = 〈f e
h, f

e
v 〉 for some f e ∈ F , then B′

k ∈ Nfe ⊆ NF . Note that there is a non-fixed
cell B′

l 6= B′
k in B′ ∩ NF . Starting from B′

k, we then step to the other cell in NF that is next
to the current cell in clockwise direction around the fixed cells. We keep doing this until we
reach B′

l. Assume that it takes p′ steps from B′
0 to B′

k and we need q′ steps from B′
k to B′

l via
this process. Let β′

p′ = B′
k and β′

p′+q′ be the cell that the hole is in after q′ steps in this process.
Note that β′

p′+q′ = B′
l. At the end of the process, it outputs the final position 〈xh, xv〉 of the

cell that the hole is in and the number of steps q′.

Procedure: Construct β′

According to the procedure, we obtain the sequence of cells β′
0, β

′
1, β

′
2, . . . , β

′
s′ for some positive

integer s′. Then we construct β′ by letting

B′ =
(
β′
0, β

′
s′
) (

β′
s′ , β

′
s′−1

)
· · ·

(
β′
2, β

′
1

) (
β′
1, β

′
0

)
.

After applying B′, the hole goes along the route, which contains cell i, from cell n + 2 and get
back to cell n+2 without passing any fixed cells, the tile located at cell β′

j is moved to cell β′
j−1
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for j = 2, 3, 4, . . . , s′ and the tile at cell β′
1 is moved to cell β′

s′ . Hence, to obtain β′, we apply B′

repeatedly until tile i is in cell 2 and the hole is in cell n+ 2. We then obtain β′ as desire.
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Abstract

The δ-complement Gδ and the δ′-complement Gδ′ of a graph G, introduced in 2022 by
Pai et al., are two variants of the graph complement. Two vertices are adjacent in Gδ if and
only if they are of the same degree but not adjacent in G or they are of different degrees but
adjacent in G. On the other hand, two vertices are adjacent in G′

δ if and only if they are not
adjacent in Gδ, i.e., G′

δ is the complement of Gδ. We provide the Nordhaus-Gaddum-type
bounds, applied from Nordhaus and Gaddum (1956), over the girths and the diameters of a
graph and its δ-complement. We also provide the Nordhaus-Gaddum-type bounds over the
girths and the diameters of a graph and its δ′-complement.
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1 Introduction
In 1956, Nordhaus and Gaddum [8] showed the following relations between the chromatic num-
bers of a graph G and G.

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1,

and

n ≤ χ(G) · χ(G) ≤
(
n+ 1

2

)2

.

Some times after, researchers studied the relations between the same invariant of a graph and
its complement in a similar manner to Nordhaus and Gaddum. This kind of relation was then
called Nordhaus-Gaddum-type relations. The parameters they were concerning are, for instance,
minimum degrees [2], maximum degrees [12], diameters [11], girths [11], circumferences [11], and
domination numbers [7]. Modern mathematicians even collected those results in a survey [3].
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In 2022, Pai, et al. [9] defined the δ-complement and the δ′-complement of a graph. They
are defined similarly to the usual graph complement but regarding the degree of the vertices
further than just the edges. In 2023, Vichitkunakorn, et al. [10] then studied the Nordhaus-
Gaddum-type relations between G and Gδ on the chromatic numbers by applying the original
theorem from [8].

In this paper, we provide the Nordhaus-Gaddum-type relations over the girths, radii, and
diameters of a graph and its δ-complement. Then, we give a similar result on the δ′-complement.
The paper is organized as follows. In Section 2, we review the Nordhaus-Gaddum-type relations
on the chromatic numbers, girths, radii, an diameters of a graph and its complement. Then
we recall the definition of the δ-complement and the δ′-complement of a graph. After that,
we revisit the Nordhaus-Gaddum-type relation over the chromatic numbers of a graph and its
δ-complement. In Section 3, we show the Nordhaus-Gaddum-type relation on the girths and
the diameters of a graph and its δ-complement. Moreover, we show the same relation over the
girths and the diameters of a graph and its δ′-complement. The sharpness of the bounds is then
discussed. Finally, the conclusion and some discussions on this study are in Section 4.

2 Preliminaries
The complement of a simple graph G = (V,E), denoted by G = (V,E), is a graph such that
uv ∈ E if and only if uv /∈ E. The chromatic number χ(G) of a graph G is the least amount
of colours required to label each vertex in G so that no two adjacent vertices share the same
colour.

In 1956, Nordhaus and Gaddum were concerned with finding the relations between the
chromatic number χ(G) of a graph G and the chromatic number χ(G) of the complement G.
They found the upper bound and lower bound of the sum and the product of χ(G) and χ(G)
which they have provided in [8].

Theorem 2.1 ([8]). Let G be a graph of n vertices. Then,

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1,

and

n ≤ χ(G) · χ(G) ≤
(
n+ 1

2

)2

.

Moreover, the bounds are sharp for all n.

The girth girth(G) of a graph G is the length of the smallest cycle contained in a graph. If
G does not contain any cycles, then girth(G) = ∞.

In 1990, Xu [11] provided the upper bound and the lower bound of girth(G) + girth(G) and
girth(G) · girth(G) as follows.

Theorem 2.2 ([11]). For n ≥ 6, let G be a graph of n vertices such that G and its complement
G are containing cycles. Then,

6 ≤ girth(G) + girth(G) ≤ n+ 3,

and
9 ≤ girth(G) · girth(G) ≤ 3n.

Moreover, the bounds are sharp for all n ≥ 6.

The distance between any two vertices u, v ∈ V (G), denoted by dG(u, v), is the length of the
shortest path between u and v in G. If there are no such paths between them, then dG(u, v) = ∞.
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The diameter of G, denoted by diam(G), is the maximum distance between any two vertices in
G. If G is not connected, then diam(G) = ∞.

For the diameter of a graph and its complement, the following theorem was proven separately
by [1], [4], [5], and [11].

Theorem 2.3 ([1], [4], [5], [11]). For n ≥ 6, let G be a graph of n vertices such that G and its
complement G are connected. Then,

4 ≤ diam(G) + diam(G) ≤ n+ 1,

and
4 ≤ diam(G) · diam(G) ≤ 2n− 2.

Moreover, the bounds are sharp for all n ≥ 6.

In 2022, Pai et al. [9] have defined the δ-complement and the δ′-complement of a graph as
follows.

Definition 2.4. Consider a graph G = (V,E). A graph Gδ = (V,Eδ) such that for any u, v ∈ V ,
uv ∈ Eδ if and only if deg(u) = deg(v) and uv /∈ E, or deg(u) ̸= deg(v) and uv ∈ E. Then Gδ

is called a δ-complement of G.

Definition 2.5. Consider a graph G = (V,E). A graph Gδ′ = (V,Eδ′) such that for any
u, v ∈ V , uv ∈ Eδ′ if and only if deg(u) = deg(v) and uv ∈ E, or deg(u) ̸= deg(v) and uv /∈ E.
Then Gδ′ is called a δ′-complement of G.

We notice from the definitions that Gδ′ = Gδ.
After that, in the year after, Vichitkunakorn et al. [10] considered a δ-complement variant

of the Nordhaus-Gaddum-type relation as follows.

Theorem 2.6 ([10]). For n ≥ 4, let G be a graph of n vertices. Let d1, d2, . . . , dm be the distinct
degrees of vertices in G, and Vdi be the set of vertices of degree di. Then

2 ·
√

max
1≤i≤m

{|Vdi |} ≤ χ(G) + χ(Gδ) ≤ m+ n,

and

max
1≤i≤m

{|Vdi |} ≤ χ(G) · χ(Gδ) ≤
(
m+ n

2

)2

.

To the best of the authors’ knowledge, other works on Nordhaus-Gaddum-type relations over
other invariants of a graph and its δ-complement (or its δ′-complement) are yet to be found.

3 Main Results
Throughout this section, we denote Kn the complete graph of order n, Cn the cycle of order n,
and Pn the path of order n. For two graphs G and H, we denote G+H and G∨H the disjoint
union and the join of G and H, respectively. If H is a subgraph of G, the graph G −H is the
resulting graph after deleting all edges of H from G.

3.1 Girths
We recall that the girth of a graph G, denoted by girth(G), is the length of the smallest cycle
contained in G. If that graph does not contain cycles, i.e., it is acyclic, then girth(G) = ∞.

Before we get to the theorem, there is a necessary fact to give the result.
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(I) (II) (III) (IV) (V) (VI) (VII)

Figure 1: All non-isomorphic graphs of order n = 4 or 5 with girth n− 1

Lemma 3.1. For n ≥ 6, let G be a graph of n vertices. Then girth(G) = n− 1 if and only if G
is a cycle of order n− 1 with a pendant vertex adjacent to at most one vertex in the cycle.

Proof. Assume n ≥ 6, and girth(G) = n − 1. Then the smallest cycle contained in G is Cn−1.
No two non-consecutive vertices in the cycle can be adjacent.

Let v be the vertex outside the cycle. Suppose v is adjacent to at least two vertices in
the cycle. Since the length of the cycle is at least 5, this creates a smaller cycle, which is a
contradiction. So v is adjacent to at most one vertex in the cycle. So G is Cn−1 +K1 or a cycle
with a pendant vertex attached.

The converse obviously holds.

Lemma 3.2. For n = 4 or 5, a graph G of n vertices has girth(G) = n − 1 if it is one of the
seven graphs in Figure. 1.

Proof. Assume n = 4. For a graph with 4 vertices whose girth is n− 1 = 3, it implies that there
exists a 3-cycle contained in the graph. The vertex outside the cycle can be adjacent to one,
two, all, or none of the three vertices of the cycle. So we obtain the four graphs from Figure. 1,
namely, (I), (II), (III), and (IV). Also, it is obvious that the girth of each graph is three.

Now assume n = 5. A graph with 5 vertices whose girth is n−1 = 4 implies that there exists
a 4-cycle contained in the graph. It is clear that there are no other edges between two vertices
of the cycle; otherwise, there will be a 3-cycle. The vertex outside the cycle cannot be adjacent
to two adjacent vertices in the cycle; otherwise, it creates a 3-cycle. So v is adjacent to at most
two vertices in the cycle. Hence, we obtain the result.

Theorem 3.3. For n ≥ 4, let G be a graph of n vertices such that G and Gδ contain cycles.
Then

6 ≤ girth(G) + girth(Gδ) ≤

{
2n− 2 if n = 4 or n ≥ 6,

2n if n = 5,

and

9 ≤ girth(G) · girth(Gδ) ≤

{
(n− 1)2 if n = 4 or n ≥ 6,

n2 if n = 5.

In addition, the lower bounds are sharp for all n ≥ 4.

Proof. The lower bounds are obvious since both G and Gδ must contain cycles. An example of
the sharp bounds for all n ≥ 4 is when G = K1 ∨ Pn−1. When n = 4, we can easily check that
Gδ

∼= G. So, girth(G) = girth(Gδ) = 3. When n > 4, the vertex joining the path is of degree
n− 1 in G. An endpoint of the path is of degree 2 in G, while its unique neighbour in the path
is of degree 3 in G. These three vertices are of different degrees and form a 3-cycle in G. We
get girth(G) = 3. In addition, This 3-cycle remains in Gδ. Therefore, girth(Gδ) = 3.

We now prove the upper bounds. For n = 4, Lemma 3.2 implies that G must be either C4 or
one of the graphs (I)–(IV) in Figure 1. It is easy to verify that the upper bounds hold. For n = 5,
the upper bounds are obvious. For n ≥ 6, it suffices to show that girth(G)+girth(Gδ) ≤ 2n−2.

Suppose to the contrary that girth(G) + girth(Gδ) is greater than 2n − 2. Then there are
three possibilities:

The 28th Annual Meeting in Mathematics (AMM2024)

170



Case 1: girth(G) = n and girth(Gδ) = n.

Case 2: girth(G) = n and girth(Gδ) = n− 1.

Case 3: girth(G) = n− 1 and girth(Gδ) = n.

If girth(G) = n, then G = Cn. Since cycle graphs are 2-regular, Gδ = G. Consider the
Ramsey number R(3, 3) = 6. Since n ≥ 6 but G does not contain a triangle, we have Gδ

contains triangles. Hence, girth(Gδ) = 3, but 3 < n − 1 for all n ≥ 6. This is a contradiction.
So the first two cases cannot happen.

If girth(G) = n− 1 and girth(Gδ) = n, then by Lemma 3.1, G is either Cn−1+K1 or a cycle
of order n − 1 with one pendant vertex, and Gδ = Cn. Both cases are impossible for any n.
Hence, the third case cannot happen as well.

Therefore, girth(G) + girth(Gδ) ≤ 2n− 2.
The multiplicative upper bound follows from the additive upper bound using the AM-GM

inequality as follows.

girth(G) · girth(Gδ) ≤
(
girth(G) + girth(Gδ)

2

)2

≤
(
2n− 2

2

)2

= (n− 1)2.

Remark 3.4. It is still unknown when both upper bounds of Theorem 3.3 are sharp. For 4 ≤
n ≤ 10, there are only 3 graphs that achieve the bounds. They are K1 ∨ P3 (the graph (III) in
Figure 1), C5, and C5 +K1, for n = 4, 5, and 6, respectively.

For large n, we expect that either G or Gδ will be likely to contain C3. Hence, either girth(G)
or girth(Gδ) is 3. So we conjecture, by using the same manner as Theorem 2.2, that Cn is the
graph with maximum values of girth(G)+girth(Gδ) and girth(G) · girth(Gδ) for infinitely many
values of n.

Conjecture 3.5. There are infinitely many values of n such that

girth(G) + girth(Gδ) ≤ n+ 3, and girth(G) · girth(Gδ) ≤ 3n

for each graph G of n vertices such that both G and Gδ contain cycles.

In the case of the sum and the product between girth(G) and girth(Gδ′), the obvious bounds
are sharp for all n ≥ 3.

Theorem 3.6. For n ≥ 3, let G be a graph of n vertices such that G and Gδ′ contain cycles.
Then

6 ≤ girth(G) + girth(Gδ′) ≤ 2n,

and
9 ≤ girth(G) · girth(Gδ′) ≤ n2.

Moreover, all bounds are sharp for all n ≥ 3.

Proof. All bounds are obvious. An example of the sharp lower bounds is when G = Kn since
Gδ′ = Kn and girth(Kn) = 3 for any n ≥ 3. The upper bounds are sharp if and only if
girth(G) = n and girth(Gδ′) = n. This only happens when G = Cn for n ≥ 3.
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3.2 Diameters
We recall that the diameter of a graph G is the maximum distance between any two vertices in
G. If G is not connected, then diam(G) = ∞.

Before we get to the Nordhaus-Gaddum relation between the diameter of G and Gδ, there
are some facts to give the result.

Lemma 3.7. Let G = Pn be a path graph of n vertices. Then

diam(Gδ) =


0 if n = 1,

∞ if n = 2 or n = 5,

1 if n = 3,

3 if n = 4 or n ≥ 6.

Proof. Assume G = Pn. If n = 1, then Gδ = K1. So, the diameter is zero. If n = 2, then
Gδ = 2K1. Since Gδ is not connected, we have diam(Gδ) = ∞. If n = 3, then Gδ = K3. So,
diam(Gδ) = 1. If n = 4, then Gδ = P4, so diam(Gδ) = 3. If n = 5, then Gδ = C4 +K1 which is
not connected, so diam(Gδ) = ∞.

Consider n ≥ 6. Let v1, v2, . . . , vn be the vertices in the path where vi and vi+1 are adjacent
for 1 ≤ i ≤ n − 1. The edges of Gδ are v1vn, v1v2, vn−1vn, and vivj where 2 ≤ i < j ≤ n − 1
and j ≠ i+ 1.

Since NGδ
(v1) = {v2, vn}, NGδ

(vn) = {v1, vn−1}, NGδ
(v2) = V (G) \ {v3, vn}, and NGδ

(vn−1)
= V (G) \ {v1, vn−2}, the distance between v1 and all other vertices in Gδ and the distance
between vn and all other vertices in Gδ are at most 3.

Since NGδ
(v2) = V (G) \ {v3, vn}, NGδ

(v3) = V (G) \ {v1, v2, v4, vn}, NGδ
(vn−2) = V (G) \

{v1, vn−3, vn−1, vn}, and NGδ
(vn−1) = V (G) \ {v1, vn−2}, the distance between v2 and all other

vertices in Gδ and the distance between vn−1 and all other vertices in Gδ are at most 2.
We also notice that dGδ

(vi, vi+1) = 3 for any 3 ≤ i ≤ n− 3 as vi and vi +1 have no common
neighbours. Hence, the distance between any two vertices in Gδ is at most 3. Therefore, if
G = Pn such that n ≥ 6, diam(Gδ) = 3.

Lemma 3.8. Let G be a graph of n ≥ 3 vertices. Then diam(G) = n − 2 if and only if G can
be formed by Pn−1 and a vertex v satisfies one of the following conditions:

1. v is adjacent to one vertex which is not an endpoint of the path.

2. v is adjacent to two vertices in the path which are either adjacent or have a distance of
two between them.

3. v is adjacent to three consecutive vertices in the path.

Proof. Assume diam(G) = n−2. Then G must contain a path of length n−2 and a pair of vertices
of distance n − 2. Let v1, v2, . . . , vn−1 be the vertices in the path where dG(v1, vn−1) = n − 2.
We see that two nonconsecutive vertices in the path cannot be adjacent. Let v be the vertex
outside the path. The vertex v cannot be adjacent to two vertices vi and vj such that |j− i| > 2;
otherwise dG(v1, vn−1) < n− 2. This gives the conditions 2 and 3. Furthermore, if v is adjacent
to only one vertex which is the endpoint v1 or vn−1, then G = Pn and diam(G) = n− 1, which
is a contradiction. This gives the condition 1.

The converse is easy to verify as dG(v1, vn−1) = n− 2.

Theorem 3.9. For n ≥ 6, let G be a graph of n vertices such that G and Gδ are connected.
Then

3 ≤ diam(G) + diam(Gδ) ≤ 2n− 4,
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and
2 ≤ diam(G) · diam(Gδ) ≤ (n− 2)2.

Moreover, the lower bounds are sharp for all n ≥ 6.

Proof. Suppose diam(G) + diam(Gδ) < 3 or diam(G) · diam(Gδ) < 2. Then diam(G) = 1 and
diam(Gδ) = 1. Then G = Gδ = Kn, which is a contradiction. An example of the sharp bounds
is when G = K1,n−1 where diam(G) = 2, and Gδ = Kn where diam(Gδ) = 1.

For the additive upper bound, we suppose to the contrary that diam(G)+diam(Gδ) > 2n−4.
Clearly, the diameter of any graph is at most n− 1. So there are three possibilities:

Case 1. diam(G) = n− 1 and diam(Gδ) = n− 1.

Case 2. diam(G) = n− 1 and diam(Gδ) = n− 2.

Case 3. diam(G) = n− 2 and diam(Gδ) = n− 1.

If diam(G) = n− 1, then G = Pn. By Lemma 3.7, we have diam(Gδ) = 3 when n ≥ 6. But
n− 1 ̸= 3 and n− 2 ̸= 3 for all n ≥ 6, the first two possibilities are not satisfied. For the third
possibility, from diam(G) = n− 2, Lemma 3.8 gives three cases for G. In all cases, we can show
that Gδ ̸= Pn. Hence, diam(Gδ) ̸= n− 1. Therefore, diam(G) + diam(Gδ) ≤ 2(n− 2).

The multiplicative upper bound follows from the additive upper bound using the AM-GM
inequality as follows.

diam(G) · diam(Gδ) ≤
(
diam(G) + diam(Gδ)

2

)2

≤
(
2n− 4

2

)2

= (n− 2)2.

Remark 3.10. The lower bounds from Theorem 3.9 are also sharp for n = 3, 4, and 5, with the
same example of G = K1,n−1.

In the case of the sum and the product between diam(G) and diam(Gδ′), we are going to
use the following lemma.

Lemma 3.11. Let G = Pn be a path graph of n vertices. Then

diam(Gδ′) =



0 if n = 1,

1 if n = 2,

∞ if n = 3,

2 if n = 5,

3 if n = 4 or n ≥ 6.

Proof. Assume G = Pn. If n = 1, then Gδ′ = K1, so the diameter is zero. If n = 2, then
Gδ′ = K2, so diam(Gδ′) = 1. If n = 3, then Gδ′ = 3K1. Since Gδ′ is not connected, we have
diam(Gδ′) = ∞. If n = 4, then Gδ′ = P4, so diam(Gδ′) = 3. If n = 5, Gδ′ is a bow-shaped graph
as shown in Figure 2 , so diam(Gδ′) = 2.

Consider n ≥ 6. Let v1, v2, . . . , vn−1, vn be the vertices in the path where vi and vi+1 are
adjacent for 1 ≤ i ≤ n− 1. The edges of Gδ′ are v1vi such that i ̸= 2 and i ̸= n, vnvj such that
j ̸= 1 and j ̸= n− 1, and vi′vj′ such that 2 ≤ i′ ≤ n− 2 and j′ = i′ + 1.
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Figure 2: The bow-shaped graph whose diameter is 2

Since NGδ′ (v1) = V (G) \ {v2, vn}, NGδ′ (vn) = V (G) \ {v1, vn−1}, NGδ′ (v2) = {v3, vn}, and
NGδ′ (vn−1) = {v1, vn−2}, the distance between v1 and all other vertices in Gδ′ and the distance
between vn and all other vertices in Gδ′ are at most 2.

Since NGδ′ (v2) = {v3, vn}, NGδ′ (v3) = {v1, v2, v4, vn}, NGδ′ (vn−2) = {v1, vn−3, vn−1, vn}, and
NGδ′ (vn−1) = {v1, vn−2}, the distance between v2 and all other vertices in Gδ′ and the distance
between vn−1 and all other vertices in Gδ′ are at most 3.

We also notice that dG′
δ
(vi, vi+1) = 1 for any 3 ≤ i ≤ n − 3 as vi and vi + 1 are adjacent.

Hence, the distance between any two vertices in G′
δ is at most 3. Therefore, if G = Pn such that

n ≥ 6, diam(Gδ′) = 3.

Theorem 3.12. For n ≥ 2, let G be a graph of n vertices such that G and Gδ′ are connected.
Then

2 ≤ diam(G) + diam(Gδ′),

and
1 ≤ diam(G) · diam(Gδ′).

Moreover, both bounds are sharp for all n ≥ 2.

Proof. Both bounds are obvious. They are sharp if and only if diam(G) = 1 and diam(Gδ′) = 1.
This is when G = Gδ′ = Kn.

For the upper bounds, we conjecture in the same manner as Theorem 2.3 that Pn is the
graph with the maximum values of diam(G) · diam(Gδ′) for infinitely many values of n. Using
the fact from Lemma 3.11, we get the following conjecture.

Conjecture 3.13. There are infinitely many values of n such that

diam(G) + diam(Gδ′) ≤ n+ 2, and diam(G) · diam(Gδ′) ≤ 3(n− 1)

for each graph G of n vertices such that both G and Gδ′ are connected.

4 Conclusion and Discussion
We provide the Nordhaus-Gaddum-type relations on the girths and the diameters of a graph
and its δ-complement. The lower bounds for the girths are found sharp for all n ≥ 4, and for
the diameters, they are found sharp for all n ≥ 6. The sharpness of the upper bounds for both
invariants is still unknown. However, we conjecture that such upper bounds are not sharp for all
n. On the girths, it is also conjectured that there are upper bounds, for infinitely many values
of n.

We also give the Nordhaus-Gaddum-type relations on the girths and the diameters of a graph
and its δ′-complement. All lower bounds are found obvious and sharp for all n. Both upper
bounds for girths are found obvious and sharp for all n while the upper bounds for diameters
are yet to be found sharp. However, we conjecture that such bounds are not sharp for all n.

For further research, results on the Nordhaus-Gaddum-type relation on other graph invari-
ants will be interesting. In addition to the Nordhaus-Gaddum-type relation that considers
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one invariant, the relations between two (or more) different invariants of a graph and its δ-
complement (or δ′-complement) are also interesting to study. See [6] and the references therein
for more examples.
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Abstract

A local antimagic labeling of a graph G = (V,E) is a bijection from the set of edges to
the set of integers {1, 2, 3, . . . , |E|} such that w(u) ̸= w(v) for any adjacent vertices u and
v ∈ V (G) where the weight w(u) =

∑
e∈E(u) f(e) and E(u) is the set of edges incident to u.

The local antimagic chromatic number χla(G) is the minimum number of colors taken over
all colorings of G induced by local antimagic labelings of G. In this article, we determine
some bounds for the local antimagic chromatic numbers of the grid graphs P2×Pn, the prism
graphs P2 × Cn and the toroidal grid graphs Cm × Cn.

Keywords: local antimagic labeling, local antimagic chromatic number, cartesian product,
paths, cycles.
2020 MSC: 05C15, 05C78, 05C76, 05C38.

1 Introduction
In 1990, Hartsfield and Ringel studied a variant of the magic labeling, called an antimagic
labeling [7]. A graph with q edges is called antimagic if it has an edge labeling with 1, 2, 3, . . . , q
without repetition such that the sums of the labels of all the edges incident with a vertex
are distinct. They conjectured that all connected graphs except K2 are antimagic. Recently,
Bensmail, Senhaji and Lyngsie proved that this conjecture is true [4].

The concept of local antimagic graphs was presented in 2017 [2]. A local antimagic labeling of
a graph G = (V,E) is a bijection from the set of edges to the integers {1, 2, 3, . . . , |E|} such that
w(u) ̸= w(v) for any adjacent vertices u and v ∈ V (G) where the weight w(u) =

∑
e∈E(u) f(e)

and E(u) is the set of edges incident to u. A graph G is called local antimagic if G has an local
antimagic labeling. Clearly, if G is antimagic, then G is local antimagic. An induced color of u
under f is the vertex label w(u). The number of distinct induced colors under f is denoted by
c(f), and is called the color number of f . The local antimagic chromatic number of G, denoted
∗This research was financially supported by the Development and Promotion of Science and Technology Talents
Project (DPST).
†Speaker. ‡Corresponding author.
Email: teeradej.k@chula.ac.th (T. Kittipassorn), skeattiyos@gmail.com (K. Phibul).
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by χla(G), is min{c(f) : f is a local antimagic labeling of G}. Obviously, the local antimagic
chromatic number for any graph is at least the chromatic number for its, that is, χla(G) ≥ χ(G).

In the intervening years, the local antimagic chromatic numbers for several graphs have been
determined, such as paths [2], cycles [2], friendship [2], complete bipartite [2, 11], wheel [2, 11],
kite [2], and copies of graph [3]. In addition, the local chromatic numbers of some products of
graphs, including join product [10, 12, 21], lexicographic product [15] and corona product [1, 9]
were investigated by various researchers. Consequently, an open problem in their papers asks
for the local antimagic chromatic number of the cartesian product of graphs.

Let G and H be two graphs. The cartesian product of graphs G and H, written G ×H, is
the graph with vertex set V (G) × V (H) specified by putting (u, v) adjacent to (u′, v′) if and
only if (1) u = u′ and vv′ ∈ E(H), or (2) v = v′ and uu′ ∈ E(G). A path Pn is a graph with n
vertices u1, u2, u3, . . . , un and n − 1 edges u1u2, u2u3, u3u4, . . . , un−1un. A cycle Cn is a graph
with n vertices u1, u2, u3, . . . , un and n edges u1u2, u2u3, u3u4, . . . , un−1un, unu1.

In 2004, Wang [18] showed that the toroidal grids which are the cartesian products of two
cycles are antimagic. A year later, Cheng [5] proved that grid graphs and prism graphs which
are the cartesian products of two paths and of a cycle and a path, respectively are antimagic. It
follows that these graphs are local antimagic graphs. Furthermore, Lau and Shiu [14] were the
first to study and determine the local antimagic chromatic numbers of P2 × C3 and P2 × C4.

Theorem 1.1. χla(C3 × P2) = 3 and χla(C4 × P2) = 4.

Apart from this, the local antimagic chromatic number of no other cartesian product of
graphs is known. Motivated by this, in this article, our main results determine some bounds for
the local antimagic chromatic numbers of the grid graphs P2 × Pn, the prism graphs P2 × Cn

and the toroidal grids graph Cm × Cn in the following theorems.

Theorem 1.2. (i) For n ≥ 3, 3 ≤ χla(P2 × Pn) ≤ 6.

(ii) χla(P2 × P2) = 3 and χla(P2 × P3) = 4.

Theorem 1.3. For n ≥ 5,

3 ≤ χla(P2 × Cn) ≤

{
5 if n is odd,
6 if n is even.

Theorem 1.4. (i) For even m,n ≥ 3, χla(Cm × Cn) ≤ 5 unless m = n = 4.

(ii) For odd m ≥ 3, even n ≥ 3,m < n, χla(Cm × Cn) ≤ n+ 2.

(iii) For even m ≥ 3, odd n ≥ 3,m < n, χla(Cm × Cn) ≤ m+ 4.

(iv) For odd m,n ≥ 3, m ̸= n, χla(Cm × Cn) ≤ m+ n+ 1.

(v) For m,n ≥ 3, χla(Cm × Cn) ≥ 3.

The rest of this paper is organized as follows. In Section 2 is divided into three subsections
to study three cartesian product graphs including the grid graphs P2 × Pn, the prism graphs
P2×Cn and the toroidal grids Cm×Cn. In Subsection 2.1, we prove Theorem 1.2. The proof of
Theorem 1.3 is given in Subsection 2.2. Subsection 2.3 is devoted to the proof of Theorem 1.4.
Finally, we conclude the paper in Section 3 with some open problems.

2 Proofs of Theorems
The following lemma of Lau, Shiu and Ng [12] which gives a sufficient condition for a bipartite
graph G to have χla(G) ≥ 3 is needed to prove the lower bounds for the local antimagic chromatic
numbers of our graphs.
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Lemma 2.1. Let G be a graph of size q. Suppose there is a local antimagic labeling of G inducing
a 2-coloring of G with colors x and y, where x < y. Let X and Y be the sets of vertices of
colored x and y, respectively. Then G is a bipartite graph with bipartition (X,Y ) and |X| > |Y |,
and

x|X| = y|Y | = q(q + 1)

2
. (2.1)

Proof. Since the vertices of X(or Y ) are not adjacent by the definition of the local antimagic
labeling, G is bipartite with bipartition (X,Y ). Thus, the sum of the labels of all edges is
x|X| = q(q+1)

2 = y|Y |. Since x < y, we obtain that |X| > |Y |.

Corollary 2.2. Suppose G is a connected bipartite graph of q edges with bipartition (V1, V2). If
χla(G) = 2, then |V1| ̸= |V2| and

(
q+1
2

)
is divisible by both |V1| and |V2|.

Proof. Suppose χla(G) = 2. By Lemma 2.1, we obtain that |X| ̸= |Y | and q(q+1)
2 is divisible by

both |X| and |Y |. Since bipartition of G is unique by connectedness, {X,Y } = {V1, V2}. Hence,
|V1| ̸= |V2| and q(q+1)

2 is divisible by both |V1| and |V2|.

2.1 Local Antimagic Chromatic Number of P2 × Pn

Let n ≥ 2. Since P2 × Pn is a bipartite graph, the vertices can be divided into two disjoint sets
{ui : 1 ≤ i ≤ n} and {vi : 1 ≤ i ≤ n} with edge set {uivi+1 : 1 ≤ i < n} ∪ {viui+1 : 1 ≤ i <
n}∪ {uivi : 1 ≤ i ≤ n}. Clearly, |E(P2×Pn)| = 3n− 2. See the graph P2 ×Pn for odd and even
n in Figures 1 and 2, respectively.

u1 v2 u3 v4 · · · vn−3 un−2 vn−1 un

v1 u2 v3 u4 · · · un−3 vn−2 un−1 vn

Figure 1: The graph P2 × Pn for odd n

u1 v2 u3 v4 · · · un−3 vn−2 un−1 vn

v1 u2 v3 u4 · · · vn−3 un−2 vn−1 un

Figure 2: The graph P2 × Pn for even n

Proof of Theorem 1.2. (i) For the lower bound, since P2 ×Pn is a bipartite graph where partite
sets are of the same size, we have χla(P2 × Pn) > 2 by Corollary 2.2. For the upper bound, it
suffices to define a local antimagic labeling f : E(P2 × Pn) → {1, 2, 3, . . . , 3n − 2} that induces
6 distinct vertex colors. Let us separate into two cases by the parity of n.
Case 1. n is odd.

We will show an algorithm of this labeling in the following five steps.
Step 1 We divide the set {1, 2, 3, . . . , 3n− 2} into six subsets as follows:
{2, 4, 6, . . . , n−1}, {1, 3, 5, . . . , n−2},

{
n, n+ 1, , n+ 2 . . . , 3n−1

2

}
,
{
3n+1

2

}
,
{
3n+1

2 +1, 3n+1
2 +

2, 3n+1
2 + 3, . . . , 2n− 1

}
and {2n, 2n+ 1, 2n+ 2, . . . , 3n− 2} .
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2 6 · · · n− 4

4 · · · n− 6 n− 2

Figure 3: The edge labeling in Step 2 of P2 × Pn for odd n

Step 2 We label the edge uivi+1 for all 1 ≤ i < n with the numbers 2, 4, 6, . . . , n− 1, 1, 3, 5, . . . ,
n− 2 in that order from left to right (see Figure 3).

Step 3 We label the edge viui+1 for all 1 ≤ i ≤ n−1
2 with the numbers n, n+1, n+2, . . . , 3n−1

2

in that order in backward direction from i = n−1
2 to i = 1 (see Figures 4 and 5).

2

3n−1
2

− 1
6 · · · n− 1

n

i = n+1
2

+ 1

3n−1
2

4
3n−1

2
− 2

· · ·
n+ 1

1

Figure 4: The edge labeling in Step 3 of P2 × Pn for n ≡ 3 mod 4

2

3n−1
2

− 1
6 · · · n+ 1

1

i = n+1
2

+ 1

3n−1
2

4
3n−1

2
− 2

· · · n− 1
n

Figure 5: The edge labeling in Step 3 of P2 × Pn for n ≡ 1 mod 4

Step 4 We label the edge viui+1 for all n−1
2 < i < n with the numbers 3n+1

2 + 1, 3n+1
2 +

2, 3n+1
2 +3, . . . , 2n−1 in that order in backward direction from i = n−1 to i = n+1

2 (see Figures
6 and 7).

Step 5 We label the edge uivi for all 1 ≤ i ≤ n with the numbers 2n, 2n+1, 2n+2, . . . , 3n−
3, 3n− 2, 3n+1

2 in that order from right to left (see Figure 8).
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i = n+1
2

n 3
2n− 2 · · ·

3n−1
2

+ 3
n− 4

3n−1
2

+ 1

1

2n− 1
5 · · · n− 6

3n−1
2

+ 2

n− 2

Figure 6: The edge labeling of P2 × Pn for n ≡ 3 mod 4

i = n+1
2

1
2n− 1

5 · · ·
3n−1

2
+ 3

n− 4

3n−1
2

+ 1

n 3

2n− 2
· · · n− 6

3n−1
2

+ 2

n− 2

Figure 7: The edge labeling of P2 × Pn for n ≡ 1 mod 4

We can observe that this labeling can be summarized as follows:

f(uivi+1) =

{
2i ; 1 ≤ i ≤

⌊
n
2

⌋
2i− n ;

⌊
n
2

⌋
< i < n

f(viui+1) =

{
2n−

⌊
n
2

⌋
− i ; 1 ≤ i ≤

⌈
n
2

⌉
3n−

⌊
n
2

⌋
− i ;

⌈
n
2

⌉
< i < n

f(u1v1) =
3n+ 1

2
f(uivi) = 3n− i for all 2 ≤ i ≤ n.

Thus, we obtain that w(u1) = f(u1v1)+f(u1v2) =
1
2(3n+5), w(un) = f(unvn)+f(vn−1un) =

1
2(7n + 3) and w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) = 1

2(9n + 3) for 1 < i <
⌈
n
2

⌉
and⌈

n
2

⌉
+ 1 < i < n.

In the case i =
⌈
n
2

⌉
,
⌈
n
2

⌉
+1, w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) =

1
2(7n+3). Likewise,

w(v1) = f(u1v1)+f(v1u2) = 3n, w(vn) = f(unvn)+f(un−1vn) = 3n−2 and w(vi) = f(ui−1vi)+
f(uivi) + f(viui+1) =

1
2(9n− 3) for 1 < i < n.

Therefore, f is a local antimagic labeling that induces 6 distinct vertex colors, including

(1) w(u1) =
1
2(3n+ 5),

(2) w(ui) =
1
2(9n+ 3) when i ∈ {2, 3, . . . , n− 1} \

{⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1

}
,

(3) w
(
u⌈n

2 ⌉
)
= w

(
u⌈n

2 ⌉+1

)
= w(un) =

1
2(7n+ 3),

(4) w(v1) = 3n,

(5) w(vi) =
1
2(9n− 3) for 1 < i < n,
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3n+1
2

3n− 2
3n− 3

3n− 4
2n+ 3

2n+ 2
2n+ 1

2n

Figure 8: The edge labeling in Step 5 of P2 × Pn for odd n

(6) w(vn) = 3n− 2.

Case 2. n is even.
Similarly, we can show an algorithm of this labeling in the following five steps.
Step 1 We divide the set {1, 2, 3, . . . , 3n− 2} into five subsets as follows:
{2, 4, 6, . . . , n − 2}, {1, 3, 5, . . . , n − 1},

{
n, n+ 1, n+ 2, . . . , 3n−1

2

}
,
{
3n+1

2 , 3n+1
2 + 1, 3n+1

2 +
2, . . . , 2n− 2

}
and {2n− 1, 2n, 2n+ 1, . . . , 3n− 2} .

Step 2 We label the edge uivi+1 for all 1 ≤ i < n with the numbers 2, 4, 6, . . . , n− 2,
1, 3, 5, . . . , n− 1 in that order from left to right.

Step 3 We label the edge viui+1 for all 1 ≤ i ≤ n
2 with the numbers n, n+ 1, n+ 2, . . . , 3n−1

2
in that order in backward direction from i = n

2 to i = 1.
Step 4 We label the edge viui+1 for all n

2 < i < n with the numbers 3n+1
2 +1, 3n+1

2 +2, , 3n+1
2 +

3, . . . , 2n− 1 in that order in backward direction from i = n− 1 to i = n
2 + 1.

Step 5 We label the edge uivi for all 1 ≤ i ≤ n with the numbers 2n−1, 2n, 2n+1, , . . . , 3n−
3, 3n− 2 in that order from right to left.

We can observe that this labeling can be summarized as follows:

f(uivi+1) =

{
2i ; 1 ≤ i ≤

⌊
n
2

⌋
2i− n+ 1 ;

⌊
n
2

⌋
< i < n

f(viui+1) =

{
2n−

⌊
n
2

⌋
− i ; 1 ≤ i ≤

⌈
n
2

⌉
3n−

⌊
n
2

⌋
− i− 1 ;

⌈
n
2

⌉
< i < n

f(uivi) = 3n− i− 1 for all 1 ≤ i ≤ n.

Thus, we obtain that w(u1) = f(u1v1) + f(u1v2) = 3n, w(un) = f(unvn) + f(vn−1un) =
1
2(7n− 2) and w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) =

9n
2 for 1 < i <

⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1 < i < n.

In case i =
⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1, w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) = 1

2(7n + 2). Likewise,
w(vi) = f(ui−1vi) + f(uivi) + f(viui+1) = 1

2(9n − 6) for 1 ≤ i < n and w(vn) = f(unvn) +
f(un−1vn) = 3n− 2.

Therefore, f is a local antimagic labeling that induces 6 distinct vertex colors, including

(1) w(u1) = 3n,

(2) w(ui) =
9n
2 when i ∈ {2, 3, . . . , n− 1} \

{⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1

}
,

(3) w
(
u⌈n

2 ⌉
)
= w

(
u⌈n

2 ⌉+1

)
= 1

2(7n+ 2),

(4) w(un) =
1
2(7n− 2),

(5) w(vi) =
1
2(9n− 6) for 1 ≤ i < n,

(6) w(vn) = 3n− 2.

Hence, χla(P2 × Pn) ≤ 6.
(ii) Since P2 × P2 is the cycle C4, we have χla(P2 × P2) = χla(C4) = 3. In Figure 9, we

obtain a local antimagic labeling of P2 × P3 with c(f) = 4. Thus, χla(P2 × P3) ≤ 4. By the
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u1 1 v2 3 u2

7 6 5

v1 u22 v34

Figure 9: An edge labeling of P2 × P3 with induced vertex colors in {8, 9, 10, 12}

upper bound in Theorem 1.2 (i), it remains to show that χla(P2 × P3) ̸= 3. We suppose for
contradiction that there is a local antimagic labeling f : E(P2 ×P3) → {1, 2, 3, . . . , 7} such that
c(f) = 3. Then we consider a possible vertex coloring of P2 × P3 with three colors x, y, z which
can be divided into two cases.
Case 1. There are at least three vertices with the same color.

Obviously, there is exactly three vertices with the same color such that w(u1) = w(u2) =
w(u3) or w(v1) = w(v2) = w(v3). Without loss of generality, we let w(u1) = w(u2) = w(u3) = x.
Observe that 3x = w(u1) + w(u2) + w(u3) =

∑
e∈E(P2×P3)

f(e) =
∑7

k=1 k = 28. It implies that
x = 28

3 /∈ Z which contradicts with x ∈ Z.
Case 2. Each colors appears on at most two vertices.

Obvious that each colors label two vertices. Without loss of generality, let w(u2) = x. Then
the other vertex with color x is u1 or u3. Without loss of generality, suppose w(u1) = x and
w(u3) = y. Then it implies that w(v2) = w(v3) = z and w(v1) = y. Consider 2x + 2y + 2z =∑

u∈V (P2×P3)
w(u) = 2

∑
e∈E(P2×P3)

f(e). Thus, x + y + z =
∑

e∈E(P2×P3)
f(e). On the other

hand, we have x + x + y = w(u1) + w(u2) + w(u3) =
∑

e∈E(P2×P3)
f(e). Thus, we get that

x + y + z = x + x + y implying x = z which is a contradiction. Hence, we conclude that
χla(P2 × P3) ≥ 4.

2.2 Local Antimagic Chromatic Number of P2 × Cn

Proof of Theorem 1.3. For the lower bound, if n is even, we observe that P2×Cn is the bipartite
graph and both partite sets are the same size. Thus, χla(P2 × Pn) > 2 by Corollary 2.2. If n is
odd, we consider χla(P2 × Cn) ≥ χ(P2 × Cn) = χ(Cn) = 3 since χ(G×H) = max{χ(G), χ(H)}
for any graph G and H.

For the upper bound, let P2×Cn be the graph for any n ≥ 5. Let V (P2×Cn) = {ui : 1 ≤ i ≤
n}∪{vi : 1 ≤ i ≤ n} be the vertex set of P2×Cn and E(P2×Cn) = {uivi+1 : 1 ≤ i ≤ n}∪{viui+1 :
1 ≤ i ≤ n}. Note that all additions within the index is performed in modulo n. See the graph
P2 × Cn for odd and even n in Figures 10 and 11, respectively. Clearly, |E(P2 × Cn)| = 3n.

v1 u2 v3 u4 · · · un−3 vn−2 un−1 vn

u1 v2 u3 v4 · · · vn−3 un−2 vn−1 un

Figure 10: The graph P2 × Cn for odd n

It suffices to define a local antimagic labeling f : E(P2 × Cn) → {1, 2, 3, . . . , 3n} that induces 5
distinct vertex colors if n is odd and induces 6 distinct vertex colors if n is even. Let us separate
into two cases by the parity of n.
Case 1. n is odd.

We will show an algorithm of this labeling in the following five steps.
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v1 u2 v3 u4 · · · vn−3 un−2 vn−1 un

u1 v2 u3 v4 · · · un−3 vn−2 un−1 vn

Figure 11: The graph P2 × Cn for even n

Step 1 We divide the set {1, 2, 3, . . . , 3n} into five subsets as follows:

{2, 4, 6, . . . , n−1}, {1, 3, 5, . . . , n},
{
n+ 1, n+ 2, n+ 3, . . . , 3n+1

2

}
,
{
3n+1

2 +1, 3n+1
2 +2, 3n+1

2 +
3, . . . , 2n

}
and {2n+ 1, 2n+ 2, 2n+ 3, . . . , 3n}.

Step 2 We label the edge vnv1 with the number 2 and label the edge uivi+1 for all 1 ≤ i < n
with the numbers 4, 6, . . . , n− 1, 1, 3, 5, . . . , n in that order from left to right (see Figure 12).

2 6 · · · n− 2 n 2

4 · · · n− 1

Figure 12: The edge labeling in Step 2 of P2 × Cn for odd n

Step 3 We label the edge unu1 with the number 3n+1
2 and label the edge viui+1 for all

1 ≤ i ≤ n−1
2 with the numbers n + 1, n + 2, n + 3, . . . , 3n+1

2 − 1 in that order in backward
direction from i = n−1

2 to i = 1 (see Figures 13 and 14).

2

3n+1
2

− 1
6 · · · n

n+ 1

i = n+1
2

+ 1

3n+1
2

4
3n+1

2
− 2

· · ·
n+ 2

1

Figure 13: The edge labeling in Step 3 of P2 × Cn for n ≡ 3 mod 4

Step 4 We label the edge viui+1 for all n−1
2 < i < n with the numbers 3n+1

2 + 1, 3n+1
2 +

2, 3n+1
2 + 3, . . . , 2n in that order in backward direction from i = n − 1 to i = n+1

2 (see Figures
15 and 16).

Step 5 We label the edge uivi for all 1 ≤ i ≤ n with the numbers 2n+1, 2n+2, 2n+3, . . . , 3n
in that order from right to left (see Figure 17).
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2

3n+1
2

− 1
6 · · · n+ 2

1

i = n+1
2

+ 1

3n+1
2

4
3n+1

2
− 2

· · · n

n+ 1

Figure 14: The edge labeling in Step 3 of P2 × Cn for n ≡ 1 mod 4

i = n+1
2

n+ 1 3
2n− 1 · · · n− 4

3n+1
2

+ 2
n 2

1

2n
5 · · ·

3n+1
2

+ 3

n− 2
3n+1

2
+ 1

3n+1
2

Figure 15: The edge labeling in Step 4 of P2 × Cn for n ≡ 3 mod 4

We can observe that this labeling can be summarized as follows:

f(uivi+1) =

{
2(i+ 1) ; 1 ≤ i ≤

⌊
n
2

⌋
2(i+ 1)− n ;

⌊
n
2

⌋
< i < n

f(viui+1) =

{
2n−

⌊
n
2

⌋
− i ; 1 ≤ i ≤

⌈
n
2

⌉
3n−

⌊
n
2

⌋
− i ;

⌈
n
2

⌉
< i < n

f(vnv1) = 2

f(unu1) =
3n+ 1

2
f(uivi) = 3n− i+ 1 for all 1 ≤ i ≤ n.

Thus, we obtain that w(v1) = f(vnv1) + f(u1v1) + f(v1u2) =
1
2(9n+ 3), w(u1) = f(unu1) +

f(u1v1) + f(u1v2) =
1
2(9n+9), w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) =

1
2(9n+9) for 1 < i <⌈

n
2

⌉
,
⌈
n
2

⌉
+ 1 < i < n.

In case i =
⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1, w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) =

1
2(7n + 9) . Likewise,

w(vn) = f(vnv1) + f(unvn) + f(un−1vn) = 3n + 3, w(un) = f(unu1) + f(unvn) + f(vn−1un) =
5n+ 3, w(vi) = f(ui−1vi) + f(uivi) + f(viui+1) =

1
2(9n+ 3) for 1 < i < n.

Therefore, f is a local antimagic labeling that induces 5 distinct vertex colors, including

(1) w(un) = 5n+ 3,

(2) w(ui) =
1
2(9n+ 9) when i ∈ {1, 2, 3, . . . , n− 1} \

{⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1

}
,

(3) w
(
u⌈n

2 ⌉
)
= w

(
u⌈n

2 ⌉+1

)
= 1

2(7n+ 9),

(4) w(vi) =
1
2(9n+ 3) for 1 ≤ i < n,
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i = n+1
2

1
2n

5 · · · n− 3

3n+1
2

+ 1
n 2

n 3 2n− 1 · · ·
3n−1

2
+ 3

n− 2
3n−1

2
+ 1

3n+1
2

Figure 16: The edge labeling in Step 4 of P2 × Cn for n ≡ 1 mod 4

3n
3n− 1

3n− 2
2n+ 3

2n+ 2
2n+ 1

Figure 17: The edge labeling in Step 5 of P2 × Cn for odd n

(5) w(vn) = 3n+ 3.

Case 2. n is even.
Similarly, we can show an algorithm of this labeling in the following five steps.
Step 1 We divide the set {1, 2, 3, . . . , 3n} into six subsets as follows: {2, 4, . . . , n}, {1, 3, . . . , n−

1},
{
n+ 1, n+ 2, n+ 3, . . . , 3n2

}
,
{
3n+2

2

}
,
{
3n+2

2 + 1, 3n+2
2 + 2, 3n+2

2 + 3, . . . , 2n+ 1
}

and
{
2n+

2, 2n+ 3, 2n+ 4, . . . , 3n
}

.
Step 2 We label the edge unv1 with the numbers 2 and label the edge uivi+1 for all 1 ≤ i < n

with the numbers 4, 6, . . . , n, 1, 3, 5, . . . , n− 1 in that order from left to right.
Step 3 We label the edge vnu1 with the numbers 3n+2

2 + 1 and label the edge viui+1 for all
1 ≤ i ≤ n−1

2 with the numbers n + 1, n + 2, n + 3, . . . , 3n2 in that order in backward direction
from i = n−1

2 to i = 1.
Step 4 We label the edge viui+1 for all n

2 < i < n with the numbers 3n+2
2 +2, 3n+2

2 +3, 3n+2
2 +

4, . . . , 2n+ 1 in that order in backward direction from i = n− 1 to i = n
2 + 1.

Step 5 We label the edge uivi for all 1 ≤ i ≤ n with the numbers 2n + 2, 2n + 3, 2n +

4, . . . , 3n− 1, 3n, 3n+2
2 in that order from right to left (see Figure 18).

3n+2
2

3n
3n− 1

3n− 2
2n+ 4

2n+ 3
2n+ 2

2n+ 1

Figure 18: The edge labeling in Step 5 of P2 × Cn for even n

We can observe that this labeling can be summarize in the following functions.

f(uivi+1) =

{
2(i+ 1) ; 1 ≤ i ≤

⌊
n
2

⌋
2(i+ 1)− n− 1 ;

⌊
n
2

⌋
< i < n

f(viui+1) =

{
2n−

⌊
n
2

⌋
− i+ 1 ; 1 ≤ i ≤

⌈
n
2

⌉
3n−

⌊
n
2

⌋
− i+ 2 ;

⌈
n
2

⌉
< i < n

f(unv1) = 2
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f(vnu1) = 2n−
⌊n
2

⌋
+ 2

f(u1v1) =
3n+ 2

2
f(uivi) = 3n− i+ 2 for all 1 < i ≤ n.

Thus, we obtain that w(v1) = f(vnv1) + f(u1v1) + f(v1u2) = 3n + 3, w(u1) = f(unu1) +
f(u1v1) + f(u1v2) = 3n+ 7, w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) =

9n
2 + 6 for 1 < i <

⌈
n
2

⌉
,⌈

n
2

⌉
+ 1 < i < n.

In case i =
⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1, w(ui) = f(vi−1ui) + f(uivi) + f(uivi+1) = 7n

2 + 5 . Likewise,
w(vn) = f(vnv1) + f(unvn) + f(un−1vn) =

9n
2 + 3, w(un) = f(unu1) + f(unvn) + f(vn−1un) =

7n
2 + 7, w(vi) = f(ui−1vi) + f(uivi) + f(viui+1) =

9n
2 + 3 for 1 < i < n.

Therefore, f is a local antimagic labeling that induces 6 distinct vertex colors, including

(1) w(u1) = 3n+ 7,

(2) w(ui) =
9n
2 + 6 when i ∈ {2, 3, . . . , n− 1} \

{⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1

}
,

(3) w
(
u⌈n

2 ⌉
)
= w

(
u⌈n

2 ⌉+1

)
= 7n

2 + 5 ,

(4) w(un) =
7n
2 + 7,

(5) w(v1) = 3n+ 3,

(6) w(vi) =
9n
2 + 3 for 1 < i ≤ n.

Hence, we conclude that

χla(P2 × Cn) ≤

{
5 if n is odd
6 if n is even.

2.3 Local Antimagic Chromatic Number of Cm × Cn

In this subsection, we consider the graph Cm × Cn for any m,n ≥ 3 with V (Cm × Cn) = {ui,j :
1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Cm × Cn) = {ui,jui+1,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {ui,jui,j+1 : 1 ≤
i ≤ m, 1 ≤ j ≤ n} (see Figure 19). Note that all addition within the first and second indices is
performed in modulo m and n, respectively. Clearly, |E(Cm × Cn)| = 2mn.

We separate into four cases by the parities of m and n, namely (1) m,n are even, (2) m is
odd and n is even where m < n, (3) m is even and n is odd where m < n, (4) m,n are odd. To
obtain an upper bound for χla(Cm ×Cn) in each case, we will use the edge labeling of Cm ×Cn

given by the following algorithm.
Step 1 We divide the set {1, 2, 3, . . . , 2mn} into four subsets as follows: {1, 2, 3, . . . , x}, {x+

1, x+2, x+3, . . . ,mn}, {mn+1,mn+2,mn+3 . . . ,mn+y} and {mn+y+1,mn+y+2,mn+
y + 3, . . . , 2mn} where x =

⌈
m
2

⌉ ⌊
n
2

⌋
+
⌈
n
2

⌉ ⌊
m
2

⌋
and y =

⌈
m
2

⌉ ⌈
n
2

⌉
+
⌊
m
2

⌋ ⌊
n
2

⌋
.

Step 2 We label the edge ui,jui+1,j for all i and j of different parity with the numbers
1, 2, 3, . . . , x − 1, x starting from the edges with i = 1 from left to right followed by the edges
with i = 2 from left to right, and so on (see an example in Figure 20).

Step 3 We label the edge ui,jui,j+1 for all i and j of the same parity with the numbers
x + 1, x + 2, x + 3, . . . ,mn − 1,mn in the opposite direction of Step 2. It means that we start
from the edges with i = m from right to left followed by the edges with i = m− 1 from right to
left, and so on (see an example in Figure 21).
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um,1 um,2 um,3 um,4 um,n−3 um,n−2 um,n−1 um,n

um−1,1 um−1,2 um−1,3 um−1,4 um−1,n−3 um−1,n−2 um−1,n−1 um−1,n

um−2,1 um−2,2 um−2,3 um−2,4 um−2,n−3 um−2,n−2 um−2,n−1 um−2,n

u3,1 u3,2 u3,3 u3,4 u3,n−3 u3,n−2 u3,n−1 u3,n

u2,1 u2,2 u2,3 u2,4 u2,n−3 u2,n−2 u2,n−1 u2,n

u1,1 u1,2 u1,3 u1,4 u1,n−3 u1,n−2 u1,n−1 u1,n

Figure 19: The graph Cm × Cn

Step 4 We label the edge ui,jui,j+1 for all i and j of different parity if m is even, and for all i
and j of the same parity if m is odd with the numbers mn+1,mn+2,mn+3, . . . ,mn+y−1,mn+y
starting from the edges with j = 1 from bottom to top followed by the edges with j = 2 from
bottom to top, and so on (see an example in Figure 22).

Step 5 We label the edge ui,jui,j+1 for all i and j of the same parity if m is even or i and j of
different parity if m is odd with the numbers mn+y+1,mn+y+2,mn+y+3, . . . , 2mn−1, 2mn
in the opposite direction of step 4. It means that we start from the edges with j = n from top
to bottom followed by the edges with j = n− 1 from top to bottom, and so on (see an example
in Figure 23).

Example 2.3. The algorithm of labeling on the graph C5 × C8.
Step 1 We divide the set {1, 2, 3, . . . , 80} into four subsets as follows:
{1, 2, 3, . . . , 20}, {21, 22, 23, . . . , 40}, {41, 42, 43 . . . , 60} and {61, 62, 63, . . . , 80}.
Step 2 We label the edge ui,jui+1,j for all i and j of different parity with the numbers

1, 2, 3, . . . , 19, 20 starting from the edges with i = 1 from left to right followed by the edges with
i = 2 from left to right, and so on (see Figure 20).

Step 3 We label the edge ui,jui,j+1 for all i and j of the same parity with the numbers
21, 22, 23, . . . , 39, 40 in the opposite direction of step 2. It means that we start from the edges
with i = 5 from right to left followed by the edges with i = 4 from right to left, and so on (see
Figure 21).

Step 4 We label the edge ui,jui,j+1 for all i and j of the same parity with the numbers
41, 42, 43, . . . , 59, 60 starting from the edges with j = 1 from bottom to top followed by the
edges with j = 2 from bottom to top, and so on (see Figure 22).

Step 5 We label the edge ui,jui,j+1 for all i and j of different parity with the numbers
61, 62, 63, . . . , 79, 80 in the opposite direction of step 4. It means that we start from the edges
with j = 8 from top to bottom followed by the edges with j = 7 from top to bottom, and so on
(see Figure 23).
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17 18 19 20

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

Figure 20: The edge labeling in Step 2 of C5 × C8

24 23 22 21

28 27 26 25

32 31 30 29

36 35 34 33

40 39 38 37

Figure 21: The edge labeling in Step 3 of C5 × C8

Next, we prove Theorem 1.4 (i)-(iv) corresponding with each case of m and n.

Proof of Theorem 1.4. (i) Let f : E(Cm×Cn) → {1, 2, 3, . . . , 2mn} be the edge labeling obtained
from the algorithm. It suffices to check that f is a local antimagic labeling that induces 5 distinct
vertex colors.

Step 2

f(ui,jui+1,j) =

{(
i−1
2

)
n+ j

2 if i is odd, j is even(
i−1
2

)
n+ j+1

2 if i is even, j is odd.

Step 3

f(ui,jui+1,j) =

{
mn−

(
i−1
2

)
n− j−1

2 if i, j are odd
mn−

(
i−1
2

)
n− j−2

2 if i, j are even.

Step 4

f(ui,jui,j+1) =

mn+
(
j
2

)
m− i−1

2 if i is odd, j is even

mn+
(
j
2

)
m− i−2

2 if i is even, j is odd.
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41 46 51 56

44 49 54 59

42 47 52 57

45 50 55 60

43 48 53 58

Figure 22: The edge labeling in Step 4 of C5 × C8

78 73 68 63

80 75 70 65

77 72 67 62

79 74 69 64

76 71 66 61

Figure 23: The edge labeling in Step 5 of C5 × C8

Step 5

f(ui,jui,j+1) =

2mn−
(
j
2

)
m+ i+1

2 if i, j are odd

2mn−
(
j
2

)
m+ i

2 if i, j are even.

It is clear that f is a bijection. Thus, we obtain that w(ui,j) = f(ui−1,jui,j) + f(ui,jui+1,j) +
f(ui,j+1ui,j+2) + f(ui,jui,j+1) for all 2 ≤ i ≤ m and 2 ≤ j ≤ n such that

(1) w(ui,j) =
1
2(8mn−m− n+ 4) if i ≡ j mod 2

(2) w(ui,j) =
1
2(8mn+m+ n+ 4) if i ̸≡ j mod 2.

Moreover,

w(u1,1) = f(um,1u1,1) + f(u1,1u2,1) + f(u1,1u1,2) + f(u1,nu1,1)

=
1

2
(10mn−m− n+ 4),

w(u1,j) = f(um,ju1,j) + f(u1,ju2,j) + f(u1,j−1u1,j) + f(u1,ju1,j+1)

=

{
1
2(7mn+m+ n+ 4) if j is even
1
2(9mn−m− n+ 4) if j is odd
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and

w(ui,1) = f(ui−1,1ui,1) + f(ui,1ui+1,1) + f(ui,nui,1) + f(ui,1ui,2)

=

{
1
2(7mn+m+ n+ 4) if i is even
1
2(9mn−m− n+ 4) if i is odd.

It is clear that w(u1j) = w(ui1) if i and j have the same parity. Therefore, f is a local antimagic
labeling that induces 5 distinct vertex colors, including

(1) A1 =
1
2(8mn−m− n+ 4) = 1

2(7mn−m− n+ 4) + 1
2(mn),

(2) A2 =
1
2(8mn+m+ n+ 4) = 1

2(7mn−m− n+ 4) + 1
2(mn+ 2m+ 2n),

(3) A3 =
1
2(10mn−m− n+ 4) = 1

2(7mn−m− n+ 4) + 1
2(3mn),

(4) A4 =
1
2(7mn+m+ n+ 4) = 1

2(7mn−m− n+ 4) + 1
2(2m+ 2n),

(5) A5 =
1
2(7mn+m+ n+ 4) = 1

2(7mn−m− n+ 4) + 1
2(2mn).

Clearly, for a given k = 1, 2, 3, 4, 5, the vertices of color Ak are not adjacent. To check that
A1, A2, A3, A4, A5 are distinct, we claim that A4 < A1 < A2 < A5 < A3. It is obvious that
A1 < A2 and A5 < A3. Since (m,n) ̸= (4, 4), we have m > 4 or n > 4. Then mn = 1

2mn+ 1
2mn >

4
2m+ 4

2n = 2m+2n. implying A4 < A1. Since 2mn = mn+mn > mn+2m+2n, we have that
A2 < A5.

(ii) Let f : E(Cm × Cn) → {1, 2, 3, . . . , 2mn} be the edge labeling obtained from the algo-
rithm. It suffices to check that f is a local antimagic labeling that induces n+2 distinct vertex
colors.

Step 2

f(ui,jui+1,j) =

{(
i−1
2

)
n+ j

2 if i is odd, j is even(
i−1
2

)
n+ j+1

2 if i is even, j is odd.

Step 3

f(ui,jui+1,j) =

{
mn−

(
i
2

)
n+ n−j+1

2 if i, j are odd
mn−

(
i
2

)
n+ n−j+2

2 if i, j are even.

Step 4

f(ui,jui,j+1) = mn+

(
j − 1

2

)
m+

m− i+ 2

2
.

Step 5

f(ui,jui,j+1) = 2mn−
(
j

2

)
m+

i+ 1

2
.

It is clear that f is a bijection. Thus, we obtain that w(ui,j) = f(ui−1,jui,j) + f(ui,jui+1,j) +
f(ui,j+1ui,j+2) + f(ui,jui,j+1) for all 2 ≤ i ≤ m and 2 ≤ j ≤ n such that

(1) w(ui,j) =
1
2(8mn+m− n+ 5) if i ≡ j mod 2

(2) w(ui,j) =
1
2(8mn−m+ n+ 5) if i ̸≡ j mod 2.
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Moreover,

w(u1,1) = f(um,1u1,1) + f(u1,1u2,1) + f(u1,1u1,2) + f(u1,nu1,1)

=
1

2
(8mn+m+ n+ 3),

w(u1,j) = f(um,ju1,j) + f(u1,ju2,j) + f(u1,j−1u1,j) + f(u1,ju1,j+1)

=

{
1
2(7mn−m− n+ 3 + 2j) if j is even
1
2(9mn+m+ n+ 5− 2j) if j is odd

and

w(ui,1) = f(ui−1,1ui,1) + f(ui,1ui+1,1) + f(ui,nui,1) + f(ui,1ui,2)

=

{
1
2(9mn−m+ n+ 5) if i is even
1
2(7mn+m− n+ 5) if i is odd.

Therefore, f is a local antimagic labeling that induces n+ 2 distinct vertex colors, including

(1) A1 =
1
2(8mn+m− n+ 5) = 1

2(7mn−m− n+ 3) + 1
2(mn+ 2m+ 2),

(2) A2 =
1
2(8mn−m+ n+ 5) = 1

2(7mn−m− n+ 3) + 1
2(mn+ 2n+ 2),

(3) A3 =
1
2(8mn+m+ n+ 3) = 1

2(7mn−m− n+ 3) + 1
2(mn+ 2m+ 2n),

(4) A4 =
1
2(9mn−m+ n+ 5) = 1

2(7mn−m− n+ 3) + 1
2(2mn+ 2n+ 2),

(5) A5 =
1
2(7mn+m− n+ 5) = 1

2(7mn−m− n+ 3) + 1
2(2m+ 2),

(6) A
(j)
6 = 1

2(7mn−m− n+ 3 + 2j) = 1
2(7mn−m− n+ 3) + 1

2(2j) for even 2 ≤ j ≤ n,

(7) A
(j)
7 = 1

2(9mn+m+ n+ 5− 2j) = 1
2(7mn−m− n+ 3) + 1

2(2mn+ 2m+ 2n+ 2− 2j) for
odd 2 ≤ j ≤ n.

Clearly, for a given k = 1, 2, 3, 4, 5, the vertices of color Ak are not adjacent and for a given
k = 6, 7, the vertices of color A

(j)
k are not adjacent. Then we claim that A1, A2, A3, A4, A5, A

(j)
6

and A
(j)
7 are distinct except A

(m+1)
6 = A5 and A

(m)
7 = A4. Note that the vertex of color

A
(m+1)
6 is not adjcent to the vertices of color A5 and the vertex of color A

(m)
7 is not adjcent

to the vertices of color A4. Obviously, each A
(j)
6 is different and each A

(j)
7 is different. It

is enough to show that A
(j)
6 < A1 < A2 < A3 < A

(j)
7 . It is obvious that A1 < A2 < A3.

Then A
(j)
6 ≤ 1

2(7mn − m − n + 3) + 1
2(2n) < 1

2(7mn − m − n + 3) + 1
2(mn + 2m + 2) = A1

and A
(j)
7 ≥ 1

2(7mn−m−n+3)+ 1
2(2mn+2m+2) > 1

2(7mn−m−n+3)+ 1
2(mn+2m+2n) = A3.

(iii) Let f : E(Cm × Cn) → {1, 2, 3, . . . , 2mn} be the edge labeling obtained from the
algorithm. It suffices to check that f is a local antimagic labeling that induces m + 4 distinct
vertex colors.

Step 2

f(ui,jui+1,j) =

(
i− 1

2

)
n+

j

2
.

Step 3

f(ui,jui+1,j) = mn−
(
i

2

)
n+

n− j + 1

2
.
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Step 4

f(ui,jui,j+1) =

mn+
(
j
2

)
m− i−1

2 if i is odd, j is even

mn+
(
j
2

)
m− i−2

2 if i is even, j is odd.

Step 5

f(ui,jui,j+1) =

2mn−
(
j
2

)
m+ i+1

2 if i, j are odd

2mn−
(
j
2

)
m+ i

2 if i, j are even.

It is clear that f is a bijection. Thus, we obtain that w(ui,j) = f(ui−1,jui,j) + f(ui,jui+1,j) +
f(ui,j+1ui,j+2) + f(ui,jui,j+1) for all 2 ≤ i ≤ m and 2 ≤ j ≤ n such that

(1) w(ui,j) =
1
2(8mn−m− n+ 3) if i ≡ j mod 2,

(2) w(ui,j) =
1
2(8mn+m+ n+ 3) if i ̸≡ j mod 2.

Moreover,

w(u1,1) = f(um,1u1,1) + f(u1,1u2,1) + f(u1,1u1,2) + f(u1,nu1,1)

=
1

2
(10mn−m− n+ 5),

w(u1,j) = f(um,ju1,j) + f(u1,ju2,j) + f(u1,j−1u1,j) + f(u1,ju1,j+1)

=

{
1
2(7mn+m+ n+ 3) if j is even
1
2(9mn−m− n+ 3) if j is odd

and

w(ui,1) = f(ui−1,1ui,1) + f(ui,1ui+1,1) + f(ui,nui,1) + f(ui,1ui,2)

=

{
1
2(7mn+m+ n+ 5− 2i) if i is even
1
2(9mn−m− n+ 3 + 2i) if i is odd.

Therefore, f is a local antimagic labeling that induces m+ 4 distinct vertex colors, including

(1) A1 =
1
2(8mn−m− n+ 3) = 1

2(7mn−m− n+ 3) + 1
2(mn),

(2) A2 =
1
2(8mn+m+ n+ 3) = 1

2(7mn−m− n+ 3) + 1
2(mn+ 2m+ 2n),

(3) A3 =
1
2(10mn−m− n+ 5) = 1

2(7mn−m− n+ 3) + 1
2(3mn+ 2),

(4) A4 =
1
2(7mn+m+ n+ 3) = 1

2(7mn−m− n+ 3) + 1
2(2m+ 2n),

(5) A5 =
1
2(9mn−m− n+ 3) = 1

2(7mn−m− n+ 3) + 1
2(2mn),

(6) A
(i)
6 = 1

2(7mn +m + n + 5 − 2i) = 1
2(7mn −m − n + 3) + 1

2(2m + 2n + 2 − 2i) for even
2 ≤ i ≤ m,

(7) A
(i)
7 = 1

2(9mn−m− n+3+ 2i) = 1
2(7mn−m− n+3)+ 1

2(2mn+2i) for odd 2 ≤ i ≤ m,.

Clearly, for a given k = 1, 2, 3, 4, 5, the vertices of color Ak are not adjacent and for a given
k = 6, 7, the vertices of color A

(i)
k are not adjacent. Obviously, each A

(i)
6 is different and each

A
(i)
7 is different. To check that A1, A2, A3, A4, A5, A

(i)
6 and A

(i)
7 are distinct, it is enough to show

that A
(i)
6 < A4 < A1 < A2 < A5 < A

(i)
7 < A3. Obviously, A1 < A2 < A5 < A

(i)
7 . Since

mn ≥ 4m > 2m+ 2n, we have A4 < A1. We can see that A
(i)
6 ≤ 1

2(7mn−m− n+ 3) + 1
2(2m+

2n − 2) < A4 for even 2 ≤ i ≤ m. Moreover, A(i)
7 < 1

2(7mn − m − n + 3) + 1
2(2mn + 2m) <
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1
2(7mn−m− n+ 3) + 1

2(3mn+ 2) = A3 for odd 2 ≤ i ≤ m.

(iv) Let f : E(Cm × Cn) → {1, 2, 3, . . . , 2mn} be the edge labeling obtained from the algo-
rithm. It suffices to check that f is a local antimagic labeling that induces m + n + 1 distinct
vertex colors.

Step 2

f(ui,jui+1,j) =

(
i− 1

2

)
n+

j

2
.

Step 3

f(ui,jui+1,j) = mn−
(
i

2

)
n+

n− j + 1

2
.

Step 4

f(ui,jui,j+1) = mn+

(
j − 1

2

)
m+

m− i+ 2

2
.

Step 5

f(ui,jui,j+1) = 2mn−
(
j

2

)
m+

i+ 1

2
.

It is clear that f is a bijection. Thus, we obtain that w(ui,j) = f(ui−1,jui,j) + f(ui,jui+1,j) +
f(ui,j+1ui,j+2) + f(ui,jui,j+1) for all 2 ≤ i ≤ m and 2 ≤ j ≤ n such that

(1) w(ui,j) =
1
2(8mn+m− n+ 4) if i ≡ j mod 2,

(2) w(ui,j) =
1
2(8mn−m+ n+ 4) if i ̸≡ j mod 2.

Moreover,

w(u1,1) = f(um,1u1,1) + f(u1,1u2,1) + f(u1,1u1,2) + f(u1,nu1,1)

=
1

2
(8mn+m+ n+ 2),

w(u1,j) = f(um,ju1,j) + f(u1,ju2,j) + f(u1,j−1u1,j) + f(u1,ju1,j+1)

=

{
1
2 (7mn−m− n+ 3 + 2j) if j is even
1
2 (9mn+m+ n+ 5− 2j) if j is odd

and

w(ui,1) = f(ui−1,1ui,1) + f(ui,1ui+1,1) + f(ui,nui,1) + f(ui,1ui,2)

=

{
1
2(9mn−m+ n+ 3 + 2i) if i is even
1
2(7mn+m− n+ 5− 2i) if i is odd.

Therefore, f is a local antimagic labeling that induces m+n+1 distinct vertex colors, including

(1) A1 =
1
2(8mn+m− n+ 4) = 1

2(7mn−m− n+ 2) + 1
2(mn+ 2m+ 2),

(2) A2 =
1
2(8mn−m+ n+ 4) = 1

2(7mn−m− n+ 2) + 1
2(mn+ 2n+ 2),

(3) A3 =
1
2(8mn+m+ n+ 2) = 1

2(7mn−m− n+ 2) + 1
2(mn+ 2m+ 2n),

(4) A
(j)
4 = 1

2(7mn−m− n+ 3 + 2j) = 1
2(7mn−m− n+ 2) + 1

2(1 + 2j) for even 2 ≤ j ≤ n,
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(5) A
(j)
5 = 1

2(9mn+m+ n+ 5− 2j) = 1
2(7mn−m− n+ 2) + 1

2(2mn+ 2m+ 2n+ 3− 2j) for
odd 2 ≤ j ≤ n,

(6) A
(i)
6 = 1

2(9mn−m+ n+ 3 + 2i) = 1
2(7mn−m− n+ 2) + 1

2(2mn+ 2n+ 1 + 2i) for even
2 ≤ i ≤ m,

(7) A
(i)
7 = 1

2(7mn+m−n+5−2i) = 1
2(7mn−m−n+2)+ 1

2(2m+2−2i) for odd 2 ≤ i ≤ m.

Clearly, for a given k = 1, 2, 3, the vertices of color Ak are not adjacent, for a given k = 4, 5, the
vertices of color A

(j)
k are not adjacent and for a given k = 6, 7, the vertices of color A

(i)
k are not

adjacent. Obviously, each A
(j)
4 is different, each A

(j)
5 is different, each A

(i)
6 is different and each

A
(i)
7 is different. To check that A1, A2, A3, A

(j)
4 , A

(j)
5 , A

(i)
6 and A

(i)
7 are distinct, we claim that

max{A(j)
4 , A

(i)
7 } < A1 < A2 < A3 < min{A(j)

5 , A
(i)
6 }, A(j)

4 ̸= A
(i)
7 and A

(j)
5 ̸= A

(i)
6 . It is obvious

that A1 < A2 < A3. We can see that A
(j)
4 ≤ 1

2(7mn−m− n+ 3) + 1
2(2n− 1) < A1 and A

(i)
7 <

1
2(7mn−m−n+3)+ 1

2(2m−4) < A1. Moreover, A(i)
6 ≥ 1

2(7mn−m−n+3)+ 1
2(2mn+2n+5) > A3

and A
(j)
5 ≥ 1

2(7mn−m− n+ 3) + 1
2(2mn+ 2m+ 3) > A3. Since 1 + 2j and 2m+ 2− 2i have

different parities, we have A
(j)
4 ̸= A

(i)
7 . Next, we will show A

(j)
5 ̸= A

(i)
6 . It is enough to check

that 2mn + 2m + 2n + 3 − 2j ̸= 2mn + 2n + 1 + 2i. We suppose 2m + 3 − 2j = 1 + 2i. Then
m+ 1 = i+ j for all odd i, even j which is a contradiction. Thus, A(j)

5 ̸= A
(i)
6 .

(v) To find a lower bound for the local antimagic number of Cm × Cn, if both m and n are
even, then we observe that Cm × Cn is a bipartite graph whose partite sets have the same size.
Thus, χla(Cm × Cn) > 2 by Corollary 2.2. Otherwise, we have χla(Cm × Cn) ≥ χ(Cm × Cn) =
max{χ(Cm), χ(Cn)} = 3.

3 Concluding Remarks

In this research, we obtained some bounds for the local antimagic chromatic number of cartesian
product of some graphs, namely P2 × Pn, P2 × Cn and Cm × Cn. Moreover, we proved the
exact local antimagic chromatic number of P2 × P3. Lau and Shiu [14] found the exact values
of χla(P2 × C3) and χla(P2 × C4). It would be interesting to determine the exact values of
χla(P2 × Pn), χla(P2 × Cn) and χla(Cm × Cn).

Problem 3.1. Determine the exact local antimagic chromatic number of P2 × Pn for n ≥ 4.

Problem 3.2. Determine the exact local antimagic chromatic number of P2 × Cn for n ≥ 5.

Problem 3.3. Determine the exact local antimagic chromatic number of Cm×Cn for m,n ≥ 3.

In addition, the idea in the proof the upper bound for χla(Cm ×Cn) in Theorem 1.4 can be
used to give upper bounds for χla(Pm × Pn) and χla(Pm × Cn). However, we are not able to
determine the exact values.

Problem 3.4. Determine the exact local antimagic chromatic number of Pm×Pn and Pm×Cn.
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Abstract

This study investigates the application of Graph Convolutional Network (GCN) coupled
with beam search to solve the Multiple Traveling Salesman Problem (MTSP). The GCN is
trained to model and understand the structure of the problem, including features of various
locations, their interconnections, and the number of salesmen. Subsequently, beam search
is employed to extract the final optimal routes. Our findings confirm the applicability of
this approach, yielding solutions with small optimality gaps and highlighting its efficiency in
addressing the complexities of the MTSP.

Keywords: graph convolutional network, multiple traveling salesmen, beam search.
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1 Introduction
The traveling salesman problem (TSP) involves finding the shortest route to visit all assigned
nodes. It is a well-known problem within the realms of computer science and operations research,
with practical applications in logistics and delivery businesses. Solving TSP has the potential
to address real-life business operations, including shipping time, cost, and scheduling. The
Multiple Traveling Salesman Problem (MTSP) is an extension of the single salesman problem,
where multiple routes corresponding to the number of salesmen are built, with the condition
that each node must be visited by one salesman, and the total distance of all routes must be
minimized.

TSP and MTSP are typically solved by heuristic algorithms, such as genetic algorithms [1],
tabu search [5], ant colony optimization [13], as well as LP solvers like Concorde [4]. Moreover,
machine learning techniques have also been employed. Examples include accelerated augmented
∗This research was partially supported by Office of the Permanent Secretary, Ministry of Higher Education,
Science, Research and Innovation, Thailand, through the Grant No. RGNS 64-151.
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tipaluck.kri@mahidol.edu (T. Krityakierne).
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Lagrangian Hopfield neural network algorithms [6] and decentralized attention-based neural
networks [2].

Since TSP problems are represented in the form of graphs with connected paths between
nodes, Graph Convolutional Network (GCN) can be naturally employed to analyze the connec-
tions between data nodes in the problem. GCN facilitates the sharing of information among
nodes, revealing relationships that influence the determination of the optimal route by progres-
sively combining node information from nearby locations. The idea of using a GCN has been
explored in [12] to extract features from the graph. In this approach, each node in the graph is
represented by a feature vector, and it merges information from its neighboring nodes. Graph
Neural Network (GNN) local search for the traveling salesman problem, as considered by [7], is
a hybrid data-driven approach for solving the TSP based on graph neural networks and guided
local search. The work of [11] reviews Hopfield neural networks, graph neural networks, and
neural networks with reinforcement learning for solving the TSP. The work of [8] uses a graph
as input and outputs probabilities of edges occurring on a TSP tour from the GCN model.
Deep policy dynamic programming for vehicle routing problems, proposed by [9], combines the
strengths of learned neural heuristics with dynamic programming algorithms.

Objective: The objective of this research is to investigate the applicability of GCN in solving
MTSP. Specifically, in the numerical results, we train the model for 20-node MTSP instances
with 1, 2, or 3 salesmen using datasets containing coordinates and their corresponding tour solu-
tions. The results are subsequently evaluated by comparing the efficiency of decoding methods
used to extract the final optimal MTSP routes.

2 Methodology

The technique used in this study was adapted from that of [8], where the GCN was initially
employed to solve a single-TSP problem. Building upon this foundation, we have tailored the
methodology to tackle the MTSP.

An overview of the main procedure is now given.

Algorithm 1 Procedure for solving MTSP problems with n nodes and m salesmen
Input: Training and validation datasets (Section 2.1)

1: For each input data, duplicate m− 1 number of artificial origin nodes n+ 1, . . . , n+m− 1,
all having the same coordinate locations as that of the origin node 1.

2: Apply GCN for TSP (Section 2.2).
3: Decode a probabilistic heat-map into an optimal route (Section 2.3).
4: Convert an optimal TSP route back into optimal MTSP tours by reverting the procedure

in Step 1.

The procedure begins by transforming the MTSP input data into a single-TSP, achieved by
adding m−1 artificial origin nodes. For example, in Figure 1, the original 2-TSP is transformed
into a single-TSP by the addition of node 11.

Next, the GCN is applied to obtain outputs in the form of a prediction heat map, representing
the adjacency matrix of edges (with details provided in Section 2.2). Subsequently, the prediction
heat map serves as input for the next step, which determines an optimal route (as discussed
in Section 2.3). Finally, after the optimal route solution has been determined, we convert a
single-TSP tour back into optimal tours for MTSP by collapsing all artificial nodes back to the
origin node 1.

We will now provide the necessary details and explanations for each step of the procedure
starting with the dataset structure and generation.
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Figure 1: The 2-TSP transformed into a single-TSP by adding an artificial node 11

2.1 MTSP Dataset Structure and Generation
2.1.1 Dataset Structure

The input data is a collection of two-dimensional coordinates (x, y) based on the number of
nodes of interest, followed by the optimal tours, where node 1 is always the origin node. For
example, for a problem with 10 nodes and 2 salesmen, the input data will take the form:

(0.5222797461609513,0.8095372968646599),
(0.117167965988632, 0.7118656499868851),
(0.5755570629747176, 0.4779300930503926),
(0.17851080649823037, 0.4215499396635761),
(0.6930025843040617, 0.6361822518619119),
(0.8158842838579384, 0.24317747043216498),
(0.0018452807967549445, 0.5670706020799816),
(0.3103900468905868, 0.6491108438482176),
(0.10556622600366072, 0.8425337796202614),
(0.8159933439685663, 0.38616766472072805)

salesman 1: 1 5 10 6 3 1;
salesman 2: 1 9 2 7 4 8 1

2.1.2 Dataset Generation via Linear Programming for MTSP

The datasets for MTSP for training and testing consist of coordinates (x, y), and the correspond-
ing optimal tour solution, which is obtained through the Miller-Tucker-Zemlin formulation. The
objective and constraint equations are as follows:

min

n∑
i=1

n∑
j=1,j ̸=i

cijxij (2.1)

n∑
i=2

xi,1 = m (2.2)

n∑
j=2

x1,j = m (2.3)

n∑
i=2,i ̸=j

xij = 1, ∀j = 1, ..., n; (2.4)

n∑
j=2,i ̸=j

xij = 1, ∀i = 1, ..., n; (2.5)
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ui − uj + 1 ≤ (n− 1)(1− xij), ∀i, j, 2 ≤ i ̸= j ≤ n; (2.6)

0 ≤ ui ≤ n, ∀i = 2, . . . , n; (2.7)

xij ∈ {0, 1}, ∀i, j = 1, . . . , n; (2.8)

ui ∈ Z, ∀i = 2, . . . , n, (2.9)

where the node indices are represented by numbers 1, . . . , n. The variable xij equals 1 when the
path goes from node i to node j and 0 otherwise. Here, m is the number of salesmen, ui is an
auxiliary variable, cij represents the distance from node i to node j.

The objective function (2.1) aims to minimize the distance of each salesman’s tour. The first
two constraints, (2.2) and (2.3), ensure that there are m salesmen who return to and depart
from the origin node. Following are the next two constraints, (2.4) and (2.5), which guarantee
that each node is reached from exactly one other node and that from each node there is an
exit to exactly one other node. The constraints on the auxiliary variables (2.6) ensure that no
salesman passes through the same node twice.

2.2 Application of GCN for TSP
Graphs consist of nodes connected by edges, representing relationships and interactions between
entities. To apply GNN, the input graph needs to be transformed into a matrix (adjacency matrix
or node attributes matrix), filled with 0s and 1s to denote connections between nodes. GNN
then learns embeddings or representations for each node in the graph. These representations
encode information about the node’s features and its relationships with neighboring nodes.
Subsequently, GNN uses information from a node’s neighbors to update its own information
as shown in Figure 2. This updating of node information is commonly referred to as message
passing as shown in Figure 3.

Figure 2: After the message passing layer, each node in the graph possesses information about
its neighbors

GCN is a specific type of GNN that employs convolution-like operations on graphs. It adapts
the concept of convolution from image processing to capture local structures within graphs.
Features are learned by examining neighboring nodes. However, GCN differs from Convolutional
Neural Networks (CNNs) in that CNNs are designed to operate on data with regular structures,
while GCN is a generalized version of CNN where the number of node connections varies, and
the nodes are unordered. See Figure 4.

In this work, we apply GCN to learn and solve MTSP in a similar manner to that of [8] for
TSP. The details are as follow:

1. Input layer
For the input node feature, we are given the two-dimensional coordinates xi ∈ [0, 1]2 which
are embedded into h-dimensional features. Here, h depends on the batch size, node, and
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Figure 3: Example illustrating how each message passing layer operates when concentrating on
updating information in the yellow node

Figure 4: Structuring data for CNN and GCN

hidden dimension. The edge distance between nodes i and j is represented as a h/2-
dimensional feature vector. An indicator function of a TSP edge is denoted by δk−NN

ij ,
with a value of one if node j is one of the k-nearest neighbors of node i, a value of two for
self-connections, and a value zero otherwise.

2. Graph convolution layer
The graph convolution layer is used to calculate representations for nodes and edges within
a graph. Both node and edge information are used to compute these representations, and
multiple layers of graph convolution are applied to iteratively extract increasingly complex
features from the input graph. More precisely, let xli and eli denote the node feature vector
and edge feature vector at layer l associated with node i and edge ij, respectively. The
notation j ∼ i denotes the set of neighboring node centered at node i. At the input layer,
xl=0
i = αi and el=0

ij = βij . We define the node feature and edge feature at the next layer
as:

xl+1
i = xli +ReLU(BN(W l

1x
l
i +

∑
j∼i

nl
ijW

l
2x

l
j))

The 28th Annual Meeting in Mathematics (AMM2024)

201



el+1
ij = elij +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
i)),

with

nl
ij =

σ(elij)∑
j′∼i σ(e

l
ij) + ε

,

where Wi ∈ Rh×h is the matrix of size h×h in PyTorch’s “nn.Linear” modules [10]. These
weights are automatically initialized by PyTorch and are updated during the training
of a neural network. Here, σ represents the sigmoid function, ε denotes a small value,
ReLU is the rectified linear unit, and BN refers to batch normalization. In this work,
batch normalization normalizes node and edge features independently, helping stabilize
and accelerate the training of neural networks for graph-related tasks. Figure 5 illustrates
the graph convolution layer.

Figure 5: The h-dimensional representations xi for node i, and eij for the edge connecting node i
and j in the graph, are computed by the graph convolution layer. The information for computing
in the next layer is indicated by green and red arrows.

3. Multi-layer perceptron (MLP) classifier
Once the GCN layer is completed, the algorithm acquires edges with more complex features
(elij). The edge embedding of the last layer is then used to compute the probability of
edge connection in the tour of the graph. This probability can be seen as computing a
probabilistic heat map over the adjacency matrix of tour connections

pTSP
ij = MLP (eLij),

where pTSP
ij ∈ [0, 1]2 and L is the layer of the MLP.

We provide an example of the outputs from the MLP layer with 10 nodes: [[[ 0.3176, 0.3986],
[-0.0411, 0.0290], [-0.0586, -0.1276], [ 0.1145, 0.1033], [-0.0287, 0.1249], [ 0.6307, 0.8379], [-0.0568,
-0.2325], [-0.0545, -0.1104], [-0.0247, -0.1831], [ 0.0276, 0.4686]], [[-0.0411, 0.0290], [ 0.3932, 0.4884],
[ 0.1436, 0.2179], [ 0.0385, 0.1141], [-0.2165, -0.0985], [ 0.6611, 0.7397], [ 0.0333, 0.0074], [ 0.0780,
0.1625], [ 0.0711, -0.0255], [ 0.0328, 0.2008]], ...], where each component is a range of values
and can be transformed into a prediction heat map as shown in Figure 6.
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Figure 6: Heatmap illustrating the predicted output from an example within the MLP layer

4. Loss function
Each element of the adjacency matrix, transformed from the ground-truth TSP tour,
indicates whether there is an edge between nodes i and j in the TSP tour. To optimize
this process, a weighted binary cross-entropy loss is minimized over mini-batches. As the
size of the problem grows, there is an issue of class imbalance in the classification task,
where the negative class dominates. To address this imbalance, appropriate class weights
are needed to balance the effect. The balance class weight of classes 0 and 1 are computed
by [8]

w0 =
n2

(n2 − 2n) ∗ c
and

w1 =
n2

(2n) ∗ c
,

where c = 2 denotes the number of classes (0 and 1), and n is the number of nodes in each
instance.
The input for computing the loss value includes predictions for edges, targets for edges, and
weights for edge loss. The algorithm utilizes the edge predictions with “F.log_softmax”
(a function call from the PyTorch library) and calculates the logarithm of the softmax
function applied element-wise to the input to obtain the log probability tensor as input for
the loss function. Next, it computes negative log-likelihood loss using the “nn.NLLLoss”
function. This loss is employed to measure the dissimilarity between the predicted proba-
bility distribution for edges and the actual class labels, while also considering the specified
class weights. This loss is computed between the log probabilities and the target values.
The class weights are used during the loss calculation. PyTorch’s negative log-likelihood
loss, “nn.NLLLoss” is defined as [3]:

l(x, y) = L =

N∑
n=1

ln∑N
n=1wyn

,

ln = −wynxn,yn ,

where x computes the logarithm of the softmax function along the edge predictions, y is
the target for edges, w is the class weight, and N is the batch size.

2.3 Decoding Optimal Routes
The output of the previous step is a probabilistic heat map over the adjacency matrix of tour
connections. To extract this probabilistic edge heat map into a valid permutation of nodes, opti-
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mization search strategies are required. Although alternative search strategies can be employed
for this task, in our numerical experiment, we will primarily use beam search. Therefore, we
will now provide a brief refresher on beam search.

Beam search: Beam search is a technique used in natural language processing and generative
models to find a set of high-probability sequences. It involves exploring the possibilities by
expanding the most likely connections among neighboring nodes, starting with the first node
and progressively expanding the top candidates at each stage. The process continues until
all nodes have been visited, and a valid tour is constructed using a masking strategy. The
mask tensor is updated to exclude nodes that have already been added to the beam during the
search. The final prediction is the tour with the highest probability among a specified number
of complete tours, known as the beam width.

In this work, beam search is used to extract the final optimal TSP tour based on a proba-
bilistic heat map. The steps are as follows:

1. Calculate probabilities: Probabilities for edge prediction are calculated using either soft-
max or log softmax.

2. Initialize Beam search: An instance of the beam search is created with specified parameters
such as beam size, batch size, number of nodes, data types, probability type, etc.

3. Perform beam search: A loop is employed to advance the beam search step by step. At
each step, probabilities are calculated, and the beam is advanced accordingly.

4. Extract the TSP tour: After the beam search is complete, the TSP tour with the highest
probability among the beam candidates is obtained.

Heuristic beam search: As in [8], another variant of beam search will also be implemented
for comparison. In this variant, instead of selecting the tour with the highest probability at the
end of beam search, we select the shortest tour among the set of b complete tours as the final
solution. We shall refer to this variant as the heuristic beam search.

3 Numerical Experiments

3.1 Experimental Setup

The hyperparameters and setting used for training are referenced from [8]. In particular, each
model consists of lconv = 30 graph convolutional layers and lmlp = 3 layers in the MLP, with
hidden dimension h = 300 for each layer. We use a fixed beam width b = 1,280 and fix k = 20
nearest neighbors for each node in the adjacency matrix.

For each training epoch, a random 10,000 problem instances are selected from a 100,000
training set. The Adam optimizer is used to minimize the cross-entropy loss for each mini-
batch.

The model’s performance is evaluated on a separate validation set consisting of 10,000 in-
stances. If the validation loss does not decrease by at least 1% compared to the previous
validation loss, the learning rate of the optimizer is reduced. This small learning rate decay
strategy helps the models learn more efficiently and converge to better local minima during
training.

3.2 Performance Metrics

We use the following two metrics for comparing algorithm performance.
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1. Average tour length: The average predicted MTSP tour length is computed by

1

T

T∑
i=1

li,

where T is the number of test instances and li is the predicted MTSP tour length.

2. Optimality gap: The average percentage ratio of the predicted tour length relative to the
optimal solution is computed as

1

T

T∑
i=1

(
li
l∗i

− 1

)
,

where l∗i is the optimal MTSP tour length.

3.3 Numerical Results

Three variants of the algorithm are considered, depending on the decoding method used to
extract the final optimal TSP routes: I. greedy search (GS), II. beam search (BS), and
III. heuristic beam search (BS*). The explanation of BS and BS* can be found in Section
2.3. Regarding GS, the method begins at the first node and greedily selects the next node from
its neighbors based on the highest probability of an edge’s presence. The search terminates once
all nodes have been visited.

Due to the three-week timeframe required to generate MTSP training dataset containing
optimal tours of 100,000 problem instances (on a computer with an Intel Core i7 @5.4GHz
CPU), we were only able to demonstrate the method for problems involving 20 nodes and 1, 2,
or 3 salesmen. This process alone consumed over 1.5 months solely for data generation.

The exact solution, serving as a baseline, was obtained from GUROBI 10.0.3. Table 1
presents the average tour length over 10,000 instances (Avg. Len.), optimality gap (Opt. gap.),
and total computation time (Time) taken for 10,000 test instances.

Table 1: Numerical results from the GCN model with greedy search (GS), beam search (BS),
or heuristic beam search (BS*) and Gurobi solver

#Salesmen Measurement Gurobi GCN+GS GCN+BS GCN+BS*

1
Avg. Len. 3.831 3.935 3.854 3.831

Opt. gap. (%) 2.715 0.600 0
Time (sec) 402.07 511.87 868.4

2
Avg. Len. 4.009 4.189 4.065 4.011

Opt. gap. (%) 4.489 1.397 0.049
Time (sec) 461.69 564.98 1394.86

3
Avg. Len. 4.311 4.545 4.388 4.320

Opt. gap. (%) 5.428 1.786 0.209
Time (sec) 496.82 615.17 1946.35

From the table, it is evident that while GCN+GS requires relatively short computational
time, it does not provide a satisfactory solution for route optimization. On the other hand,
GCN+BS* appears to offer the best solution, albeit at the expense of longer computational
time especially for the problem having more than one salesman. GCN+BS represents a middle
ground between accuracy and computational efficiency when compared to the other two methods.
Figure 7 illustrates the comparison of optimality gap across the three methods with varying
numbers of salesmen, thereby confirming the results observed in the table.
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Figure 7: The optimality gap for the 20-node problem instances with 1, 2, and 3 salesmen

4 Conclusions
In this study, we addressed the MTSP using a graph convolutional network. Our numerical
results demonstrated the effectiveness of GCN in solving MTSP and emphasized the crucial
role of the optimization search method in extracting optimal routes efficiently. Future research
directions could include exploring alternative search methods, incorporating training inputs with
varying numbers of nodes, and focusing on algorithm enhancements and scalability testing using
larger datasets or real-world MTSP scenarios.
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Abstract

The use of artificial intelligence in developing a rice production forecasting model for
Thailand was investigated in this work. The planting area, rice varieties, irrigation area,
harvesting area, amount of fertilizer applied, selling price, average rainfall, temperature, and
humidity were all taken into consideration during the cultivation process. The rice yields were
estimated using the following four models: Artificial Neural Network (ANN), Decision Tree
Regressor (DTR), Extreme Gradient Boosting (XGBoost), and Multiple Linear Regression
(MLR). The results indicate that XGBoost performed better than the other three models in
terms of prediction accuracy. Therefore, this technique was used to predict Thailand’s rice
production. In addition, we separated the anticipated scenario for the years 2023–2025 into
three categories: typical occurrences, flood situation, and drought situation.

Keywords: rice yield prediction, artificial intelligence, multiple linear regression, decision tree
regressor, XGB regressor, artificial neural network.
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1 Introduction
Nowadays, the agriculture sector accounts for the majority of Thailand’s economy. The National
Statistical Office [7] reports that as of the fourth quarter of 2022, 12.22% million Thais, or
17.47% of the labor force, were employed in agriculture. This demonstrates the importance
of employment and household income to the country. According to projections, between 2040
and 2049, greenhouse gas emissions will cost Thailand’s agribusiness between $24 billion and
$94 billion [1]. Climate change is making agricultural output more unpredictable, thus the
agriculture sector is depending more and more on yield forecasts. If the forecast turns out to
be accurate, agencies will have the knowledge required to create appropriate policies that will
assist farmers in better planning their agricultural operations and preparing for any potential
†Speaker: Thoedsak saengthong. ‡Corresponding author: Wanyok Atisattapong.
Email: thoedsak.sae@dome.tu.ac.th (T. saengthong), thanathat9394@gmail.com (T. Khottiam),
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changes in the scheduling or management of different resources, including labor, capital, water,
and land.

Agricultural yield forecasting develops a model to predict future crop production based
on historical crop yield data and independent variables impacting agricultural yield. Crop
yield forecasting creates an agricultural yield projection at the end of the growing season by
importing all data once, which is static data [8]. Nevertheless, this kind of forecasting ignores
data collected during the agricultural season such as temperature, precipitation, humidity. As
a result, the Agricultural Information Center [11] forecasts yields divided into four quarter,
with the first quarter occurring in March, the second in June, the third in September, and the
fourth in December. Each forecast is followed by an adjustment to improve the accuracy of
the subsequent forecast based on the outcomes. At every stage of agricultural production, the
forecasting model incorporates data that influences and correlates many aspects of agricultural
use.

In this study, we create models utilizing four different techniques: (1) multiple linear re-
gression (MLR), (2) decision tree regression (DTR), (3) extreme gradient boosting (XGBoost),
and (4) artificial neural network (ANN) to forecast Thailand’s rice yield in the future. When
predicting rice yield, three phases will be considered: preparation, planting, and harvesting the
crop. It is expected that the forecast’s outcomes would facilitate goal-setting and the drafting
of appropriate policies by public and private organizations involved with Thailand’s agricultural
sector.

The rest of the paper is organized as follows. In Section 2, the related works are discussed.
In Section 3, the models are proposed. The results and simulation are reported in Section 4,
and our conclusions are discussed in Section 5.

2 Literature Review
Byoung-Hoon Lee, et al. [2] proposed regression models to forecast county wheat yield and
wheat quality using meteorological data. Precipitation and temperature are included in the
models as explanatory factors for the various stages of wheat development. In addition, the
models include a spatial lag effect, crop year random effects, and county fixed effects. Weather
factors have a significant impact on both yield and quality level; precipitation and yield have
a positive, nonlinear relationship, whereas average monthly temperatures have a negative link.
The forecasting ability of the models is enhanced by adding the spatial lag effect, and out-of-
sample tests confirm the usefulness of the models in predicting wheat yield and quality.

P. S. Maya Gopal, et al. [9] proposed a hybrid MLR-ANN model for crop yield prediction
in agriculture. The MLR intercept and coefficients are utilized to initialize the input layer
bias and weights of the ANN. Based on performance criteria, the hybrid model outperforms
the traditional MLR, ANN, support vector machine (SVR), K-nearest neighbor (KNN), and
random forest (RF) models in terms of prediction accuracy. Crop yields are predicted by Pallavi
Shankarrao Mahore, et al. [10] using a variety of machine learning algorithms, including RF,
SVM, and KNN. These methods provide better performance outcomes for specific meteorological
conditions, and the suggested system uses data mining techniques to process all the data and
estimate harvest output. This can assist farmers in making well-informed decisions about which
crops to plant at different times of the year to maximize profits.

A greenhouse drip-irrigated tomato crop evapotranspiration (ET) prediction model (XGBR-
ET) based on XGBoost regression was developed by Jiankun Ge, et al. [5] and demonstrated good
modeling accuracy for daily ET for greenhouse tomatoes. Additionally, the XGBR-ET model
performed better in terms of prediction accuracy when compared to seven other regression
models. The effectiveness of XGBR-ET in modeling daily ET for greenhouse tomatoes was
proved by its statistical indicators, including mean square error, root mean square error, mean
absolute error, mean absolute percentage error, and coefficient of determination.

The 28th Annual Meeting in Mathematics (AMM2024)

209



Ervin Gubin Moung, et al. [3] proposed the XGBoost regression model in 2022 as a helpful
tool for forecasting crop yield in Malaysia, and it has a strong R-squared value of 0.98. The
most important independent variables in predicting crop output were found to be the quantity
of pesticides applied, the average rainfall, and the average temperature. Lastly, to develop a
global regression model that can predict crop output across national borders, future research
endeavors to integrate yield prediction data from diverse country sources.

The cherry coffee yield forecast for 2022 by Yotsaphat Kittichotsatsawat, et al. [13] includes
four stages from plantation to harvest. The area, rainfall, temperature, and relative humidity
(RH) datasets are the inputs, and the crop yield of cherry coffee is the output. The productivity
of cherry coffee crop yield was estimated using the MLR analysis. With an RMSE of 0.0784 tons
and an R2 value of 0.9235, the MLR model was found to be a good predictor of crop production.
The MLR model maintained the linear relationship between crop yield and input factors.

3 Methods
The operational framework of the research methods used in this study as shown in Figure 1.

Figure 1: Operational framework

3.1 Data Collection
The primary tasks carried out throughout the cultivation process are associated with the vege-
tative, reproductive, and ripening phases of rice production [12]. The Ministry of Agriculture’s
Office of Agricultural Economics of Cooperatives provided the input factors, which included
the amount of rice harvested, the area under cultivation, the area both inside and outside the
irrigation zone, the amount of fertilizer applied, the type of rice farmed, and the selling price,
that affected the value of forecasting rice output at each step. The Meteorological Department
and other websites supplied the average temperature, humidity, wind speed, and rainfall, among
other meteorological data.

The nine years between 2012 and 2020 were used for collecting all of the data. The twelve
variables (eleven inputs and one output) and 693 data points that were obtained through the
data collection process are shown in Table 1.

3.2 Data Preparation
The data was enhanced, updated, and values from analytical statistics were calculated. Next, to
increase the model’s accuracy, prepare the data before training and import it into the analysis
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Table 1: Dataset list

Variable Definition Vegetative Reproduction Ripening
X1 Plantation Area (Rai) ✓ ✓
X2

∗∗ Rice varieties ✓ ✓ ✓
X3 Selling price (Bath) ✓
X4 Average temperature (Celsius) ✓ ✓ ✓
X5 Average humidity (Percent) ✓ ✓ ✓
X6 Average wind force (Knot) ✓ ✓ ✓
X7 Average rainfall(milli meters) (Knot) ✓ ✓ ✓
X8 Fertilizer quantity (Ton) ✓
X9 Irrigated area (Rai*) ✓
X10 Out Irrigated area (Rai*) ✓
X11 Harvest area (Rai*) ✓
Y Rice yield (Ton) ✓ ✓ ✓

*1 Rai = 1,600 m2, X1, X2, X8, X9, X10, and X11 are retrieved from https://www.oae.go.th/view/1/
���������������������������/TH-TH, X3 is from https://www.oae.go.th/view/1/�����������������������/TH-TH, X4, X5, X6, and X7

are obtained from https://en.tutiempo.net/climate/01-2023/ws-484540.html
**X2 (Rice varieties): KD6 rice, Thai jasmine rice 105, Native rice, Non-photoperiod sensitivity Rice

model. The following is an explanation of the preparation steps.

Table 2: Descriptive statistics of independent and dependent variables

Phases Variable Mean S.D. Min Max

Vegetative

X1 988, 357.9 1, 053, 044.3 63 4, 314, 831
X3 13, 525.7 1, 941.4 10, 189 15, 582
X4 29.5 1.2 26.5 36.5
X5 75.1 4.9 60.5 86.9
X6 2.2 1.4 0 7.2
X7 186.1 126.3 2.8 816.1

Reproduction

X1 988, 357.9 1, 053, 044.3 63 4, 314, 831
X4 28.2 3.1 25.8 93.3
X5 80.2 3.7 64.3 88.5
X6 2 1.3 0 6.2
X7 226.4 132.5 3.7 857.1
X8 27, 523.7 29, 897.5 2 112, 045
X9 201, 481.1 199, 312 0 1, 026, 722
X10 778, 916.4 955, 957.3 0 3, 954, 591

Ripening

X4 26.1 3.1 20.3 77.5
X5 70.4 6.4 53.8 87.9
X6 2.2 1.5 0 6.8
X7 53.2 100.2 0 4, 163, 693
X11 919, 287.3 964, 638.4 63 4, 163, 693

Y 398, 476.2 381, 446.2 31 1, 432, 101
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3.2.1 Data Cleaning

To ensure that the data was as accurate and useful as feasible, it was updated, reviewed, and
replaced with inaccurate data. The dataset was also filtered to remove information that was not
accurate. The dataset had 12 variables and 472 data points after data cleaning.

3.2.2 Data Transformation

The data used to build the prediction model has a range of values and units, thus to make the
data suitable for training the model, normalization and modifying the data units within the
same unit are required. The standard scalar approach is used in this study, as shown in Eq.
(3.1).

Xi,scale =
Xi − µXi

σXi

, for i = 1, 2, . . . , 11, and Yscale =
Y − µY

σY
, (3.1)

where there are 472 data points for each Xi for i = 1, 2, . . . , 11. Each variable’s mean is denoted
by µXi or µy, and its variance is denoted by σXi or σy. After data transformation, scaled
variables have a mean of zero and a variation of one.

3.3 Feature Selection
The process of selecting features from a dataset that will increase the prediction model’s perfor-
mance and accuracy while reducing overfitting is known as feature selection. The goal behind
feature selection is to employ the best outcomes as input variables in the prediction model,
ranking each aspect based on relevance or the most important relationship. First, a MLR model
containing all independent variables will be constructed as in Eq. (3.2).

Y = β̂X (3.2)

where

Y =


y1
y2
...
yn

 , X =


1 x11 · · · x1p
1 x21 · · · x2p
...

... . . . ...
1 xn1 · · · xnp

 , and β̂ =


β0
β1
...
βp

 .

Here p is the number of factors (p = 11), n is the number of data points (n = 472), Y is a vector
of rice yields, X is a matrix of input factors with its first column equal to one, and β̂ is the
coefficient vector of input factors.

Then, to find the correlation coefficient vector, Eq. (3.2) can be solved by.

β̂ = (XTX)−1XTY (3.3)

An inverse relationship exists when the correlation coefficient is negative, which indicates that
as the value of the input element rises, the rice production will fall. A positive correlation
coefficient indicates that an increase in the input factor’s value will likewise increase the output
value. The variable has little to no relate at all if the correlation coefficient is near zero.

After the model was created, the variables with the highest p-value were removed one at a
time using the backward elimination technique. After the feature selection process, the input
factors for each planting stage are shown in Table 3.

3.4 Building a Prediction Model
In this work, the Python programming language was used to create prediction models for the
total rice production. The training set comprised 80% of the data, while the test set was created
using the remaining 20%. There were four models created using supervised learning.
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Table 3: Prediction factors after the feature selection process of each phase

Phase Input factors
Vegetative X1, X2, X4, X5, X6

Reproduction X1, X2, X5, X6, X7, X8, X9, X10

Ripening X2, X5, X6, X7, X11

3.4.1 Multiple Linear Regression (MLR)

Multiple regression analysis is used to examine the relationship between several input com-
ponents (X1, X2, . . . .Xn) and a single predicted value of rice production (Y ). The expected
outcome depends on the values of the input elements, as shown by the linear relationship be-
tween the variables as shown by Eq. (3.2). The following equations demonstrate how we can
obtain the predicted value of rice yield for each phase of cultivation by changing the coefficients
for each input element in the equation.

Phase MLR
Vegetative Y = 0.977X1 + 0.160X2 + 0.031X4 − 0.039X5 − 0.098X6

Reproduction Y = −0.365X1 + 0.045X2 + 0.036X5 − 0.052X6 − 0.022X7

+0.315X8 + 0.371X9 + 0.848X10

Ripening Y = 0.148X2 + 0.040X5 − 0.104X6 − 0.041X7 + 1.011X11

Note that in the three equations above, the value of β0 is almost zero. all variables were
statistically significant (p ≤ 0.5) by OLS.

3.4.2 Decision Tree Regressor (DTR)

The decision tree regressor is one algorithm used in ensemble learning, a technique for building
machine learning models. It predicts variable values by constructing decision trees based on the
bagging technique, as shown in Figure 2.

Figure 2: Bagging technique

Several decision tree regressors are built by bagging, and each is trained using a different
subset of the training set. Usually, these subsets are sampled with replacement. The predictions
of each individual decision tree in the ensemble are averaged once all the decision tree regressors
have been trained. Better generalization performance on unobserved data results from this
averaging’s ability to lower the model’s variance and overfitting. In this study, 50 batches of
samples are sampled with replacement, yielding 10 subsets. Next, an average method is used to
combine the prediction results for each subset.
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3.4.3 Extreme Gradient Boosting (XGB Regressor)

One ensemble learning approach that is comparable to the decision tree regressor is the XGB Re-
gressor. The prediction principle, however, is different. Boosting is used by the XGB Regressor,
shown in Figure 3.

Figure 3: Boosting technique

In this study, a weighted starting dataset with a value of one, a learning rate of 0.1, and a
total of 100 trials per run are used. The weights are then modified after the program forecasts
the amount of rice yield. To increase the efficiency of the model, this modification is made
by increasing the error value for that iteration by the learning rate. This process is repeated
recursively for 100 cycles.

3.4.4 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) or artificial neural network is a mathematical model that
mimics the workings of the human neural network. It can solve complex problems and identify
relationships between data by adjusting weight values (Weight) and bias values (Bias) in the
learning process. The structure of ANN has three main parts: the input layer, the hidden layer,
and the output layer. Each layer is composed of a different number of nodes. The ANN workflow
is shown in Figure 4.

Figure 4: Working structure of ANN [6]

The input data in the first layer is composed of factors that affect the estimated value. The
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data was then sent to the activation function of the hidden layer for further processing after
being multiplied by the weight. The Sigmoid function, which adjusts a variable’s value to fall
between 0 and 1, is used in this study, as shown by Eq. (3.4).

f(x) =
1

1 + e−x
(3.4)

where f(x) is the activation function and x is the input data from Table 1. Eq. (3.5) states that
the expected value is present in the output layer.

y = f

(
n∑

i=1

xiwi

)
(3.5)

where y is the rice yield prediction, xi is the input data and wi is the weight of ith factor

The number of factors in each period will determine how many nodes are in the input layer
of the ANN model. There will be five nodes during the vegetative phase, eight nodes during the
reproductive phase, and five nodes during the ripening phase. Next, it is calculated that there
are seven hidden layers for each period, each having the same number of nodes as the square of
the period’s input data. Finally, there will only be one node in each output layer, as shown in
Table 4.

Table 4: Parameter settings for ANN model

Parameter Vegetative Reproduction Ripening
Number of nodes in input layer 5 8 5
Number of hidden layers 7 7 7
Number of nodes in hidden layers 25 64 25
Number of nodes in output layers 1 1 1
Learning rate 0.01 0.01 0.01
Number of running models 10 10 10

3.5 Model Performance
The expected values of rice output for each agricultural period for each of the four models will
be compared to identify which model generates the best predictions. Moving forward, the most
accurate model will be used. The following three criteria are used in this study to quantify
performance.

Table 5: Regression model performance evaluation

Method Formula

Mean Absolute Error (MAE) MAE =

n∑
i=1

∣∣yi − ŷi
∣∣

n

Root Mean Square Error:(RMSE) RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2

R-Squared (R2) R2 = 1− SSE
SST

Note that yi is the raw data of rice yield, ŷi is the rice yield prediction, and n is the number
of data points (n = 472). The estimate of rice output has little to no error when the MAE and
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RMSE values are minimal, close to zero, or equal to zero. If a prediction model’s R2 value is
close to or equal to 1, it is considered suitable for the data.

4 Results
Finding the best-performing model with the highest projected accuracy is the aim of this re-
search. The development outcomes of all four models are therefore compared in Table 6.

Table 6: Compare the efficiency of rice yield prediction models

Cultivation phases Method MAE RMSE RMSE(ton) R2

Vegetative

MLR 0.213 0.298 112, 879 0.913
DecisionTreeRegressor 0.105 0.188 72, 181 0.960
XGBRegressor 0.092 0.158 60, 280 0.974
ANN 0.122 0.166 62, 795 0.973

Reproduction

MLR 0.149 0.207 78, 769 0.956
DecisionTreeRegressor 0.095 0.163 61, 523 0.974
XGBRegressor 0.065 0.120 45, 523 0.985
ANN 0.096 0.133 50, 280 0.982

Ripening

MLR 0.187 0.247 93, 941 0.938
DecisionTreeRegressor 0.079 0.137 52, 045 0.981
XGBRegressor 0.067 0.110 42, 184 0.987
ANN 0.092 0.132 50, 223 0.983

Comparing the XGB Regressor model to the other models, it is evident from Table 6 that it
performs the best, providing the most precise forecasts at every stage of cultivation. Its MAE
is 0.092, its RMSE is 0.158 (or 60, 280 tons when transformed back to actual numbers), and its
R2 is 0.974 at the vegetative stage. Its MAE in the reproduction stage is 0.065, its RMSE is
0.120 (45, 523 tons), and its R2 is 0.985. Finally, it has an R2 of 0.987, an MAE of 0.067, and
an RMSE of 0.110 (or 42, 184 tons) during the ripening stage. As a result, the XGB Regressor
model was selected by the researchers to forecast Thailand’s rice harvest in the future.

The XGB Regressor model, which had the best predictive accuracy during the model-
development process, was used to forecast rice yield. The Thailand Water Situation Report’s
meteorological information and rainfall totals for the year 2022 [4] were then examined to clas-
sify the predicted scenarios. As shown in Table 7, the prediction possibilities are separated into
three scenarios: normal occurrences, flooding events, and drought events.

Table 7: Thailand’s water situation by region

Region\Year 2012 2013 2014 2015 2016 2017 2018 2019 2020
North normal normal drought drought normal flooding normal drought drought
Northeast drought normal normal drought normal flooding normal drought drought
Central flooding normal drought drought normal flooding normal drought drought
South east side drought drought drought drought drought flooding drought drought normal
South west side flooding normal normal drought flooding flooding drought drought normal

The rice yield for the years 2023 to 2025 will be forecasted for each scenario. Table 8 shows
the expected rice yield results for each scenario.

It is evident from the results of rice yield prediction that the reproductive period, on average,
yields the highest predicted yield, followed by the vegetative phase and the ripening phase. This
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Table 8: Rice yield prediction in each scenario.

Cultivation phases Scenario/Year 2023 2024 2025

Vegetative
drought 26.292 25.602 25.845
normal 26.020 25.339 25.339
flooding 26.053 25.366 25.620

Reproduction
drought 26.119 25.369 25.859
normal 26.064 25.317 25.814
flooding 25.952 25.204 25.689

Ripening
drought 24.350 23.739 23.907
normal 24.300 23.717 23.863
flooding 24.339 23.749 23.894

Unit:million tons

is due to the fact that the amount of rice planted is initially determined by the area under
cultivation. But as farming advances, more variables are taken into account, such the amount
of fertilizer used and the area inside and outside of irrigation zones, which raises rice yield. This
suggests that these elements are required to increase output. However, the anticipated yield
typically begins to progressively decrease during the ripening phase. This is probably because
there is a chance of damaging agricultural areas and because the expected rice production does
not vary all that much from year to year and situation to situation.

The normal scenario produces the least amount of rice, whereas flooding produces the most,
according to predictions made during drought situations. This is due to the fact that weather has
minimal influence on rice output forecasts and that parameters pertaining to the cultivated area
vary somewhat every year. In general, the year 2023 (BE 2566) is expected to have the highest
rice output, followed by the year 2025 (BE 2568), and the year 2024 (BE 2567) is predicted to
have the lowest yield, indicating a downward tendency, when taking into account the overall rice
yield for the nation in each year.

(a) yield in dought scenario (b) yield in norm scenario (c) yield in flooding scenario

Figure 5: Results of yield prediction according to the cultivation phase in 2025

As can be shown from the prediction results, the province with the greatest expected rice
yield in Thailand is Ubon Ratchathani Province. The reason for this is that its cultivated
area value is the highest, meaning that it has the biggest influence on the forecast value. The
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outcomes of rice yield predictions will be comparable for every year and circumstance. This is
due to the fact that the farmed area has barely altered and the prediction is not greatly impacted
by weather factors. Taking into account the nation’s overall rice production for each year, it
was determined that 2023 will yield the most, with 2025 coming in second and 2024 coming in
last, with a tendency toward decline.

5 Conclusions
In this study, a model to estimate rice output was developed using input data from agricul-
tural data collected in Thailand between 2012 and 2020. The three stages of the prediction—
vegetation, reproduction, and ripening—were selected to align with the main activities associated
with rice cultivation. The most effective model, according to the results, was the XGB Regres-
sor model, which produced the most accurate prediction values throughout all cultural phases.
Furthermore, this model was the most appropriate for the data in comparison to the other three.

Next, the XGB Regressor model was applied to forecast Thailand’s rice output. Three
scenarios—a normal scenario, a flood scenario, and a drought scenario—were used to anticipate
various outcomes. According to the prediction’s findings, Thailand produces the most rice under
the drought scenario overall, followed by the normal and flood scenarios. This is due to the fact
that it may benefit rice farming during periods of moderate drought. For instance, managing
water during a drought requires caution to avoid wasting it, which increases the effectiveness of
water use. It may be able to prevent insects and diseases from proliferating across rice fields.
The rice forecast’s results also show that there is minimal variance in the amount produced.
This can be explained by the weak relationship between the estimated value of rice output and
the weather component.The amount of production is likewise not significantly different when
the weather values in each event are not substantially diverse. We may examine the variables
influencing the quantity of rice yield produced during each agricultural cycle by breaking down
the prediction into planting periods. This enables us to think about the optimal times to put
agricultural development programs into action and the regions that should be developed to
maximize productivity.

To enhance the model’s prediction ability, researchers can investigate incorporating more
important features or modifying the model’s parameters to better fit the data.
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Abstract

Given that we all coexist within an ecosystem and depend on one another, it is imperative
to prioritize the well-being of all entities rather than solely focusing on human beings. The
major aim of this paper is to identify the parvovirus infection in shrimps, a dangerous and
harmful infection that specifically targets the hepatopancreas which is the internal organ
responsible for the intake and absorption of nutrients, essential for the growth of shrimps.
Implementing measures to prevent shrimps from contracting that infection could have both
environmental and economic advantages. However, it is a formidable and arduous undertak-
ing to develop a high-quality software or program capable of detecting prawn infections. This
research will utilize the VGG16 model, which is well renowned for its exceptional popular-
ity in image classification, to identify parvovirus infection in the hepatopancreas region of a
given picture file. The VGG16 model is customized in this study by implementing alterations
to its conventional configuration. The near-perfect accuracy rates the model generates at
times implies that it is highly convincing in generating prediction results.

Keywords: CNN, deep learning, transfer learning, VGG16, image classification.

1 Introduction
Human beings are an integral element of the Earth’s ecosystem, which also includes plants,
animals, and several other organisms. All components within the ecosystem are interdependent
in order to sustain a healthy ecosystem. It is essential to prioritize the health of all species, not
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just humans. This paper aims to identify one very serious and deadly infection that is caused
by parvovirus that affects the internal portion of shrimps, specifically the hepatopancreas.

With parvovirus infection, shrimps encounter their growth process without reaching to the
actual stage but terminate at a very early phase or even lead to mortality in severe cases. Sci-
entists have been conducting relentless research on image analysis processes to analyze inputted
photos and extract valuable information with high precision [1].

Conventional image processing systems require time for feature extraction and matching,
which can lead to inefficiency and reduced accuracy due to the complexity of the process and
the generated outputs. Researchers and scientists have been striving to achieve improved cate-
gorization results by combining deep learning and machine learning techniques [2–4].

Neural networks are widely used in conjunction with image processing systems [5]. One of the
most common methods of deep learning is called convolutional neural networks, and it involves
the processing of images through a number of layers in order to analyze and extract information,
which ultimately results in the production of an output. It can be difficult for traditional image
processing systems to produce correct results due to the fact that it takes a significant amount
of time to independently perform feature extraction and matching procedures.

In this paper, the system concentrates on gaining access to a convolutional neural network
in order to perform an analysis on an image dataset consisting of many image files of hepatopan-
creatic regions of shrimps. Once this is done, it will yield results that are both important and
informative regarding the existence of parvovirus infection in shrimps. It is known that the se-
cretion coming out from the infected ones can really affect the healthy ones as they are sharing
the same habitat and resources that exist within it. The sooner the infected ones are known,
the better as this can motivate some to remove the infected ones from the habitat shared by
other which are non-infected ones.

2 Deep Learning Neural Networks
The structure and operation of the human brain served as the inspiration for the development
of deep learning neural networks, which are a subset of machine learning algorithms. Deep
learning neural networks are hierarchical, consisting of layers of linked nodes, also known as
neurons or units. It is the duty of each layer to digest the information and then transmit it to
the subsequent layer for further tasks. The main layers contained in the neural networks are: the
input layer, the hidden layers and the output layer. The first layer is responsible for receiving
the raw data that are entered. Consequently, in the second place, the hidden layers exist and
there are numerous neurons in each hidden layer, and these neurons are responsible for doing
calculations on the inputted data. The final layer is responsible for outputting the predictions
based on the calculations that were carried out by the layers that came before it.

Even though there are many different kinds of popular neural networks, Convolutional Neural
Networks (CNN) are the most astonishingly popular networks especially in terms of dealing with
generating predictions based on the input images. Moreover, among all the existing deep learning
architectures, convolution neural networks (CNNs) are the ones where they need multi layers
fabricate in between the inputs and the outputs where the incoming input layers going forward
and passing through many hidden layers located in between to reach the finalized output layers.
As its name goes, CNNs are not really simple and easy to understand architectures as the word
“convolution-al” included is technically providing how they operate to generate the prediction
results in a complex way as the way neural nerves work in our brain consisting of a multitude of
layers. However, they are popular especially in the world of scientists as they could always learn
the data and their connected patterns efficiently and can output the highly accurate results and
outcomes. So, regardless of their complicated working flow, they are still accepted and used in
many researches conducted by data scientists. The sample structure of the neural networks is
provided below [6]:
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Figure 1: Architecture of neural networks

In CNNs, there are normally two types of propagations [7] including forward propagation
and backward propagation. Basically, the former process is to propagate the data from the
input layer while the latter process is to carry the data with the reverse order to be able to make
necessary adjustments to network fabricated.

2.1 Forward Propagation
In forward propagation, to be able for it to run as smoothly as it can, neuron nodes existing
among the hidden layers which reside between the input and output layers play a vital role and
their major function is to get an input from its predecessor nodes and operate their tasks with
the use of linear function given by

y = wix+ bi (2.1)

where wi is the weight value coming out from the ith node and bi is the bias value coming out
from the ith node.

After a particular neuron completes its task, it puts its results in an acceptance interval for
the upcoming node by using an activation function f(x). This can be illustrated as follows:

θ([L]{i}) = f(X [L]{i}) (2.2)

where θ([L]{i}) is the output from the activation function of the ith node in the Lth layer and
X [L]{i} is the output from the linear function of the ith node in the Lth layer.

2.2 Backward Propagation
Back propagation starts off right at the point where the forward propagation finishes its en-
tire process meaning that the output of the forward propagation is the input of the backward
propagation. During the phase of back propagation, normally and in most cases a cross-entropy
loss function is used together with the gradient descent algorithm in order to generate accurate
results from the neural network. The major purpose of the combination of cross-entropy loss
function and gradient descent algorithm is to reduce the percentage of deriving loose results
so that the whole model setup can produce better results which could be accessed in many
real-world situations and scenarios coming from different environments.
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3 Methodology
3.1 Data Set
The data is collected from the Ministry of Fisheries, Thailand. There are 960 images of shrimps
in total belonging to 2 classes: HPV (Hepatopancreatic Parvovirus or Penaeus monodon Denso
virus) infected shrimps and shrimps with healthy hepatopancreases. The resolution of all the
images is fixed to 224×224 for the processing in order not to bump with any sort of turbulations
in training and testing processes.

Table 1: The number of images in the two classes according to the shrimp data set
Class Disease Type Number of training images Number of testing images Total

A HPV 96 384 480
B Normal 96 384 480

Total 192 768 960

Figure 2: Sample images of hepatopancreatic regions of both cases obtained from the shrimp
data set

3.2 VGG16
The VGG16 model is a convolutional neural network design astonishingly popular for its simplic-
ity at certain parts and efficiency in applications related to image classification. Its architecture
is composed of 16 layers, predominantly consisting of convolutional layers, followed by max-
pooling layers, and building up to fully linked layers.

3.2.1 Architecture of VGG16

The VGG16 model has two main components embedded within its architecture. The first
component is a convolutional base which is packed with 13 convolutional layers. Each layer is
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closed set up with an activation function which is famously known as a Rectified Linear Unit
(ReLU) function. Additionally, there are some max-pooling layers inserted in between those
layers which perform to combine all the results coming out from activation layer into a single
output. Within the convolution layers of traditional and classical VGG16 architecture setup,
the model uses small (3×3) receptive fields with 1 stride and equal padding in order to preserve
the spatial resolution of the input. The max-pooling layers, with a size of 2 × 2 and a stride
of 2, decrease the size of the spatial dimensions while simultaneously increasing the number of
feature maps making required connections for the model to understand the distinctive features
of classes. The second component consists of 3 dense layers which are located at the end of the
model along the way of process. Their main responsibility is to make the predictions which are
precise and convincing enough and if they happen to loosely structured, there is a humongous
possibility that the model will output the results with so many flaws and discrepancies. The
architecture of the VGG16 model is shown below [8]:

Figure 3: The architecture of the VGG16 model

3.2.2 Actions of Each Layer Contained in the VGG16 Model

In the VGG16 model, the combination of 13 convolution layers and 3 fully connected dense
layers are not only important layers for the model to make good classification results. There are
three more layers contained in the model that support the operations of 16 layers making the
model has 5 different kinds of important layers exist inside. For the 13 convolution layers, there
are two layers working along side by side with them.

Firstly, convolutional layers perform complex operations on the input data and are com-
monly used in computer vision tasks to extract compelling features from images. Within those
layers, there are trainable filters to extract features from the inputted images. They perceive
and identify boundaries, surface qualities, arrangements, and various characteristics at varying
degrees of conceptualization. The activation function layers are also with them and utilized after
each convolutional layer intentionally to introduce non-linearity, which enables the network to
get a deeper understanding of the data by learning more detailed relationships. Then, Max-
Pooling Layers decrease the spatial dimensions of the feature maps while preserving the crucial
information obtained from the convolutional layers. In 3 fully connected layers, each neuron
is connected to every neuron in the previous and next layers. The layers in the later stages of
the network carry out categorization by using the retrieved characteristics and associating them
with specific output classes and then its outputs are taken as the input to soft-max activation
layer which is mainly responsible for making the most appropriate choice out of all the available
options to pick one final result to produce through the output layer. The important layers of
the VGG16 model are shown in the figure below [8]:

3.2.3 Changes to be Made in the VGG16 Model

Due to the fact that the main focus of the system of this paper is only on two categories such as
HPV infected shrimps and shrimps with healthy hepatopancreases, there are some changes to be
made in the structure of Figure 3. It is not necessary to have so many output labels coming out.
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Figure 4: The Important Layers contained in the VGG16 model

Here, we can remove a couple of sessions such as fully connected layers zone and output layer
which is also known as the later or top portion of the model as shown in the figure below [8]:

Figure 5: The removal of portions of the VGG16 model note that the removed portions could
generate 1000 output labels

In the place of the chopped off fully connected dense layers and the output layer, customized
layers are interpolated in order to be fir with the number of classes that are expected to see
through the output layer as shown in the figure below [8]:

Figure 6: The inserted customized fully connected layer with the output layer together

Employment of a strategy called fine tuning will pack in the system. It transforms to be
the one with customized fully connected layer in order to allow a portion of the pre-trained
layers to retrain and also to increase the accuracy rate of the results derived by the model. In
the process of fine tuning a pre-trained model, there are three main steps involving which are
bootstrapping which is to customize fully connected layers and the output layer, freezing some
pre-trained convolutional layer out of the 13 layers and unfreezing the last few pre-trained layers
for training while some are frozen. The frozen convolutional layers convolve visual features as
usual whereas the non-frozen convolutional layers are trained with the enough amount of data
set which are a multitude of hepatopancreatic region images from both non-infected shrimps
and infected shrimps.
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3.2.4 Impacts of Learning Rate and the Number of Epochs

When the VGG16 model comes inside the frame, there are two major parameters that tag along
with such as the learning rate and number of epochs which significantly affect the training of
the VGG16 model as they control the learning process.

The step size used by the model to update its weights during training is determined by the
learning rate. Increasing the learning rate can could accomplish the convergence of the model
sooner, but it may result in overshooting the ideal solution or causing instability. A decreased
learning rate may result in a slower convergence rate, but it can enhance the model’s ability to
discover a more precise solution.

An epoch signifies a whole iteration through the entire training dataset. Increasing the
number of epochs in the training process enables the model to observe the data several times,
which has the potential to enhance its performance. Excessive training for numerous epochs
might result in overfitting, a situation where the model becomes excessively proficient in learning
the training data but performs inadequately on new data.

In order to achieve the optimal outcomes or results, it is necessary to optimize certain hyper-
parameters, such as identifying an optimal learning rate and considering the optimal number of
epochs. This can lead to achieve high convergence and avoid problems like overfitting or poor
convergence during training.

3.3 Performance Metrics
Getting the model with the best performance is dependent upon the demands of a classification
task and an adequate amount of input data for the model to make itself familiar with all the cases
contained in the task. Performance evaluation metrics such as precision, recall (sensitivity) and
F1 score (F measure) are essential for the performance evaluation of classification models. They
provide valuable perspectives of model performance, optimize model performance of the tasks
assigned to a certain extent, and are being able to make decision-making in model deployment
and enhancement serene. Additionally, evaluating the performance metrics aforementioned is
always the mandatory phase to go through for one particular classification process in order to
obtain some sorts of input data and then to generate the prediction results just to make certain
the target audience knows how much the results are convincing especially when they can offer
knowledgeable and useful insights into many elements of a classification model’s performance.

To evaluate precision, recall and F1 measures, there are four instances required including TP
(true positive) which is a cluster of instances and predicted positive results are within and all of
them are actual positive cases, TN (true negative) which is a cluster of instances and predicted
negative results are within and all of them are actual negative cases, FP (false positive) which is
a group of instances and predicted positive results are within but they are negative ones actually
and FN (false negative) which is a group of instances and predicted negative results are within
but they are positive ones actually. If the four kinds of instances aforementioned are in hand,
the following three performance metrics can be calculated [10–12].

Precision is one of the measures that calculates the accuracy percentage based on the positive
predictions produced by the model. The value of the measure can be found by

Precision =
TP

(TP + FP )
. (3.1)

Recall, known as the sensitivity of the model, computes the performance of the model to
identify all appropriate instances based on the inputted dataset. The value of the metric can be
calculated by recall or sensitivity equation. The only difference that exists with the formulas of
precision measure and sensitivity measure is that in the denominator region of forms, which are
the sums, the precision uses FP but the sensitivity uses FN.

Recall(Sensitivity) =
TP

(TP + FP )
. (3.2)
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F1 score, famously known as F measure, is calculated as the linear average of precision
and recall, offering a harmonious equilibrium between these two measurements. This technique
proves to be particularly advantageous in cases when there exists an unequal distribution of
classes within the dataset. Since, F1 score is based on the precision and recall and due to the
requirement of the values of both, if some sorts of discrepancies are involved in the two, F1 score
always get impacted and might not be able to deduce the correct value. The F1 score can also
be calculated by

F1score = 2× Precision×Recall

Precision×Recall
. (3.3)

4 Experimental Results
4.1 Accuracy Vs Loss Graphs
The primary factor to be taken into account is the level of efficiency exhibited by the model.
Even though the VGG16 model was trained with a different number of epochs (25, 26, 27, 31
and 50), it can be seen that the validation accuracy value is always beyond the validation loss
value meaning that the outcomes from the model are precise and convincing enough. Figures
7 and 8 both display with or without fine tuning, the optimal validation loss and validation
accuracy can always be achieved during the model’s training across a span of 50 epochs. The
evaluation is conducted using a data set including almost 1000 shrimp images. Typically, and
technically, convolutional neural network models that have a greater number of layers possess
the capability to acquire more intricate characteristics from the images in the training dataset.

Figure 7: Training and Testing curve BEFORE FINE TUNING: orange line from accuracy
means test accuracy, orange line from loss means loss accuracy, blue line from accuracy means
train accuracy, blue line from loss means train loss
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Figure 8: Training and Testing curve AFTER FINE TUNING: orange line from accuracy means
test accuracy, orange line from loss means loss accuracy, blue line from accuracy means train
accuracy, blue line from loss means train loss

4.2 Input and Output

After training the model for a required amount of time in order to increase the index of familiarity
with both categories of the system such as HPV infected shrimps and healthy shrimps with or
without fine tuning, it is observed the fact that the accuracy is always around 98% for whatever
datasets: train and test. This indicates the sign of the model being able to produce the prediction
results such as HPV for the hepatopancreas image input which is infected with Penaeus monodon
Denso virus and NORMAL for the hepatopancreas image input which is the one without having
any sorts of infections and healthy. The model is able to receive image input which has all the
requirements of being able to get inside the system as the one as with the code shown in below:

Figure 9: Python code to accept the input

With the code line shown above, the model can take one image file in and for instance
one unhealthy hepatopancreas which has some spores showing that viruses consume good parts
of it and make it dysfunctional. Then, shrimps encounter with growth retardation which is
a significant cause of infection. The model deduces the around 97% to 100% accurate result
stating the input is suffering HPV as shown in the figure below.
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Figure 10: Python code showing the output for the input image file numbered 2

4.3 Results from Performance Metrics
The model exhibits 98% for precision measure, 97% each for both recall and F1 measure. The
precision of the model is 98%, the recall is 97%, and the F1 score is also 97%. 98% of precision
is a sign that showcases that the model precisely predicts positive cases and that is a really
high score and meaning that the model is doing great significantly. 97% for recall measure
indicates that the model can correctly identify 97% of all positive cases for the data set which is
a collection of many images which captured various hepatopancreatic regions of shrimps. This
indicates that the model is proficient in identifying the majority of two cases which are the major
goals of the system such as infected shrimps and non-infected shrimps. One final performance
measure F1 score has 97% which is the same percentage as recall states a favorable equilibrium
between precision and recall since the percentage evaluated is almost about to hit 100% and only
3 points away from being able to achieve it. According to many surveys and researches conducted
by many scientists, all the models which have a high level of precision while maintaining a high
recall rate at the same time are highly convincing in numerous classification applications. In
summary, the percentages of not just one but all the measures indicate that the model exhibits
exceptional performance demonstrating a harmonious balance according to the f-1 score.

5 Conclusion
This paper showcases a route of applying one of the popular CNN models, VGG16 for diagnosing
parvovirus infection occurring or not in the hepatopancreas region of shrimps from many images
collected around the hepatopancreas regions of both infected and non-infected shrimps. VGG16
could really manage to extract some distinct architectures from each input by making itself
familiar with all of them such as all the implicit features of both good and harmed hepatopancreas
with a decent number of data set, 960 images in total by taking a decent amount of time with
or without fine tuning. Most importantly, the model demonstrates a high level of accuracy rate
which is measured in terms of percentage and that welcomes other hazardous diseases to come
in the frame and spot not just parvo virus infected one and non-infected one.
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1 บทนำ
ปัญหาอุบัติเหตุโครงข่ายถนนของกระทรวงคมนาคมเป็นปัญหาที่สำคัญอันดับต้น ๆ ของประเทศไทยที่จำ

เป็นต้องป้องกันและแก้ไขอย่างเป็นระบบและเร่งด่วน เนื่องจากมีแนวโน้มความรุนแรงของการเกิดอุบัติเหตุจรา-
จรบนโครงข่ายถนนของกระทรวงคมนาคมเพิ่มมากขึ้น อุบัติเหตุบนท้องถนนเป็นหนึ่งในสาเหตุหลักที่นำไปสู่การ
เสียชีวิตและบาดเจ็บสาหัสในหลายประเทศทั่วโลก อุบัติเหตุเหล่านี้มักเกิดจากหลายปัจจัยรวมกัน เช่น ความผิด
พลาดของผู้ขับขี่ สภาพถนนที่ไม่ดี สภาพอากาศ การขาดความตระหนักรู้เกี่ยวกับความปลอดภัยในการขับขี่ และ
การใช้แอลกอฮอล์หรือสารเสพติดขณะขับขี่ ผลกระทบของอุบัติเหตุทางถนนไม่เพียงแต่ส่งผลต่อผู้ที่ได้รับบาด
เจ็บหรือเสียชีวิตเท่านั้น แต่ยังรวมถึงครอบครัว เพื่อนฝูง และชุมชน นอกจากนี้ยังมีผลกระทบทางเศรษฐกิจ เช่น
ค่าใช้จ่ายทางการแพทย์ การสูญเสียแรงงาน

จากข้อมูลของศูนย์เทคโนโลยีสารสนเทศและการสื่อสาร สำนักงานปลัดกระทรวงคมนาคมตั้งแต่ปี พ.ศ.
2560 ถึง พ.ศ. 2566 พบว่า การเกิดอุบัติเหตุบนถนนมีจำนวนเพิ่มขึ้น จากข้อมูลดังกล่าวมีการเกิดอุบัติเหตุบน
ถนนจาก 18,951 ครั้งในปี 2560 เป็น 23,057 ครั้งในปี 2566 และในขณะที่จำนวนผู้บาดเจ็บและเสียชีวิตยัง
คงสูงอย่างต่อเนื่อง การวิเคราะห์สาเหตุของอุบัติเหตุเหล่านี้ระบุว่าการขับขี่เร็วเกินกำหนดเป็นสาเหตุหลัก โดย
ส่วนใหญ่เกิดกับรถปิคอัพบรรทุก 4 ล้อ และสถานที่เกิดเหตุส่วนใหญ่อยู่บนถนนทางตรงที่ไม่มีความลาดชัน
สำหรับจังหวัดนครราชสีมาที่เปรียบเสมือนประตูสู่ภาคตะวันออกเฉียงเหนือ เพราะมีเส้นทางเชื่อมไปยังหลาย
จังหวัด ทำให้ทุกปีมีสถิติการเกิดอุบัติเหตุที่มากเป็นอันดับต้น ๆ ของประเทศ ในช่วงปี 2560 ถึง 2566 พบ
ว่าพื้นที่นี้มีการเกิดอุบัติเหตุรวมทั้งสิ้น 6,386 ครั้ง ทำให้มีผู้บาดเจ็บ 6,657 ราย และผู้เสียชีวิตถึง 879 ราย จาก
สถิติเหล่านี้ทำให้สะท้อนถึงความเร่งด่วนในการดำเนินการอย่างจริงจังเพื่อลดอุบัติเหตุบนถนน และปรับปรุง
นโยบายการจราจรเพื่อลดความเสี่ยง และปกป้องความสูญเสียของประชาชนจากการเกิดอุบัติเหตุทางถนนใน
อนาคต

การลดอุบัติเหตุทางถนนยังคงเป็นความท้าทายที่สำคัญของประเทศไทยและหลายประเทศทั่วโลก รัฐบาล
ไทยพยายามตอบสนองปัญหานี้ด้วยการดำเนินนโยบายและกลยุทธ์มากมายเพื่อลดอุบัติเหตุบนท้องถนน ซึ่งรวม
ถึงการกำหนดมาตรการป้องกันอุบัติเหตุทางถนน การพัฒนาโครงสร้างพื้นฐานทางถนน และการสร้างความตระ-
หนักเรื่องความปลอดภัยให้แก่ประชาชน อย่างไรก็ดี การทำให้มาตรการเหล่านี้บรรลุผลตามเป้าหมายยังคงเป็น
ความท้าทายอย่างยิ่ง ดังนั้น การพยากรณ์อุบัติเหตุทางถนนที่แม่นยำจึงเป็นเครื่องมือสำคัญที่ช่วยให้หน่วยงานที่
เกี่ยวข้องสามารถดำเนินการได้อย่างมีประสิทธิภาพ และมองเห็นแนวโน้มของอุบัติเหตุทางถนนซึ่งจะช่วยในการ
กำหนดและจัดสรรทรัพยากรได้อย่างเหมาะสม โดยเฉพาะการพยากรณ์จำนวนผู้เสียชีวิตจากอุบัติเหตุ เนื่องจาก
ช่วยให้หน่วยงานที่เกี่ยวข้องสามารถจัดสรรทรัพยากรและกำหนดมาตรการที่เหมาะสมได้อย่างตรงจุด การมีข้อ
มูลที่แม่นยำเกี่ยวกับจำนวนผู้เสียชีวิตจากการเกิดอุบัติเหตุที่อาจเกิดขึ้น จะสามารถช่วยให้รัฐบาลและหน่วยงาน
ความปลอดภัยทางถนนวางแผนได้ดีขึ้นในการป้องกันและลดความรุนแรงของอุบัติเหตุ

นักวิจัยหลายท่านได้ทำการวิเคราะห์ปัญหาอุบัติเหตุบนโครงข่ายถนนด้วยเทคนิคต่าง ๆ ยกตัวอย่างเช่น ในปี
พ.ศ. 2561 ปทิตญา บุญรักษา และจารี ทองคำ [1] ได้ทำการศึกษาเปรียบเทียบประสิทธิภาพของแบบจำลอง
ต่าง ๆ ในการพยากรณ์จำนวนผู้ประสบอุบัติเหตุบนท้องถนนในจังหวัดขอนแก่น โดยใช้วิธี 5 วิธี คือ การถดถอย
เชิงเส้น โครงข่ายประสาทเทียม การถดถอยเวกเตอร์ (SMOreg: Sequential Minimal Optimization Regres-
sion) ซัพพอร์ตเวกเตอร์รีเกรสชัน และกระบวนการเกาส์เซียน พวกเขาใช้หลักการหน้าต่างบานเลื่อน (sliding
window) ในการแบ่งข้อมูลเป็นชุดข้อมูลฝึกฝนและชุดข้อมูลทดสอบ โดยวัดประสิทธิภาพการพยากรณ์ด้วยค่า
คลาดเคลื่อนสัมบูรณ์เฉลี่ย และรากที่สองของค่าคลาดเคลื่อนกำลังสองเฉลี่ย ผลการวิจัยพบว่าวิธี ซัพพอร์ตเวก
เตอร์รีเกรสชัน มีประสิทธิภาพสูงสุดในการสร้างแบบจำลองที่มีความแม่นยำสูงที่สุด เมื่อเปรียบเทียบกับเทคนิค
อื่น ๆ ในปีเดียวกันนั้น Dali Wu และ Sanming Wang [14] ได้ศึกษาการพยากรณ์การเกิดอุบัติเหตุทางถนน
ในประเทศจีน โดยใช้การวิเคราะห์องค์ประกอบหลักเพื่อลดมิติข้อมูลสถิติการเกิดอุบัติเหตุจราจรทางถนน และ
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เปรียบเทียบวิธีการวิเคราะห์ระหว่างซัพพอร์ตเวกเตอร์รีเกรสชัน และโครงข่ายประสาทเทียมแบบแพร่ย้อนกลับ
ผลการศึกษาพบว่า ซัพพอร์ตเวกเตอร์รีเกรสชันมีความแม่นยำสูงกว่า โครงข่ายประสาทเทียมแบบแพร่ย้อนกลับ
และสามารถตอบโจทย์ความต้องการของการพยากรณ์การเกิดอุบัติเหตุจราจรทางถนนได้เป็นอย่างแม่นยำ

การวิจัยนี้ มุ่งเน้นไปที่แบบจำลองการพยากรณ์จำนวนผู้เสียชีวิตจากการเกิดอุบัติเหตุจราจรบนโครงข่าย
ถนนของกระทรวงคมนาคม ในจังหวัดนครราชสีมา โดยเปรียบเทียบประสิทธิภาพของแบบจำลองการพยากรณ์
ที่ต่างกัน คือ การถดถอยเชิงเส้น โครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น และซัพพอร์ตเวกเตอร์
รีเกรสชัน โดยมีวัตถุประสงค์ในการหาแบบจำลองที่มีความแม่นยำและประสิทธิภาพสูงสุดในการพยากรณ์ เพื่อ
เป็นเครื่องมือสนับสนุนการตัดสินใจของผู้กำหนดนโยบาย และการวางแผนของหน่วยงานที่เกี่ยวข้องในการป้อง
กันและลดอุบัติเหตุบนถนน และจัดทำมาตรการป้องกันได้อย่างมีประสิทธิภาพ นอกจากนี้ทางผู้วิจัยได้นํา
กระบวนการวิเคราะห์ข้อมูลด้วย Cross-Industry Standard Process for Data Mining (CRISP-DM) มา
ประยุกต์ใช้กับข้อมูลการเกิดอุบัติเหตุบนโครงข่ายถนนของกระทรวงคมนาคม

2 ความรู้พื้นฐาน
ในหัวข้อนี้ จะกล่าวถึงกระบวนการวิเคราะห์ข้อมูลด้วย CRISP-DM หลักการของแต่ละเทคนิคในการสร้าง

แบบจำลอง และการวิเคราะห์ความหมายของค่าสถิติ

2.1 กระบวนการวิเคราะห์ข้อมูลด้วย CRISP-DM
CRISP-DM ย่อมาจาก “Cross-Industry Standard Process for Data Mining” [16] เป็นกระบวนการ

มาตรฐานที่ใช้สำหรับการทำเหมืองข้อมูล (Data Mining) โดยกระบวนการ CRISP-DM จะประกอบด้วย 6 ขั้น
ตอน ซึ่งแต่ละขั้นตอนจะเป็นขั้นตอนที่ต่อเนื่องกันถูกแสดงด้วยลูกศรที่เชื่อมระหว่างขั้นตอนแต่ละขั้นตอน ดัง
ภาพที่ 1 ขั้นตอนในกระบวนการ CRISP-DM มีดังนี้

1. การทำความเข้าใจธุรกิจ (Business Understanding)
ขั้นตอนแรกจะมุ่งไปที่การทำความเข้าใจในจุดประสงค์ทางธุรกิจ การระบุปัญหา และการกำหนดวัตถุ
ประสงค์ เพื่อที่จะแปลงปัญหาเหล่านั้นเป็นโจทย์ในการวิเคราะห์ข้อมูล และวางแผนในการนำข้อมูลไปใช้
ต่อไป

ภาพที่ 1: ขั้นตอนของกระบวนการ CRISP-DM
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2. การทำความเข้าใจข้อมูล (Data Understanding)
ขั้นตอนนี้ คือ การทำความเข้าใจกับข้อมูล โดยเริ่มต้นจากการเก็บรวบรวมข้อมูลที่เกี่ยวข้องและเชื่อถือได้
ขั้นตอนที่ 1 และ 2 สามารถทำกลับไปมาได้ เนื่องจากการทำความเข้าใจธุรกิจช่วยให้เราได้รับความรู้เกี่ยว
กับข้อมูลมากขึ้น ในทางตรงกันข้ามการได้ทำความเข้าใจข้อมูลอย่างลึกซึ้งจะช่วยเพิ่มความเข้าใจในแง่มุม
ธุรกิจให้กว้างขึ้นเช่นเดียวกัน

3. การเตรียมข้อมูล (Data Preparation)
ขั้นตอนนี้ คือ การเตรียมข้อมูลดิบ (raw material) ที่ถูกรวบรวมมา ให้สามารถนำไปวิเคราะห์ในขั้นตอน
ที่ 4 ได้ โดยจะประกอบด้วยขั้นตอนย่อยหลัก ๆ คือ การทำความสะอาดข้อมูล การเลือกและสร้างชุด
ข้อมูลที่จะใช้ในแบบจำลอง การแปลงข้อมูลให้เหมาะสมกับวิธีการวิเคราะห์ที่จะใช้ รวมถึงการจัดการข้อ
มูลที่หายไปหรือผิดพลาด

4. การสร้างแบบจําลองวิเคราะห์ข้อมูล (Modeling)
ในขั้นตอนนี้ เป็นการนำข้อมูลจากขั้นตอนที่ 3 มาทดลองสร้างแบบจำลองจากวิธีหลาย ๆ วิธี ที่น่าจะสา-
มารถแก้ไขปัญหาที่ต้องการได้ และทำการปรับเปลี่ยนค่าพารามิเตอร์ต่าง ๆ เพื่อหาแบบจำลองที่ดีที่สุด

5. การประเมินผลลัพธ์ (Evaluation)
ขั้นตอนนี้ คือ ขั้นตอนของการตรวจสอบและประเมินผลแบบจําลองที่ได้จากขั้นตอนที่ 4 เพื่อวัดว่าแบบ
จำลองมีประสิทธิภาพเพียงพอต่อการนำไปใช้งานแล้วหรือไม่

6. การนำไปใช้งานจริง (Deployment)
ขั้นตอนนี้ เป็นแสดงผลที่ได้มาจาก ขั้นตอนที่ 5 และนำผลลัพธ์ที่ได้จากแบบจำลองไปใช้งานจริง เพื่อ
วิเคราะห์และแก้ปัญหาที่ต้องการ

2.2 การถดถอยเชิงเส้น (Linear Regression: LR)
การวิเคราะห์การถดถอย (Regression Analysis) [5] เป็นการศึกษาความสัมพันธ์ระหว่างแปร ตั้งแต่ 2

ตัวแปรขึ้นไป โดยมีวัตถุประสงค์ที่ต้องการประมาณหรือพยากรณ์ค่าของตัวแปรตามจากตัวแปรอื่น ๆ ที่เกี่ยวข้อง
การวิเคราะห์ความถดถอยแบ่งออกได้ 2 ประเภท

1. การวิเคราะห์ความถดถอยอย่างง่าย (Simple Regression Analysis) เป็นการศึกษาความสัมพันธ์
ระหว่างตัวแปร 2 ตัว ซึ่งจะประกอบด้วยตัวแปรตาม y จํานวน 1 ตัวแปร และมีตัวแปรอิสระ 1 ตัวแปร
โดยที่มีความสัมพันธ์อยู่ในรูปเชิงเส้น สามารถเขียนเป็นสมการได้ดังนี้

y = β0 + β1x+ ε

โดยที่ y คือ ตัวแปรตาม x คือ ตัวแปรอิสระ
β0 คือ ระยะตัดแกน Y หรือค่าของ y เมื่อ x มีค่าเป็นศูนย์
β1 คือ สัมประสิทธิ์การถดถอย (Regression Coefficient) เป็นความชันของเส้นสมการถดถอย และ
ε คือ ค่าความคลาดเคลื่อน

2. การวิเคราะห์การถดถอยเชิงเส้นพหุคูณ (Multiple Linear Regression) เป็นการศึกษาความสัมพันธ์
ระหว่างตัวแปรตาม y จํานวน 1 ตัวแปร และตัวแปรอิสระ จํานวน 2 ตัวแปรขึ้นไป โดยที่มีความสัมพันธ์
อยู่ในรูปเชิงเส้น ซึ่งสามารถเขียนเป็นความสัมพันธ์ได้ดังนี้

y = β0 + β1x1 + β2x2 + ...+ βnxn + ε
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โดยที่ y คือ ค่าของตัวแปรตาม xi คือ ค่าของตัวแปรอิสระที่ i
β0 คือ เป็นระยะตัดแกน Y หรือค่าเริ่มต้นของเส้นสมการถดถอย
β1, ..., βn คือ ค่าสัมประสิทธิ์การถดถอย ของตัวแปรอิสระ xi และ
ε คือ ค่าความคลาดเคลื่อน

2.3 โครงข่ายประสาทเทียม (Artificial Neural Networks: ANN)
โครงข่ายประสาทเทียม (Artificial Neural Network) [6] คือ การสร้างโปรแกรมคอมพิวเตอร์ที่จำลองวิธี

การทำงานของสมองมนุษย์ หรือเป็นการทำให้คอมพิวเตอร์รู้จักการคิดและการจดจำ แนวคิดเริ่มต้นของเทคนิค
นี้ได้มาจากการศึกษาโครงข่ายไฟฟ้าชีวภาพ (Bioelectric Network) ในสมอง ซึ่งประกอบด้วย เซลล์ประสาท
(Neurons) และ จุดประสานประสาท (Synapses) ซึ่งโครงสร้างหลักของเซลล์ประสาท 1 เซลล์ จะประกอบ
ด้วย 3 ส่วน คือ ตัวเซลล์ (Soma) ทำหน้าที่ประมวลผลสัญญาณ เดนไดรต์ (Dendrite) ทำหน้าที่ รับสัญญาณเข้า
และแอกซอน (Axon) ทำหน้าที่ ถ่ายโอนสัญญาณออกไปยังเซลล์สมองอื่น ในส่วนของโครงข่ายประสาทเทียมจะ
ประกอบด้วย หน่วยประมวลผลเล็ก ๆ ที่เรียกว่า “โหนด” (Node) ซึ่งแต่ละโหนดนั้นจะทำงานคล้ายกับเซลล์
ประสาทในสมองของมนุษย์ โดยมีการส่งข้อมูลระหว่างกันผ่านทาง “ค่าน้ำหนัก” (Weight) ที่เทียบเท่ากับจุด
ประสานประสาท ในโครงข่ายไฟฟ้าชีวภาพ ซึ่งโหนดจะมีการรวมตัวกันเป็นชั้น โหนดชั้นอินพุตของโครงข่าย
ประสาทเทียมจะรับสัญญาณเข้า โหนดชั้นซ่อนจะคำนวณสัญญาณเข้าเหล่านี้ และโหนดชั้นเอาต์พุตจะคำนวณ
ผลลัพธ์สุดท้ายโดยใช้ ฟังก์ชันกระตุ้น (Activation Functions) ดังภาพที่ 2

โครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น (Multi-Layer Perceptron : MLP) เป็นโครงข่าย
ประสาทเทียมที่มีความซับซ้อนโดยมีการเชื่อมต่อกันของหลายชั้น แบบจำลองทางคณิตศาสตร์ของโครงข่าย
ประสาทเทียมเป็นการจำลองความสัมพันธ์ระหว่างข้อมูลและผลลัพธ์ที่ต้องการ มีสมการดังนี้

y = f(
n∑

i=1

wixi + b)

ภาพที่ 2: โครงข่ายไฟฟ้าชีวภาพในสมองและโครงข่ายประสาทเทียม
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โดยที่ wi คือ ค่าน้ำหนัก ของตัวแปรนำเข้า xi คือ ตัวแปรนำเข้า f คือ ฟังก์ชันกระตุ้น และ b คือ ค่าความเอน
เอียง (Bias) การปรับค่าน้ำหนักให้เหมาะสมกับข้อมูลที่ให้ อาจใช้เทคนิคการแพร่ย้อนกลับ (Backpropagation)
มีสมการดังนี้

∆wji = ηδjoi

โดยที่wji คือ การเปลี่ยนแปลงของน้ำหนักในการเชื่อมต่อระหว่างโหนด η คือ อัตราการเรียนรู้ oi คือ ค่าเอาต์พุต
ของโหนด i ในชั้นปัจจุบัน และ δj คือ ค่าคลาดเคลื่อนของโหนด j คำนวณจาก

δj =

xj(1− xj)(tj − xj) เมื่อ j เป็นยูนิตที่อยู่ในชั้นส่งออก
xj(1− xj)

∑
k δkwkj เมื่อ j เป็นยูนิตที่อยู่ในชั้นซ่อน

2.4 ซัพพอร์ตเวกเตอร์รีเกรสชัน (Support Vector Regression: SVR)

ซัพพอร์ตเวกเตอร์รีเกรสชัน (Support Vector Regression) [3] เป็นการประยุกต์ใช้หลักการของซัพ-
พอร์ตเวกเตอร์แมชชีน (Support Vector Machine: SVM) ที่เป็นวิธีที่มีประสิทธิภาพสูงในกลุ่มของการเรียนรู้
โดยมีผู้สอน (Supervised Machine Learning) ที่ใช้สำหรับการทำนายเชิงตัวเลข การจำแนกประเภท และการ
จดจำรูปแบบในข้อมูลที่ซับซ้อน วิธี SVR เป็นการขยายขอบเขตการใช้งานของ SVM จากการจำแนกประเภท
(Classification) เป็นการทำนายค่าตัวเลข (Regression) วิธีการนี้เป็นประโยชน์ในการพยากรณ์ค่าของตัว
แปรต่อเนื่อง และสามารถนำมาพยากรณ์ข้อมูลอนุกรมเวลา (Time Series Data) ได้ โดยมีเป้าหมายเพื่อค้นหา
ฟังก์ชันถดถอยที่สามารถทำนายค่าเอาต์พุต (y ∈ R) จากอินพุตเวกเตอร์ (x ∈ Rn) ได้อย่างแม่นยำที่สุด ฟังก์-
ชันนี้จะถูกแสดงในรูปของสมการเชิงเส้น

f(x) = wTx+ b

โดยที่ w คือ เวกเตอร์น้ำหนัก และ b คือ ค่าเอนเอียง (Bias Term) โดยที่วิธี SVR จะพยายามหาค่าของ w และ b

ที่ทำให้ฟังก์ชัน f(x) สามารถทำนายค่าเอาต์พุตที่ได้ดีที่สุด โดยพิจารณาถึงการปรับความแม่นยำในการทำนาย
เพื่อลดความเสี่ยงของการทำนายที่ผิดพลาด การหาค่าของ w และ b ทำได้ด้วยวิธีการหาค่าต่ำสุดของสมการที่
(2.1)

R =
1

2
∥w∥2 + c

l

l∑
i=1

|yi − f(xi)|ε (2.1)

การใช้วิธี SVR ในการทำนายค่าเอาท์พุตจากอินพุตเวกเตอร์ เป็นการสร้างแบบจำลองที่มีการใช้ท่อเอปซิลอน (Ep-
silon Tube) เพื่อกำหนดขอบเขตในการพยากรณ์ โดยใช้ฟังก์ชันสูญเสีย (Loss Function) ในการปรับแบบจำลอง
เพื่อให้ค่าพยากรณ์ใกล้เคียงกับค่าจริงในช่วงที่กำหนดได้เยอะที่สุด ดังสมการที่ (2.2)

|yi − f(xi)|ε =

{
0, if |yi − f(xi)|ε = ε

|yi − f(xi)|ε − ε, otherwise (2.2)

การแก้ปัญหาของสมการที่ (2.1) ที่มีเงื่อนไขตามสมการที่ (2.2) สามารถปรับให้อยู่ในรูปแบบการแก้ปัญหาแบบ
คู่ (Dual problem) ด้วยการใช้ตัวคูณลากรานจ์ (Lagrange multipliers) ดังสมการที่ (2.3) และ (2.4) [7]

MaximizeLp(αi, α
∗
i ) = −1

2

l∑
i=1

l∑
j=1

(αi−α∗
i )(αj−α∗

j )x
T
i xj−ε

l∑
i=1

(αi−α∗
i )+

l∑
i=1

(αi−α∗
i )yi (2.3)
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subject to


∑l

i=1(αi − α∗
i ) = 0

0 ≤ αi ≤ C, i = 1, ..., l

0 ≤ α∗
i ≤ C, i = 1, ..., l

(2.4)

เมื่อเรามี αi และ α∗
i เป็นตัวคูณลากรานจ์ และ C เป็นจำนวนเต็มที่เป็นค่าคงที่ เมื่อเกิดข้อผิดพลาด (Error)

ขนาด ε และ ε คือความกว้างของท่อเอปซิลอน (Epsilon Tube) หรือความคลาดเคลื่อนของชุดข้อมูลฝึกฝน
และ l คือจำนวนของซัพพอร์ตเวกเตอร์ (Support Vectors) ซึ่งส่วนอินพุตเวกเตอร์ที่เป็นซัพพอร์ตเวกเตอร์ จะมี
αi, α∗

i > 0 ส่วนอินพุตเวกเตอร์ที่ไม่ใช่ซัพพอร์ตเวกเตอร์ จะมี αi, α∗
i = 0 และหลังจากที่คำนวณค่า αi และ α∗

i

จากชุดข้อมูลฝึกฝน เราจะสามารถสร้างสมการ SVR เพื่อใช้ทำนายค่าเอาท์พุตจากอินพุตเวกเตอร์ ได้ดังสมการ
ที่ (2.5)

f(x) = wT
0 x+ b =

l∑
i=1

(αi − α∗
i )x

T
i x+ b (2.5)

โดยที่ เวกเตอร์ถ่วงน้ำหนัก w0 เป็นดังสมการที่ (2.6)

w0 =
l∑

i=1

(αi − α∗
i )xi (2.6)

สมการที่ (2.5) มีการใช้การถดถอยเชิงเส้น เพื่อให้มีการปรับค่าในการเปลี่ยนแปลงของตัวแปรต้นและมีค่าเอน
เอียง ที่บวกอยู่ด้วยเพื่อทำให้การถดถอยนั้นมีความแม่นยำมากขึ้น ส่วนในกรณีที่เราต้องการการถดถอยไม่เชิง
เส้น เราสามารถใช้ฟังก์ชันเคอร์เนล (Kernel Function) มาช่วยในการแปลงข้อมูลให้อยู่ในมิติที่สูงขึ้น เพื่อให้การ
ถดถอยสามารถประมาณค่าได้ดีขึ้น ซึ่งฟังก์ชันเคอร์เนลที่นิยมใช้ใน SVR อยู่ 3 แบบ [7] คือ
1. Linear Kernel ใช้สำหรับ การถดถอยเชิงเส้น ซึ่งมีสมการเป็น

k(xi, x) = xTi x

2. Polynomial Kernel ใช้สำหรับ การถดถอยไม่เชิงเส้น ซึ่งมีสมการเป็น
k(xi, x) = (1 + xi · xj)d

โดยที่ d คือ Polynomial degree
3. Gaussian Kernel ใช้สำหรับ การถดถอยไม่เชิงเส้น ซึ่งมีสมการเป็น

k(xi, x) = exp(−∥xi − xj∥2

2σ2
∥)

ดังนั้น สมการที่ (2.5) สามารถเขียนใหม่ในรูปแบบการถดถอยไม่เชิงเส้นโดยใช้เคอร์เนลฟังก์ชัน ได้ดังสมการที่
(2.7)

f(x) =

l∑
i=1

(αi − α∗
i )k(xi − x) (2.7)

วิธีการถดถอยเชิงเส้น ถึงแม้จะได้รับความนิยมอย่างกว้างขวางสำหรับการประยุกต์ใช้สร้างแบบจำลองการ
พยากรณ์ที่ใช้ความสัมพันธ์แบบเชิงเส้น อย่างไรก็ตาม วิธี ANN และ SVR กลายเป็นที่นิยมมากขึ้นในงานวิจัย
เนื่องจากความแม่นยำสูง และความสามารถในการจัดการข้อมูลที่มีความสัมพันธ์แบบไม่เชิงเส้น นอกจากนี้วิธี
SVR เป็นวิธีการท่ีประมวลผลได้รวดเร็วและเหมาะสมกับชุดข้อมูลท่ีมีขนาดเล็ก [3]
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2.5 วิเคราะห์ความหมายของค่าสถิติ
การทำข้อมูลให้เป็นปกติ (Data Normalization) [12] เป็นวิธีการหนึ่งของการแปลงข้อมูล (Data Trans-

formation) โดยงานวิจัยชิ้นนี้ เราจะแปลงข้อมูลโดย เทคนิค Min-Max Scaling เป็นการปรับค่าคุณลักษณะ
ของข้อมูลให้อยู่ในช่วงค่าน้อย และค่ามากที่กำหนด ซึ่งนิยมใช้ค่าน้อยเป็น 0 และค่ามากเป็น 1 ซึ่งวิธีการแปลง
ค่าจะคำนวณได้จากสมการดังนี้

xscaledi =
xi −min(X)

maxX −minX
โดยที่ xscaledi คือ ค่าใหม่ของคุณลักษณะตัวที่ i
xi คือ ค่าของคุณลักษณะตัวที่ i
min(X) คือ ค่าที่น้อยที่สุดของของคุณลักษณะนั้น และ
max(X) คือ ค่าที่มากที่สุดของคุณลักษณะนั้น

ค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Mean Squared Error) ใช้ในการวัดความแตกต่างระหว่างค่าที่คำนวณได้
จากแบบจำลองหรือการพยากรณ์กับค่าจริง โดยใช้ค่าเฉลี่ยของความแตกต่างระหว่างทุกจุดข้อมูลที่มีในชุดข้อ
มูลที่กำหนด คำนวณด้วยการยกกำลังสองของความแตกต่างแต่ละจุดข้อมูล และหาค่าเฉลี่ยของความแตกต่าง
ทั้งหมดนั้น หากค่าคลาดเคลื่อนกำลังสองเฉลี่ยน้อยแสดงถึงค่าพยากรณ์สามารถประมาณค่าได้ใกล้เคียงกับค่า
จริง มีสมการดังนี้

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

โดยที่ n คือ จำนวนข้อมูลทั้งหมด
yi คือ ค่าจริงในชุดข้อมูลที่ i และ
ŷi คือ ค่าพยากรณ์ในชุดข้อมูลที่ i

ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean Absolute Error) ใช้ในการวัดความแตกต่างระหว่างค่าที่คำนวณได้
จากแบบจำลองหรือการพยากรณ์กับค่าจริง โดยใช้วิธีการหาค่าเฉลี่ยของความแตกต่างสมบูรณ์ระหว่างค่าพยา-
กรณ์และค่าจริง หากค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ยน้อยแสดงถึงค่าพยากรณ์สามารถประมาณค่าได้ใกล้เคียงกับ
ค่าจริง มีสมการดังนี้

MAE =
1

n

n∑
i=1

|yi − ŷi|

โดยที่ n คือ จำนวนข้อมูลทั้งหมด
yi คือ ค่าจริงในชุดข้อมูลที่ i และ
ŷi คือ ค่าพยากรณ์ในชุดข้อมูลที่ i

MAE จะมีความอ่อนไหวต่อข้อมูลที่มีค่าผิดปกติ น้อยกว่าเมื่อเทียบกับ MSE การใช้ MAE จึงเหมาะสมกว่า
ในสถานการณ์ที่ข้อมูลมีค่าผิดปกติอยู่เป็นจำนวนมาก

ค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation Coefficient) [9] เป็นค่าที่บ่งชี้ถึงความสัมพันธ์ระหว่างตัวแปร
สองตัว จะมีค่าอยู่ระหว่าง -1 ถึง 1 โดยหากพบว่าค่าสัมประสิทธิ์สหสัมพันธ์ เข้าใกล้ -1 หมายความว่าตัวแปร
ทั้งสองตัวมีความสัมพันธ์กันในเชิงตรงกันข้าม แต่หากค่าสัมประสิทธิ์สหสัมพันธ์ มีค่าเข้าใกล้ 1 หมายความว่า
ตัวแปรทั้งสองมีความสัมพันธ์ไปในทิศทางเดียวกัน สามารถคำนวณได้ดังนี้

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

โดยที่ r คือ ค่าสัมประสิทธิ์สหสัมพันธ์
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n คือ จำนวนข้อมูลทั้งหมด
xi คือ ค่าตัวแปร x ของชุดข้อมูลที่ i
x̄ คือ ค่าเฉลี่ยของตัวแปร x
yi คือ ค่าตัวแปร y ของชุดข้อมูลที่ i และ
ȳ คือ ค่าเฉลี่ยของตัวแปร y

3 งานวิจัยที่เกี่ยวข้อง
จากงานวิจัยของ Zeng Qing-Wei และคณะ [11] กล่าวไว้ว่า การใช้ซัพพอร์ตเวกเตอร์รีเกรสชัน รวม

กับวิธีหาค่าเหมาะสมที่สุดแบบกลุ่มอนุภาค (Particle Swarm Optimization : PSO) เพื่อพยากรณ์การเกิด
อุบัติเหตุทางจราจร การวิเคราะห์เวลาในรูปแบบชุดข้อมูลเป็นทิศทางสำคัญในการทำนายอุบัติเหตุทางจราจร
ผลการวิจัยพบว่า เทคนิควิธี PSO-SVR มีประสิทธิภาพสูงกว่าโครงข่ายประสาทเทียมแบบแพร่ย้อนกลับ ในการ
พยากรณ์อุบัติเหตุทางจราจร

จากงานวิจัยของ Wei-wei Wu และคณะ [15] ใช้วิธีซัพพอร์ตเวกเตอร์รีเกรสชัน เพื่อการพยากรณ์ระยะ
เวลาของเหตุการณ์จราจร โดยใช้ข้อมูลเหตุการณ์จราจรจากทางด่วนในเนเธอร์แลนด์ ผลการวิจัยพบว่า แบบ
จำลองจากวิธี ซัพพอร์ตเวกเตอร์รีเกรสชัน สามารถพยากรณ์ระยะเวลาของเหตุการณ์จราจรได้อย่างแม่นยำ โดย
สามารถนำไปใช้ในระบบตรวจจับและแก้ไขปัญหาเหตุการณ์จราจรได้อย่างมีประสิทธิภาพ

จากงานวิจัยของ Chunjiao Dong และคณะ [8] ใช้การรวมวิธีระหว่าง ซัพพอร์ตเวกเตอร์รีเกรสชัน และ
State-Space Model (SSM) พยากรณ์การเกิดอุบัติเหตุทางถนน จากการพยากรณ์พบว่าผลลัพธ์มีประสิทธิภาพ
ที่ดีและมีค่าความคลาดเคลื่อนสัมบูรณ์เฉลี่ยที่ต่ำเมื่อเปรียบเทียบกับวิธีการอื่น ๆ

จากงานวิจัย Junyou Zhang และคณะ [17] เน้นการศึกษาเกี่ยวกับ การตัดสินใจในการขับขี่ของรถยนต์
อัตโนมัติซึ่งเป็นปัจจัยสำคัญในการให้ความปลอดภัยในการขับขี่ โดยนำเสนอวิธี ซัพพอร์ตเวกเตอร์รีเกรสชัน ใน
การวิเคราะห์ข้อมูลถนนและการออกแบบกลไกการตัดสินใจในการขับขี่ของรถยนต์อัตโนมัติ ผลการวิจัยแสดง
ให้เห็นถึงความสามารถในการปรับปรุงการตัดสินใจในการขับขี่โดยพิจารณาถึงเงื่อนไขของถนน แบบจำลองจาก
วิธีซัพพอร์ตเวกเตอร์รีเกรสชันที่ถูกปรับปรุงมีประสิทธิภาพดีกว่าโมเดลอื่น ๆ และสภาพถนนมีผลกระทบมากที่
สุดต่อการตัดสินใจในการขับขี่ในสภาพจราจรที่หนาแน่นต่ำ ซึ่งมีความสำคัญในการพัฒนาระบบขับขี่อัตโนมัติใน
สภาพทางเมืองที่ซับซ้อน

จากงานวิจัยของ Nidhi Nidhi และ DK Lobiyal [10] ศึกษาการพยากรณ์การไหลของการจราจรในพื้นที่
มหาวิทยาลัย Jawaharlal Nehru (JNU) ที่ตั้งอยู่ใน New Delhi ประเทศอินเดีย และได้สร้างแบบจำลองการ
พยากรณ์โดยใช้วิธีซัพพอร์ตเวกเตอร์รีเกรสชัน เพื่อช่วยในการจัดการการจราจรและลดการแออัดในพื้นที่
มหาวิทยาลัย โดยใช้ข้อมูลการจราจรเรียลไทม์จากประตูทางเหนือของวิทยาเขต ผลการวิจัยพบว่า การใช้วิธี
ซัพพอร์ตเวกเตอร์รีเกรสชัน ทำให้แบบจำลองมีผลลัพธ์ของการพยากรณ์ที่ดี และให้ค่ารากที่สองของค่าคลาด
เคลื่อนกำลังสองเฉลี่ย และค่าคลาดเคลื่อนค่าสัมบูรณ์เฉลี่ยต่ำสุดในชุดข้อมูลฝึกฝน นอกจากนี้แบบจำลองได้ถูก
นำมาใช้เพื่อทดสอบความแม่นยำของการพยากรณ์การไหลสำหรับการจราจรทั้งเข้า และออกของวิทยาเขตนี้ใน
แต่ละวันของเดือนมกราคม พ.ศ. 2556

4 ผลการศึกษา
ในหัวข้อนี้ผู้วิจัยได้นำกระบวนการ CRISP-DM มาประยุกต์ใช้กับข้อมูลอุบัติเหตุบนโครงข่ายถนนของ

กระทรวงคมนาคมในประเทศไทย เดือนมกราคม พ.ศ. 2562 ถึง เดือนมกราคม พ.ศ. 2566 ของจังหวัด
นครราชสีมา และเปรียบเทียบประสิทธิภาพการพยากรณ์จำนวนผู้เสียชีวิตจากการเกิดอุบัติเหตุบนโครงข่าย
ถนนของกระทรวงคมนาคมของแบบจำลองที่ใช้เทคนิควิธี การถดถอยเชิงเส้น โครงข่ายประสาทเทียมแบบเพอร์
เซฟตรอนหลายชั้น และซัพพอร์ตเวกเตอร์รีเกรสชั่น
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กระบวนการ CRISP-DM สำหรับข้อมูลอุบัติเหตุบนโครงข่ายถนนของกระทรวงคมนาคม ประกอบด้วย 6 ขั้น
ตอน

1. การทำความเข้าใจธุรกิจ (Business Understanding)
การศึกษานี้ เป็นการเปรียบเทียบประสิทธิภาพของแบบจำลอง เพื่อประเมินและพยากรณ์จำนวนผู้ที่สูญ
เสียชีวิตจากการเกิดอุบัติเหตุบนเส้นทางการจราจร ภายใต้การดูแลของกระทรวงคมนาคมในพื้นที่จังหวัด
นครราชสีมา ผลลัพธ์จากการพยากรณ์นี้จะทำให้เราเข้าใจถึงแนวโน้มและจำนวนของการเกิดอุบัติเหตุที่
อาจเกิดขึ้นในอนาคต ซึ่งจะเป็นข้อมูลสำคัญที่จะช่วยให้หน่วยงานที่เกี่ยวข้องสามารถวางแผน และดำเนิน
การตามมาตรการป้องกันอย่างมีประสิทธิภาพ

2. การทำความเข้าใจข้อมูล (Data Understanding)
การศึกษานี้เป็นการนำข้อมูลของการเกิดอุบัติเหตุบนโครงข่ายถนนของกระทรวงคมนาคมในประเทศไทย
จากแหล่งข้อมูลสาธารณะ https://datagov.mot.go.th/dataset/roadaccident ของศูนย์เทคโนโลยี
สารสนเทศและการสื่อสาร สำนักงานปลัดกระทรวงคมนาคม ตั้งแต่ วันที่ 5 เดือน มกราคม พ.ศ. 2562
ถึง วันที่ 31 เดือน มกราคม พ.ศ. 2566 ทางผู้วิจัยได้นำข้อมูลของจังหวัดนครราชสีมา มาศึกษาและ
วิเคราะห์ตัวแปรและสาเหตุการเสียชีวิตจากการเกิดอุบัติเหตุ เพื่อสร้างแบบจำลองที่มีประสิทธิภาพใน
การพยากรณ์จำนวนผู้เสียชีวิตจากการเกิดอุบัติเหตุ ข้อมูลมีจำนวนทั้งหมด 3,330 แถว 20 คอลัมน์ คือ ปี
ที่เกิดอุบัติเหตุ วันที่เกิดอุบัติเหตุ เวลาที่เกิดอุบัติเหตุ วันที่รายงานผลอุบัติเหตุ เวลาที่รายงานผลอุบัติเหตุ
เลขที่อ้างอิง พื้นที่สังกัดหน่วยงาน เส้นที่กิโลเมตรที่ จังหวัดที่เกิดเหตุ รถคันที่ 1 บริเวณที่เกิดอุบัติเหตุ
สาเหตุมาจาก ลักษณะการเกิดอุบัติเหตุ จำนวนรถที่เกิดอุบัติเหตุ จำนวนผู้เสียชีวิต รวมจำนวนได้รับผู้บาด
เจ็บ สภาพอากาศสถานที่เกิดเหตุ สายทาง LATITUDE LONGITUDE

3. การเตรียมข้อมูล (Data Preparation)
จากชุดข้อมูลในขั้นตอนที่ 2 เราจะการเตรียมข้อมูลด้วยขั้นตอนต่อไปนี้
3.1. การทำความสะอาดข้อมูล จากชุดข้อมูล มีข้อมูลที่ขาดหายไป (Missing Value) 245 ข้อมูล เราจะ
จัดการกับข้อมูลที่ขาดหายไป โดยจะลบแถวที่มีข้อมูลที่ขาดหายไป ซึ่งจะทำให้เหลือแถวที่นำมาใช้ในการ
วิเคราะห์ข้อมูลเพื่อพัฒนาแบบจำลองทั้งหมด 3065 แถว และทางผู้วิจัยได้ลบคอลัมน์ ปีที่เกิดเหตุ วันที่
เกิดเหตุ เวลา วันที่รายงาน เวลาที่รายงาน และจังหวัด ออก เหลือ 14 คอลัมน์

3.2. การวิเคราะห์ระดับความสัมพันธ์ของตัวแปร ผ่านเทคนิคการหาค่าสัมประสิทธิ์สหสัมพันธ์ จากการ
สำรวจข้อมูลจะมีคอลัมน์ที่เป็นข้อมูลชนิดสตริง (string) ประเภทหมวดหมู่ (categorical data) ได้แก่
หน่วยงาน สายทาง รถคันที่ 1 บริเวณที่เกิดเหตุ/ลักษณะทาง มูลเหตุสันนิษฐาน ลักษณะการเกิดอุบัติเหตุ
สภาพอากาศ ผู้วิจัยได้การทำแปลงข้อมูลจากคอลัมน์เหล่านี้โดยใช้ Ordinal Encoder ในเครื่องมือ
ColumnTransformer ในไลบรารี scikit-learn ของภาษา Python ก่อนนำไปหาค่าสัมประสิทธิ์
สหสัมพันธ์ ผลการวิเคราะห์ค่าสัมประสิทธิ์สหสัมพันธ์ แสดงดังภาพที่ 3
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ภาพที่ 3: ค่าความสัมพันธ์ของข้อมูล

จากผลที่แสดงในดังภาพที่ 3 เราจะทำงานลบคอลัมน์ ”หน่วยงาน” ออก เนื่องจากมีค่าสัมประสิทธิ์
สหสัมพันธ์กับจำนวนผู้เสียชีวิตอยู่ในระดับน้อย

3.3. กำหนดตัวแปรต้นและตัวแปรตาม
ตัวแปรตาม คือ จำนวนผู้เสียชีวิต
ตัวแปรต้น คือ จำนวนรถที่เกิดเหตุ เลขที่อ้างอิง รวมจำนวนผู้บาดเจ็บ สภาพอากาศ ลักษณะการเกิดอุบัติ
เหตุ สาเหตุมาจาก รถคันที่ 1 บริเวณที่เกิดอุบัติเหตุ เส้นทางกิโลที่ สายทาง LATITUDE LONGITUDE

3.4. การแบ่งชุดข้อมูล โดยแบ่งชุดข้อมูลออกเป็น 2 ส่วน (80:20)
- ชุดข้อมูลฝึกฝน (Training Data Set) ใช้ข้อมูล 5 ม.ค. 62 - 30 เม.ย 65 ทั้งหมด 2,452 ข้อมูล
- ชุดข้อมูลทดสอบ (Testing Data Set) ใช้ข้อมูล 1 พ.ค. 65 – 31 ม.ค 66 ทั้งหมด 613 ข้อมูล

3.5. การแปลงข้อมูล (Data transformation)
จากชุดข้อมูล ทางผู้วิจัยมีการปรับค่าของข้อมูลในชุดข้อมูลฝึกฝนให้มีสเกลเดียวกัน ก่อนนำเข้าสู่แบบจำ
ลองโดยใช้วิธีการ Min-Max Scaling

4. การสร้างแบบจําลองวิเคราะห์ข้อมูล (Modeling)
จากข้อมูลที่ผ่านการเตรียมข้อมูล (Data Preparation) และถูกแบ่งออกเป็น 2 ส่วน ได้แก่ ชุดข้อมูลฝึกฝน
และชุดข้อมูลทดสอบ จากขั้นตอนที่ 3 ในขั้นตอนนี้ผู้วิจัยสร้างแบบจำลองโดยใช้วิธี การถดถอยเชิงเส้น
(LR) โครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น (MLP) และซัพพอร์ตเวกเตอร์รีเกรสชัน (SVR)
โดยจะมีการปรับค่าพารามิเตอร์เพื่อให้ได้แบบจำลองที่มีประสิทธิภาพที่ดีที่สุด
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ภาพที่ 4: ขั้นตอนการออกแบบและพัฒนาแบบจำลองพยากรณ์

ภาพที่ 5: 4-fold Cross-Validation

จากภาพที่ 4 เป็นการแสดงขั้นตอนการออกแบบและพัฒนาแบบจำลองพยากรณ์ โดยเริ่มจากการแบ่ง
ข้อมูลชุดฝึกฝนด้วยวิธี Cross-validation ตามภาพที่ 5 นำข้อมูลมาสร้างการเรียนรู้ให้กับการเรียนรู้ของ
เครื่อง โดยใช้วิธี การถดถอยเชิงเส้น โครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น และซัพพอร์ต
เวกเตอร์รีเกรสชัน สร้างตัวแบบจำลองพยากรณ์ แล้ววัดประสิทธิภาพของแบบจำลองพยากรณ์ด้วยค่า
เฉลี่ยของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (MEAN-MSE) และค่าเฉลี่ยของค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย
(MEAN-MAE) นำผลไปวัดผลประสิทธิภาพเพื่อใช้เปรียบเทียบกับตัวแบบถัดไป และจากการปรับค่า
พารามิเตอร์ เราได้ค่าพารามิเตอร์ของวิธีทั้ง 3 วิธี ดังนี้
4.1. การถดถอยเชิงเส้น (LR) ไม่มีการปรับค่าพารามิเตอร์
4.2. โครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น (MLP) กำหนดให้ มีจำนวนชั้นซ่อน คือ 1000
แต่ละชั้นมีจำนวนโหนด คือ 1 และให้มีการหมุนวนซ้ำ 1000 รอบ
4.3. ซัพพอร์ตเวกเตอร์รีเกรสชัน (SVR) กำหนดให้ เคอร์เนลฟังก์ชัน เป็น เกาส์เชียนเคอร์เนล (Gaussian
Kernel) ทีมี stopping criterion = 0.001 C=2 และ epsilon = 0.15
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ตารางที่ 1: การเปรียบเทียบประสิทธิภาพของแบบจำลอง
Model MEAN-MSE MEAN-MAE

Support Vector Regression 0.178138 0.175904
Linear Regression 0.187041 0.238318

Multi-Layer Perceptron 0.229159 0.253268

5. การประเมินผลลัพธ์ (Evaluation) การประเมินประสิทธิภาพของแบบจำลองจากชุดข้อมูลฝึกฝนที่ทำการ
แบ่งข้อมูลเป็นชุดฝึกฝนและชุดตรวจสอบหรือทดสอบ(validation) ในรูปแบบ 4-fold และนำค่าที่ได้มา
ทำการคิดค่าเฉลี่ยของค่าคลาดเคลื่อนกำลังสองเฉลี่ย และค่าเฉลี่ยของค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย จะได้
ผลลัพธ์ตามตารางที่ 1 จากผลลัพธ์จะเห็นได้ว่าแบบจำลองที่ใช้วิธี ซัพพอร์ตเวกเตอร์รีเกรสชัน ให้หาค่า
เฉลี่ยของค่าคลาดเคลื่อนกำลังสองเฉลี่ย และค่าเฉลี่ยของค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ยน้อยที่สุด คือ
0.178138 และ 0.175904 ตามลำดับ เมื่อเปรียบเทียบกับแบบจำลองที่ใช้วิธี การถดถอยเชิงเส้น และ
โครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น และจากผลลัพธ์ที่ได้สามารถนำมาแสดงเป็นกราฟ
เปรียบเทียบประสิทธิภาพของแบบจําลอง ตามภาพที่ 6 จากกราฟจะเห็นได้ว่า แบบจำลองที่ใช้เทคนิควิธี
ซัพพอร์ตเวกเตอร์รีเกรสชัน สามารถพยากรณ์จำนวนผู้เสียชีวิตได้ใกล้เคียงกับค่าจริงได้ดีกว่าแบบจำลอง
ที่ใช้วิธี การถดถอยเชิงเส้น และโครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น

6. การอธิบายผลและการนำไปใช้งานจริง (Deployment)
จากการประเมินประสิทธิภาพจะเห็นได้ว่าแบบจำลองจากวิธีซัพพอร์ตเวกเตอร์รีเกรสชัน เป็นแบบจำลอง
ที่ให้ประสิทธิภาพที่ดีที่สุดเมื่อเปรียบเทียบกับแบบจำลองอื่น เราจึงได้นำแบบจำลองมาใช้กับชุดข้อมูลทด
สอบ แสดงกราฟเปรียบเทียบค่าจริงและค่าพยากรณ์ของแบบจำลอง ดังภาพที่ 7 และมีค่าคลาดเคลื่อน
กำลังสองเฉลี่ย คือ 0.09177 จากแบบจำลองที่พัฒนาขึ้นมา สามารถนำไปใช้พยากรณ์จำนวนผู้เสียชีวิต
จากข้อมูลที่ได้รับเกี่ยวกับการเกิดอุบัติเหตุในอนาคต และใช้ผลลัพธ์จากการพยากรณ์เพื่อวางแผนดำเนิน
การป้องกันและลดการเกิดอุบัติเหตุบนถนน

ภาพที่ 6: กราฟเปรียบเทียบประสิทธิภาพของแบบจําลองโดยใช้วิธี การถดถอยเชิงเส้น (LR) โครงข่ายประสาท
เทียมแบบเพอร์เซฟตรอนหลายชั้น (MLP) และซัพพอร์ตเวกเตอร์รีเกรสชัน (SVR) ของชุดข้อมูลฝึกฝน
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ภาพที่ 7: กราฟเปรียบเทียบค่าจริงและค่าพยากรณ์ของแบบจําลองของชุดข้อมูลทดสอบ

5 การอภิปรายผลและการเสนอแนะ
จากการศึกษา และวิเคราะห์เปรียบเทียบประสิทธิภาพของอัลกอริทึมการเรียนรู้ของเครื่องในการพยากรณ์จํา
นวนผู้เสียชีวิตจากการเกิดอุบัติเหตุบนโครงข่ายถนนของกระทรวงคมนาคม ซึ่งเป็นข้อมูลของศูนย์เทคโนโลยี
สารสนเทศ และการสื่อสาร สํานักงานปลัดกระทรวงคมนาคม จากแหล่งข้อมูลสาธารณะ https://datagov.
mot.go.th/dataset/roadaccident ตั้งแต่เดือนมกราคม พ.ศ.2562 ถึงเดือนมกราคม พ.ศ. 2566 ของจังหวัด
นครราชสีมา โดยสร้างแบบจําลอง ด้วยวิธีที่แตกต่างกัน 3 วิธี ได้แก่ การถดถอยเชิงเส้น (LR) โครงข่ายประสาท
เทียมแบบเพอร์เซฟตรอนหลายชั้น (MLP) และซัพพอร์ตเวกเตอร์รีเกรสชัน (SVR) แบ่งข้อมูลออกเป็นชุดฝึกฝน
และชุดทดสอบ สร้างแบบจําลองด้วยชุดข้อมูลฝึกฝน และวัดผลการเปรียบเทียบประสิทธิภาพการพยากรณ์การ
เกิดอุบัติเหตุโดยใช้ ค่าเฉลี่ยของค่าคลาดเคลื่อนกําลังสองเฉลี่ย และค่าเฉลี่ยของค่าความคลาดเคลื่อนสัมบูรณ์
เฉลี่ย พบว่า วิธี LR มีค่าของการเสียชีวิตเฉลี่ย 0.187041 และ 0.238318 วิธี MLP มีค่าของการเสียชีวิตเฉลี่ย
อยู่ที่ 0.229159 และ 0.253268 วิธี SVR มีค่าของการเสียชีวิตเฉลี่ยอยู่ที่ 0.178138 และ 0.175904 การ
สรุปผลการวิเคราะห์พบว่า วิธี SVR เป็นวิธีที่มีค่าความคลาดเคลื่อนต่ําที่สุด ต่อมาผู้วิจัยได้นําชุดข้อมูลทดสอบ
วัดผลพยากรณ์จํานวนผู้เสียชีวิตจากชุดข้อมูลทดสอบได้ค่าคลาดเคลื่อนกําลังสองเฉลี่ย 0.0917 จะเห็นได้ว่า วิธี
SVR มีความเหมาะสมในการพัฒนาแบบจําลองเพื่อพยากรณ์จํานวน ผู้เสียชีวิตและใช้ผลลัพธ์จากการพยากรณ์
เพื่อวางแผนดําเนินการป้องกันและลดการเกิดอุบัติเหตุบนถนน ดังนั้น ข้อเสนอแนะเพื่อให้ผลการพยากรณ์
มีความถูกต้องแม่นยํามากขึ้น ผู้วิจัยควรพิจารณาปัจจัยแวดล้อมอื่น ๆ ที่มี ผลต่อความเสี่ยงต่อการเสียชีวิตของ
การเกิดอุบัติเหตุ เช่น การดื่มแอลกอฮอล์ พักผ่อนไม่เพียงพอ บริเวณที่เกิดเหตุ ทางโค้งอันตราย เป็นต้น และ
จากการศึกษาวิธีการพยากรณ์ จํานวน 3 วิธี ในงานวิจัยนี้ หากมีการศึกษาวิธีอื่นเข้ามาเปรียบเทียบเพิ่มเติม จะ
ทําให้ได้ค่าการพยากรณ์ที่ต่างกันในแต่ละวิธี และจะสามารถหาแบบจําลองที่มีการพยากรณ์แม่นยํามากยิ่งขึ้น

กิตติกรรมประกาศ คณะผู้วิจัยขอขอบคุณผู้ทรงคุณวุฒิทุกท่านที่ได้ให้ข้อคิดเห็นและข้อเสนอแนะต่าง ๆ เพื่อ
ปรับปรุงบทความวิจัย และขอขอบคุณ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา สำหรับทุน
สนับสนุนการทำวิจัยในครั้งนี้
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บทคัดยอ 

  เนื่องจากการที่ภาพถายปรากฏสัญญาณรบกวนนั้นเปนสิ่งที่หลีกเลี่ยงไมได กระบวนการ

ซอมแซมภาพจึงเขามามีบทบาทที่สำคัญ ในงานวิจัยนี้ ผูวิจัยไดนำเสนอตัวแบบเชิงการแปรผันจำนวน 2 

ตัวแบบ คือ ตัวแบบ JYTL และตัวแบบ JYBH สำหรับกำจัดสัญญาณรบกวนแบบการคูณออกจากภาพ

ซึ่งใชขอดีของตัวแบบ JY และอนุพันธอันดับสูง เพื่อลดปรากฏการณขั้นบันได พรอมทั้งวิธีการสปริท

เบรกแมนซึ่งเปนวิธีการเชิงตัวเลขที่มีประสิทธิภาพในการแกปญหา ผลการทดลองเชิงตัวเลขแสดงให

เห็นวาตัวแบบที่ไดนำเสนอพรอมดวยวิธีการสปริทเบรกแมนดังกลาวสามารถกำจัดสัญญาณรบกวนออก

จากภาพอยางแมนยำ และใหคุณภาพของภาพผลลัพธที่ดีข้ึน โดยตัวแบบที่ไดนำเสนอคือตัวแบบ JYBH 

ใหความแมนยำสูงกวาตัวแบบ JY และตัวแบบ JYTL ในทุกกรณ ีนอกจากนี้ผูวิจัยไดทำการทดสอบความ

มีประสิทธิภาพของตัวแบบที่ไดนำเสนอพรอมดวยวิธีการสปริทเบรกแมนในการกำจัดสัญญาณออกจาก

ภาพถายทางการแพทย ผลการทดสอบพบวาตัวแบบที่นำเสนอสามารถกำจัดสัญญาณรบกวนออกจาก

ภาพไดอยางมีประสิทธิภาพ 
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1 บทนำ 

 ปญหาการกำจัดสัญญาณรบกวนออกจากภาพ (Image Denoising Problems) เปนปญหาการประมวลผล

ภาพ (Image Processing Problems) ที่ไดรับความสนใจเปนอยางมาก เนื่องจากการที่ภาพถายปรากฏสัญญาณ

รบกวนนั้นเปนสิ่งที่หลีกเลี่ยงไมได โดยสัญญาณรบกวนเหลานี้อาจเกิดจากกระบวนการสรางภาพ การบันทึกภาพ หรือ 

การรับ-สงภาพ เปนตน การประยุกตการซอมแซมภาพมีความจำเปนในหลายสาขา เชน การประยุกตทางดานศิลปะ 

ฟสิกสดาราศาสตร ชีววิทยา เคมี ฟสิกส ธรณีฟสิกส อาชญาวิทยา และศาสตรแขนงอื่น ๆ ที่เกี่ยวของกับการใชและ

สรางภาพถาย นอกจากนี้ปญหาการประมวลผลภาพยังไดรับความสนใจอยางมากทางการแพทย เนื่องจากภาพถาย

คลื่นเสียงความถี่สูง (Ultrasound Images) เปนภาพถายที่ไดรับความนิยมนำมาตรวจวินิจฉัยโรคอยางแพรหลาย แต

ภาพดังกลาวมักปรากฏสัญญาณรบกวน ซึ่งสงผลใหการแปลความหมายจากภาพถายคลื่นเสียงความถี่สูงมีความ

คลาดเคลื่อน ดังนั้นการกำจัดสัญญาณรบกวนที่เกิดขึ้นในภาพดังกลาวจึงมีความจำเปนอยางยิ่งในการประยุกตทาง

การแพทย 

โดยทั่วไปตัวแบบสัญญาณรบกวนสามารถแบงเปน 2 ประเภท คือ ตัวแบบสัญญาณรบกวนแบบการบวก 

(Additive Noise Model) และ ตัวแบบสัญญาณรบกวนแบบการคูณ (Multiplicative Noise Model) [1] ตัวแบบ

สัญญาณรบกวนแบบการบวกมักปรากฏในภาพถายซึ่งเกิดจากกระบวนการบันทึกสัญญาณภาพดวยเครื่องมือดิจิทัล 

ตัวแบบสัญญาณรบกวนแบบการคูณหรือตัวแบบสัญญาณรบกวนแบบสเปกเคิล  (Speckle Noise Model) มักถูกพบ

ในภาพถายคลื่นเสียงความถ่ีสูง ภาพเลเซอร และภาพจากระบบเรดารที่ติดตั้งบนเคร่ืองบินหรือดาวเทียม ซึ่งเปนภาพที่

ไดจากระบบการสรางภาพแบบโคฮีเลนท (Coherent Imaging System)  

ในการกำจัดสัญญาณรบกวนออกจากภาพไดมีการศึกษาและนำเสนอเทคนิควิธีการตาง ๆ โดยสามารถแบง

ออกไดเปน 2 กลุม คือ กลุมงานวิจัยดานการกำจัดสัญญาณรบกวนภาพแบบใชอัลกอริทึม และกลุมงานวิจัยดานการ

กำจัดสัญญาณรบกวนของภาพแบบใชชุดขอมูลมาฝกสอนใหกับโมเดล [2] กลุมงานวิจัยดานการกำจัดสัญญาณรบกวน

ของภาพแบบใชชุดขอมูลมาฝกสอนใหกับโมเดล ไดแก วิธีการเรียนรูแบบอัตโนมัติดวยการเลียนแบบการทำงานของ

โครงขายประสาทของมนุษย วิธีการเวฟเลต วิธีการสโตรแคสติก วิธีการที่ใชวิธีการวิเคราะหองคประกอบหลัก และ

กลุมงานวิจัยดานการกำจัดสัญญาณรบกวนภาพแบบใชอัลกอริทึม ไดแก วิธีการเชิงการแปรผัน [3] จากการศึกษา

พบวาวิธีหนึ่งที่เปนเทคนิควิธีการทางคณิตศาสตรที่นาเชื่อถือและมีความแมนยำสูงมาก คือ วิธีการเชิงการแปรผัน 

(Variational Method) โดยแนวคิดในการหาคำตอบเริ่มตนจากการพิจารณาภาพเปนฟงกชัน สรางตัวแบบเชิงการ

แปรผันสำหรับกำจัดสัญญาณรบกวนออกจากภาพ จากนั้นใชแคลคูลัสของการแปรผัน (Calculus of Variations) ใน

การสรางสมการออยเลอร-ลากรานจที่สมนัยกับตัวแบบดังกลาว และใชเทคนิควิธีการเชิงตัวเลขสำหรับแกสมการออย

เลอร-ลากรานจอยางมีประสิทธิภาพ โดยทั่วไปสมการออยเลอร-ลากรานจที่ไดจากตัวแบบเชิงการแปรผันมักเปน

สมการเชิงอนุพันธยอยไมเปนเชิงเสน จากแนวคิดในการหาคำตอบขางตนพบวาแนวทางที่ใชในการศึกษาแกปญหาการ

กำจัดสัญญาณรบกวนออกจากภาพสามารถแบงออกไดเปน 2 แนวทาง คือ การสรางตัวแบบทางคณิตศาสตรสำหรับ

กำจัดสัญญาณรบกวนออกจากภาพที่มีความนาเชื่อถือและแมนยำ ซึ่งไดถูกนำเสนอครัง้แรกโดยคณะวิจัยของ Rudin 

ในป ค.ศ. 1992 [4]  และการพัฒนาวิธีการเชิงตัวเลขที่มีประสิทธิภาพสูงและรวดเร็วสำหรับแกสมการออยเลอร-ลา 

กรานจที่สมนัยกับตัวแบบ 

The 28th Annual Meeting in Mathematics (AMM2024)

249



 
 

Goldstein และ Osher [5] ไดนำเสนอแนวคิดในการแกปญหาเชิงการแปรผันโดยวิธีการสปริทเบรกแมน 

(Split Bregmam (SB) Method) แนวทางในการหาคำตอบของวิธีการ SB คือ การแนะนำตัวแปรเสริมเพื่อแปลง

ปญหาที่ซับซอนเปนปญหายอย และใชกระบวนการทำซ้ำแบบสลับเพื่อหาคำตอบ ซึ่งเปนวิธีการที่มีประสิทธิภาพสูงใน

การแกปญหาเชิงการแปรผันและยังแสดงใหเห็นวาวิธีการนี้ลูเขาสูคำตอบไดอยางรวดเร็วอีกดวย 

ในงานวิจัยนี้ผูวิจัยทำการศึกษาและพัฒนาตัวแบบเชิงการแปรผันสำหรับกำจัดสัญญาณรบกวนแบบการคูณ

ออกจากภาพถายคลื่นเสียงความถี่สูง และนำเสนอวิธีการ SB ซึ่งเปนเทคนิควิธีการเชิงตัวเลขที่มีประสิทธิภาพและ

รวดเร็วในการกำจัดสัญญาณรบกวนออกจากภาพ 

 

2  ความรูพ้ืนฐาน 

 ใ น ข ั ้ น ต อ น ก า ร ส ร  า ง ต ั ว แ บ บ เ ช ิ ง ก า ร แ ป ร ผ ั น  จ ะ พ ิ จ า ร ณ า ภ า พ เ ป  น ฟ  ง ก  ชั น 
𝐼𝐼:Ω ⊂ ℝ2 → 𝑉𝑉 ⊂ [0,∞) โดยที่โดเมนภาพ (Image Domain) Ω มีรูปรางเปนรูปสี่เหลี่ยม โดยกำหนดใหเรนจของ

ภาพ 𝑅𝑅(𝐼𝐼) ⊂ [0,∞) เพื่อระบุวา 𝐼𝐼 เปนภาพที่มีความเขมของภาพ (Image Intensity) อยูในอัตราสวนความเขมของ

ภาพในโทนสีเทา (Grayscale) [6, 7] กลาวคือ ภาพ 𝐼𝐼 เกี่ยวของกับแตละสมาชิก 𝑥𝑥ϵΩ ดวยคาความเขมโทนสีเทา 

𝐼𝐼(𝑥𝑥)ϵ𝑉𝑉 ซึ่งในที่นี้สามารถสมมติไดโดยไมเสียหลักการสำคัญวา Ω = [1,𝑀𝑀] × [1,𝑁𝑁] ⊂ ℝ2 และ 𝑉𝑉 = [0,255] 

เมื่อ 𝑀𝑀 และ 𝑁𝑁 เปนจำนวนเต็มบวก 

ในกระบวนการบันทึกสัญญาณภาพดวยเครื่องมือดิจิทัลมักปรากฏสัญญาณรบกวนแบบการบวก [4] ในตัว

แบบสัญญาณรบกวนแบบการบวก เรามีเปาหมายเพื่อกูคืนหรือซอมแซมภาพตนฉบับ (ไมทราบ)  𝑢𝑢:Ω → V จากภาพ

ที่มีสัญญาณรบกวน (ทราบ) 𝑧𝑧:Ω → V ซึ่งเจือปนดวยสัญญาณรบกวนแบบการบวก ดงันี้ 

      𝑧𝑧 = 𝑢𝑢 + 𝜂𝜂      (1) 

โดยทั่วไป 𝜂𝜂 แทนสัญญาณรบกวนแบบเกาสเซียนซึ่งมีคาเฉลี่ยศูนย   

ในระบบการสรางภาพแบบโคฮีเลนทที่สรางภาพถายคลื่นเสียงความถี่สูง และภาพเลเซอร มักพบสัญญาณ

รบกวนแบบการคูณหรือสัญญาณรบกวนแบบสเปกเคิล ในตัวแบบสัญญาณรบกวนแบบการคูณ [8, 9] ภาพตนฉบับถูก

เจือปนดวยสัญญาณรบกวนแบบการคูณ  𝜂𝜂  ซึ่งถูกกำหนดโดย 

        𝑧𝑧 = 𝑢𝑢𝜂𝜂      (2) 

เราสามารถสมมติไดโดยไมเสียหลักการสําคัญวา 𝑢𝑢, 𝜂𝜂 > 0 ในการกำจัดสัญญาณรบกวนชนิดนี้ออกจากภาพทำได

คอนขางยากกวาการกําจัดสัญญาณรบกวนแบบการบวก ทั้งนี้เนื่องจากการคูณระหวางสัญญาณรบกวนและภาพ

ตนฉบับสงผลใหมีความถี่สูง รวมทั้งการแจกแจงของสัญญาณรบกวนชนิดนี้ไมเปนแบบเกาสเซียน โดยทั่วไป การแจก

แจงของสัญญาณรบกวนชนิดนี้เปนการแจกแจงแบบแกมมา (Gamma) หรือแบบเรยลี (Rayleigh) สำหรับการศึกษา

เก่ียวกับการกำจัดสัญญาณรบกวนแบบการบวกและการคูณที่ไดรับความนิยมมีดังตอไปนี้ 

 Rudin Osher และ Fatemi [4] เปนนักวิจัยกลุมแรกที่นำเสนอตัวแบบในการกำจัดสัญญาณแบบการบวก 

ซึ่งเปนตัวแบบที่มีชื่อเสียงในการใหผลลัพธที่มีความคมชัดดี โดยตัวแบบ ROF กำหนดดังนี้ 

min
𝑢𝑢𝑢𝑢𝑢𝑢

{𝒥𝒥𝑇𝑇𝑇𝑇(𝑢𝑢) = 𝛼𝛼𝐷𝐷𝐴𝐴𝐴𝐴(𝑢𝑢) + 𝑅𝑅𝑇𝑇𝑇𝑇(𝑢𝑢)}    (3) 
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เมื ่อ 𝑅𝑅𝑇𝑇𝑇𝑇(𝑢𝑢) = ∫ |∇𝑢𝑢|Ω  𝑑𝑑Ω แทนเร็กกิวลารไรซเซชันแบบการแปรผันรวม 𝐷𝐷𝐴𝐴𝐴𝐴(𝑢𝑢) = 1
2 ∫ (𝑢𝑢 − 𝑧𝑧)2Ω  𝑑𝑑Ω แทน

เทอมวัดความผิดปกติของขอมูล แตเนื่องจากเร็กกิวลารไรซเซชันแบบการแปรผันรวมทำใหเกิดปรากฏการณขั้นบันได 

คือ แปลงสัญญาณที่เรียบใหเปนขั้นบันได เพื่อแกปญหานี้ You และ Kaveh [10] ไดนำเสนอเร็กกิวลารไรซเซชันแบบ

ลาปลาซ 
𝑅𝑅𝑇𝑇𝑇𝑇(𝑢𝑢) = ∫ |∆𝑢𝑢|Ω  𝑑𝑑Ω  

เมื่อ ∆𝑢𝑢 แทนการดําเนินการลาปลาซ และนำเสนอตัวแบบ TL ดังนี้ 

       min
𝑢𝑢𝑢𝑢𝑢𝑢

{𝒥𝒥𝑇𝑇𝑇𝑇(𝑢𝑢) = 𝛼𝛼𝐷𝐷𝐴𝐴𝐴𝐴(𝑢𝑢) + 𝑅𝑅𝑇𝑇𝑇𝑇(𝑢𝑢)}    (4) 

และนอกจากนี้ยังมีคณะวิจัยของ Scherzer [11] ใช Bounded Hessian เร็กกิวลารไรซเซชัน (BH regularization)  
𝑅𝑅𝐵𝐵𝐵𝐵(𝑢𝑢) = ∫ |∇2𝑢𝑢|Ω  𝑑𝑑Ω  

เมื่อ ∇2𝑢𝑢 = �
𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑦𝑦𝑥𝑥
𝑢𝑢𝑥𝑥𝑦𝑦 𝑢𝑢𝑦𝑦𝑦𝑦� เปนเมทริกซเฮสเซียนของ 𝑢𝑢 และ |∇2𝑢𝑢| = �𝑢𝑢𝑥𝑥𝑥𝑥2 + 𝑢𝑢𝑦𝑦𝑥𝑥2 + 𝑢𝑢𝑥𝑥𝑦𝑦2 + 𝑢𝑢𝑦𝑦𝑦𝑦2  และนำเสนอ

ตัวแบบ BH ดังนี้ 

        min
𝑢𝑢𝑢𝑢𝑢𝑢

{𝒥𝒥𝐵𝐵𝐵𝐵(𝑢𝑢) = 𝛼𝛼𝐷𝐷𝐴𝐴𝐴𝐴(𝑢𝑢) + 𝑅𝑅𝐵𝐵𝐵𝐵(𝑢𝑢)}   (5) 

 ในงานวิจัยที่ศึกษาตัวแบบสัญญาณรบกวนแบบการคูณ โดยปกติจะใชเทอมของเร็กกิวลารไรซเซชันเปนเร็กกิว

ลารไรซเซชันแบบการแปรผันรวม และพัฒนาเทอมวัดความผิดปกติของขอมูล ดังตอไปนี้ 

 งานวิจัยของ Rudin และคณะ [12] ไดนำเสนอตัวแบบสำหรับกำจัดสัญญาณรบกวนแบบการคูณที่เรียกวาตัว

แบบ RLO ดังนี้ 

min
𝑢𝑢𝑢𝑢𝑢𝑢

�𝒥𝒥𝑅𝑅𝑇𝑇𝑅𝑅(𝑢𝑢) = 𝛾𝛾1 �
𝑧𝑧
𝑢𝑢Ω

 𝑑𝑑Ω + 𝛾𝛾2 � �
𝑧𝑧
𝑢𝑢
− 1�

2

Ω
 𝑑𝑑Ω + � |∇𝑢𝑢|

Ω
 𝑑𝑑Ω� 

เมื่อเทอมที่ 1 และเทอมที่ 2 แทนเทอมวัดความผิดปกติของขอมูล และ 𝛾𝛾1 และ 𝛾𝛾2 เปนพารามิเตอรถวงน้ำหนัก 

 จากนั้น Aubert และ Aujol [8] ไดใชสมมติฐานที่วา สัญญาณรบกวนแบบการคูณมีการแจกแจงแบบแกมมาที่

มีคาเฉลี่ยเปน 1 และนำเสนอตัวแบบ AA ดังตอไปนี้ 

min
𝑢𝑢𝑢𝑢𝑢𝑢

�𝒥𝒥𝐴𝐴𝐴𝐴(𝑢𝑢) = 𝛾𝛾� �log𝑢𝑢 +
𝑧𝑧
𝑢𝑢
�

Ω
 𝑑𝑑Ω + � |∇𝑢𝑢|

Ω
 𝑑𝑑Ω� 

เนื่องจากเทอมวัดความผิดปกติของขอมูลของตัวแบบ AA ไมเปนคอนเวกซ สงผลใหการหาคำตอบทำไดยากและชา เพื่อ

แกปญหาของตัวแบบ AA ที่ไมเปนคอนเวกซ Shi และ Osher [13] ไดแปลง  𝑢𝑢� = log𝑢𝑢 และนำเสนอตัวแบบ SO 

ดังตอไปนี้ 

min
𝑢𝑢�𝑢𝑢𝑢𝑢

�𝒥𝒥𝑆𝑆𝑅𝑅(𝑢𝑢�) = 𝛾𝛾� �𝑎𝑎𝑧𝑧𝑒𝑒−𝑢𝑢� +
𝑏𝑏
2
𝑧𝑧2𝑒𝑒−2𝑢𝑢� + (𝑎𝑎 + 𝑏𝑏)𝑢𝑢��

Ω
 𝑑𝑑Ω +� |∇𝑢𝑢�|

Ω
 𝑑𝑑Ω� 

 

เมื่อ 𝑎𝑎, 𝑏𝑏 เปนคาคงที่ที่มากกวาศูนย และ 𝑢𝑢� = 𝑒𝑒𝑢𝑢� สังเกตวาตัวแบบ SO เปนคอนเวกซ แตในการหาคำตอบยังคงชา 

เพื่อแกปญหาในการคำนวณชา คณะวิจัยของ Huang [14] ไดนำเสนอการแปลงเทอม log𝑢𝑢 + 𝑧𝑧
𝑢𝑢
 ในตัวแบบ AA เปน 

𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢 ภายใตการแปลง 𝑢𝑢 → 𝑒𝑒𝑢𝑢 และนำเสนอตัวแบบ HNW ดังนี้ 

min
𝑢𝑢,𝑤𝑤𝑢𝑢𝑢𝑢

�𝒥𝒥𝐵𝐵𝐴𝐴𝐻𝐻(𝑢𝑢) = � (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)
Ω

 𝑑𝑑Ω + 𝛾𝛾1 � |u − w|2
Ω

+ 𝛾𝛾2 � |∇w|
Ω

 𝑑𝑑Ω� 

จากนั้น Jin และ Yang [9] ไดปรับปรุงตัวแบบ AA และ ตัวแบบ HNW และนำเสนอตัวแบบที่มีชื่อเสียงในการกำจัด

สัญญาณรบกวนแบบการคูณ ที่เรียกวาตัวแบบ JY ดังตอไปนี้ 

min
𝑢𝑢𝑢𝑢𝑢𝑢

�𝒥𝒥𝐽𝐽𝐽𝐽(𝑢𝑢) = 𝛾𝛾 ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)Ω  𝑑𝑑Ω + ∫ |∇𝑢𝑢|Ω  𝑑𝑑Ω�   (6) 
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ซึ่งผลงานวิจัยพบวาตัวแบบ JY ใหภาพผลลัพธที่ดีกวาและใชเวลาในการหาคำตอบนอยกวาตัวแบบ AA และตัวแบบ 

HNW  

 จากงานวิจัยที่ผานมาพบวา สำหรับตัวแบบสัญญาณรบกวนแบบการบวกสวนใหญพัฒนาเทอมเร็กกิวลารไรซ

เซชันเพื่อแกปญหาปรากฏการณขั้นบันได และสำหรับตัวแบบสัญญาณรบกวนแบบการคูณมุงเนนในการพัฒนาเทอม

การวัดความผิดปกติของขอมูลเพื่อพัฒนาตัวแบบการสรางภาพ และทั้งในการพัฒนาตัวแบบสัญญาณรบกวนแบบการ

บวกและการคูณยังคงตองพัฒนาวิธีการตัวเลขแบบเร็วสำหรับกำจัดสัญญาณรบกวน 

ในงานวิจัยนี้ผูวิจัยมุงเนนพัฒนาตัวแบบกำจัดสัญญาณรบกวนออกจากภาพถายคลื่นเสียงความถ่ีสูงซึ่งถูกเจือ

ปนดวยสัญญาณรบกวนแบบการคูณ โดยใชขอดีของตัวแบบ JY และเพื่อแกปญหาปรากฏการณขั้นบันได ผูวิจัยได

ปรับปรุงและเปรียบเทียบตัวแบบดังกลาวโดยใช 𝑅𝑅𝑇𝑇𝑇𝑇(𝑢𝑢) และ 𝑅𝑅𝐵𝐵𝐵𝐵(𝑢𝑢) พรอมทั้งพัฒนาวิธีการเชิงตัวเลขแบบเร็ว

สำหรับกำจัดสัญญาณรบกวนออกจากภาพ โดยในการหาคำตอบของปญหาเชิงการแปรผันผูวิจัยไดนำเสนอวิธีการ SB  
 

2.1 ตัวแบบการกำจัดสัญญาณรบกวนท่ีนำเสนอ 

อยางที่กลาวมาตัวแบบ JY ใน (6) เปนตัวแบบสำหรับกำจัดสัญญาณรบกวนออกจากภาพที่มีชื่อเสียงในการ

ใหผลลัพธที่มีความคมชัด ผูวิจัยจึงไดพัฒนาตัวแบบซึ่งใชขอดีในการใหผลลัพธที่ดีจากตัวแบบดังกลาว สังเกตวาเทอม

เร็กกิวลารไรซเซชันของตัวแบบ JY ใน (6) เปนเร็กกิวลารไรซเซชันแบบการแปรผันรวม 𝑅𝑅𝑇𝑇𝑇𝑇(𝑢𝑢)  แมวาประสิทธิภาพ

ในการรักษาขอบของภาพในการกำจัดสัญญาณรบกวนของเร็กกิวลารไรซเซชันแบบการแปรผันรวมสามารถทำไดอยางดี 

แตมักพบการแปลงสัญญาณใหมีความเรียบเปนข้ันบันไดโดยไมจำเปน ผูวิจัยจึงไดปรับปรุงตัวแบบสัญญาณรบกวนออก

จากภาพโดยใชขอดีของอนุพันธอันดับสูงของลาปลาซจาก [10] และอนุพันธอันดับสูงของเมทริกซเฮสเซียนจาก [11] 

โดยตัวแบบเชิงการแปรผันสำหรับกำจัดสัญญาณรบกวนที่ปรับปรุง กำหนดโดย 

min
𝑢𝑢

{𝒥𝒥𝐽𝐽𝐽𝐽𝑇𝑇𝑇𝑇 = 𝛼𝛼𝐷𝐷𝑀𝑀𝐴𝐴(𝑢𝑢) + 𝑅𝑅𝑇𝑇𝑇𝑇(𝑢𝑢)}    (7) 

และ 

            min
𝑢𝑢

{𝒥𝒥𝐽𝐽𝐽𝐽𝐵𝐵𝐵𝐵 = 𝛼𝛼𝐷𝐷𝑀𝑀𝐴𝐴(𝑢𝑢) + 𝑅𝑅𝐵𝐵𝐵𝐵(𝑢𝑢)}       (8) 

เมื่อ 𝐷𝐷𝑀𝑀𝐴𝐴(𝑢𝑢) = ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)Ω  𝑑𝑑Ω ในที่นี้เราเรียกตัวแบบใน (7) และ (8) วาตัวแบบ JYTL และตัวแบบ JYBH 

ตามลำดับ 
 
2.2 วิธีการผลตางอันตะ  

ในการแกปญหาคาขอบโดยวิธีการผลตางอันตะ (Finite Difference Method) เราเริ่มจากการดิสครีตไทซ

โดเมนภาพ Ω เปนเมชแบบคงรูปในแตละทิศทาง ซึ่งจะไดโดเมนภาพแบบดิสครีต  

Ωℎ = �(𝑥𝑥,𝑦𝑦) ∈ Ω|(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�, 𝑥𝑥𝑖𝑖 = 𝑖𝑖,𝑦𝑦𝑗𝑗 = 𝑗𝑗, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁�  
เพื่อความสะดวก สำหรับแตละจุดกริด �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� ∈ Ωℎ เราเขียนแทนดวย (𝑖𝑖, 𝑗𝑗) โดยที่พิกัด 𝑥𝑥 และ 𝑦𝑦  จะวางแนวตาม

คอลัมนและแถว ตามลำดับ สำหรับการประมาณแบบผลตางอันตะของอนุพันธยอยอันดับหนึ่งกำหนดโดย 

𝜕𝜕𝑥𝑥+(𝑢𝑢)𝑖𝑖,𝑗𝑗 = �
(𝑢𝑢)𝑖𝑖,𝑗𝑗+1 − (𝑢𝑢)𝑖𝑖,𝑗𝑗, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

(𝑢𝑢)𝑖𝑖,1 − (𝑢𝑢)𝑖𝑖,𝑗𝑗, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 𝑗𝑗 = 𝑁𝑁  
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𝜕𝜕𝑦𝑦+(𝑢𝑢)𝑖𝑖,𝑗𝑗 = �
(𝑢𝑢)𝑖𝑖+1,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

(𝑢𝑢)𝑖𝑖,1 − (𝑢𝑢)𝑖𝑖,𝑗𝑗, 𝑖𝑖 = 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁  

𝜕𝜕𝑥𝑥−(𝑢𝑢)𝑖𝑖,𝑗𝑗 = �
(𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗−1, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁
(𝑢𝑢)𝑖𝑖,1 − (𝑢𝑢)𝑖𝑖,𝐴𝐴, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 𝑗𝑗 = 1  

𝜕𝜕𝑦𝑦−(𝑢𝑢)𝑖𝑖,𝑗𝑗 = �
(𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗−1, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁
(𝑢𝑢)𝑖𝑖,1 − (𝑢𝑢)𝑀𝑀,𝑗𝑗, 𝑖𝑖 = 1,1 ≤ 𝑗𝑗 ≤ 𝑁𝑁  

การประมาณคาแบบผลตางอันตะของอนุพันธยอยอันดับสองของ 𝑢𝑢 ที่แตละจุดกริด (𝑖𝑖, 𝑗𝑗) สามารถกำหนดโดย 

𝜕𝜕𝑥𝑥+𝜕𝜕𝑥𝑥−(𝑢𝑢)𝑖𝑖,𝑗𝑗 = 𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+(𝑢𝑢)𝑖𝑖,𝑗𝑗 = �
(𝑢𝑢)𝑖𝑖,𝐴𝐴 − 2(𝑢𝑢)𝑖𝑖,𝑗𝑗 + (𝑢𝑢)𝑖𝑖,𝑗𝑗+1, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 𝑗𝑗 = 1

(𝑢𝑢)𝑖𝑖,𝑗𝑗−1 − 2(𝑢𝑢)𝑖𝑖,𝑗𝑗 + (𝑢𝑢)𝑖𝑖,𝑗𝑗+1, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 1 < 𝑗𝑗 < 𝑁𝑁
(𝑢𝑢)𝑖𝑖,𝑗𝑗−1 − 2(𝑢𝑢)𝑖𝑖,𝑗𝑗 + (𝑢𝑢)𝑖𝑖,1, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 𝑗𝑗 = 𝑁𝑁

 

    𝜕𝜕𝑦𝑦+𝜕𝜕𝑦𝑦−(𝑢𝑢)𝑖𝑖,𝑗𝑗 = 𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+(𝑢𝑢)𝑖𝑖,𝑗𝑗 = �
(𝑢𝑢)𝑀𝑀,𝑗𝑗 − 2(𝑢𝑢)𝑖𝑖,𝑗𝑗 + (𝑢𝑢)𝑖𝑖+1,𝑗𝑗, 𝑖𝑖 = 1,1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

(𝑢𝑢)𝑖𝑖−1,𝑗𝑗 − 2(𝑢𝑢)𝑖𝑖,𝑗𝑗 + (𝑢𝑢)𝑖𝑖,+1𝑗𝑗, 1 < 𝑖𝑖 < 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁
(𝑢𝑢)𝑖𝑖−1,𝑗𝑗 − 2(𝑢𝑢)𝑖𝑖,𝑗𝑗 + (𝑢𝑢)1,𝑗𝑗, 𝑖𝑖 = 𝑀𝑀, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

 

    𝜕𝜕𝑥𝑥+𝜕𝜕𝑦𝑦−(𝑢𝑢)𝑖𝑖,𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧ (𝑢𝑢)𝑖𝑖,𝑗𝑗+1 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑀𝑀,𝑗𝑗+1 + (𝑢𝑢)𝑀𝑀,𝑗𝑗, 𝑖𝑖 = 1,1 ≤ 𝑗𝑗 < 𝑁𝑁

(𝑢𝑢)𝑖𝑖,1 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑀𝑀,1 + (𝑢𝑢)𝑀𝑀,𝑗𝑗, 𝑖𝑖 = 1, 𝑗𝑗 = 𝑁𝑁
(𝑢𝑢)𝑖𝑖,𝑗𝑗+1 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑖𝑖−1,𝑗𝑗+1 + (𝑢𝑢)𝑖𝑖−1,𝑗𝑗,

(𝑢𝑢)𝑖𝑖,1 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑖𝑖−1,1 + (𝑢𝑢)𝑖𝑖−1,𝑗𝑗,
1 < 𝑖𝑖 ≤ 𝑀𝑀, 1 ≤ 𝑗𝑗 < 𝑁𝑁

1 < 𝑖𝑖 ≤ 𝑀𝑀, 𝑗𝑗 = 𝑁𝑁

 

    𝜕𝜕𝑦𝑦+𝜕𝜕𝑥𝑥−(𝑢𝑢)𝑖𝑖,𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧ (𝑢𝑢)𝑖𝑖+1,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑖𝑖+1,𝐴𝐴 + (𝑢𝑢)𝑖𝑖,𝐴𝐴, 1 ≤ 𝑗𝑗 < 𝑀𝑀, 𝑗𝑗 = 1

(𝑢𝑢)1,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)1,𝐴𝐴 + (𝑢𝑢)𝑖𝑖,𝐴𝐴, 𝑖𝑖 = 𝑀𝑀, 𝑗𝑗 = 1
(𝑢𝑢)𝑖𝑖+1,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑖𝑖+1,𝑗𝑗−1 + (𝑢𝑢)𝑖𝑖,𝑗𝑗−1,

(𝑢𝑢)1,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)1,𝑗𝑗−1 + (𝑢𝑢)𝑖𝑖,𝑗𝑗−1,
1 ≤ 𝑖𝑖 < 𝑀𝑀, 1 < 𝑗𝑗 ≤ 𝑁𝑁
𝑖𝑖 = 𝑀𝑀, 1 < 𝑗𝑗 ≤ 𝑁𝑁

 

 

2.3 วิธีการสปริทเบรกแมน (วิธีการ SB) 

 ในหัวขอนี้จะกลาวถึงวิธีการเชิงตัวเลขที่มีประสิทธิภาพซึ่งในที่นี้คือวิธีการ SB สำหรับแกปญหาตัวแบบเชิง

การแปรผันทั้ง 3 ตัวแบบ ไดแก ตัวแบบ JY ตัวแบบ JYTL และตัวแบบ JYBH  

2.3.1 วิธีการ SB สำหรับตัวแบบ JY 

 ในการแกปญหาเชิงการแปรผันสำหรับตัวแบบ JY ใน (6) ดวยวิธีการ SB จะเริ่มตนจากการแนะนำเวกเตอร

เสริม 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2)𝑇𝑇 พารามิเตอรการทำซ้ำเบรกแมน (Bregman iterative parameter) 𝑏𝑏 = (𝑏𝑏1,𝑏𝑏2)𝑇𝑇 และ

พารามิเตอรตัวโทษ (penalty parameter) 𝜃𝜃 > 0 เพื่อแปลงเปนปญหาเชิงการแปรผันซึ่งกำหนดโดย  

     min
𝑢𝑢
�𝒥𝒥𝐽𝐽𝐽𝐽(𝑤𝑤;𝑏𝑏) = ∫ |𝑤𝑤|𝑑𝑑ΩΩ + 𝜃𝜃

2 ∫ (𝑤𝑤 − ∇𝑢𝑢 − 𝑏𝑏)2𝑑𝑑ΩΩ + 𝛼𝛼 ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)𝑑𝑑ΩΩ �              (9) 

สังเกตวาเปนการยากที่จะแกไขตัวแปร 𝑢𝑢 และ 𝑤𝑤 ไปพรอมกัน จึงแบงปญหาออกเปนปญหาการหาคาต่ำสุดสองปญหา

ยอยดังนี้ 

𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] = argmin
𝑢𝑢

�𝜃𝜃
2 ∫ �𝑤𝑤[𝑜𝑜𝑜𝑜𝑜𝑜] − ∇𝑢𝑢 − 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜]�

2
𝑑𝑑ΩΩ + 𝛼𝛼 ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)𝑑𝑑ΩΩ �      (10) 

𝑤𝑤[𝑛𝑛𝑛𝑛𝑤𝑤] = argmin
𝑤𝑤

�∫ |𝑤𝑤|𝑑𝑑ΩΩ + 𝜃𝜃
2 ∫ �𝑤𝑤 − ∇𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] − 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜]�

2
𝑑𝑑ΩΩ �        (11) 

เพื่อแกปญหาดังกลาวเราใชเทคนิคการทำซำ้แบบสลบั จากนั้นทำการปรับปรุงพารามิเตอรเบรกแมน 𝑏𝑏  

𝑏𝑏[𝑛𝑛𝑛𝑛𝑤𝑤] = 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜] + ∇𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] −𝑤𝑤[𝑛𝑛𝑛𝑛𝑤𝑤]              (12) 

ในกระบวนการนี้ เราจะดำเนินการทำซ้ำแบบสลับจนกระทั่งลำดับของ 𝑢𝑢 สอดคลองกับเกณฑการหยุด 

�𝑢𝑢[𝑛𝑛𝑛𝑛𝑛𝑛]−𝑢𝑢[𝑜𝑜𝑜𝑜𝑜𝑜]�𝑜𝑜2
2

�𝑢𝑢[𝑛𝑛𝑛𝑛𝑛𝑛]�𝑜𝑜2
2 < 𝜀𝜀1𝑆𝑆𝐵𝐵 หรือ  𝑚𝑚 ≥ 𝜀𝜀2𝑆𝑆𝐵𝐵    (13) 
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เมื่อ 𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] และ 𝑢𝑢[𝑜𝑜𝑜𝑜𝑜𝑜]  แทนเวกเตอรของ 𝑢𝑢 ที่ไดจากการทำซ้ำรอบปจจุบันและการทำซ้ำรอบกอนหนา ตามลำดับ 

𝜀𝜀1𝑆𝑆𝐵𝐵 > 0 แทนคาความแมนยำ และ 𝜀𝜀2𝑆𝑆𝐵𝐵 แทนจำนวนรอบการทำซ้ำสูงสุดของวิธีการ SB โดย 𝑚𝑚 แทนรอบการทำซ้ำ

ของวิธีการ SB ในงานวิจัยนี้กำหนด 𝜀𝜀1𝑆𝑆𝐵𝐵 = 10−4 และ 𝜀𝜀2𝑆𝑆𝐵𝐵 = 200 สองปญหายอยขางตนสามารถแกไดดังนี้  

ปญหายอย 𝑢𝑢 เมื่อตรึงตัวแปร (𝑤𝑤;𝑏𝑏) ใน (10) แลวใชแคลคูลัสของการแปรผันเพื่อแกปญหาคาต่ำที่สุดจะไดสมการ

ออยเลอร-ลากรานจดังนี้ 

     −𝜃𝜃∆𝑢𝑢 = �̅�𝐺(𝑢𝑢)  
                

(14) 

เมื่อ �̅�𝐺(𝑢𝑢) = −𝛼𝛼(1 − 𝑧𝑧𝑒𝑒−𝑢𝑢) − 𝜃𝜃𝑑𝑑𝑖𝑖𝜃𝜃(𝑤𝑤 − 𝑏𝑏) เพื่อแกสมการเชิงอนุพันธยอยไมเปนเชิงเสนใน (14) ถูกทำใหเปน

เชิงเสนโดยวิธีการทำซ้ำแบบจุดตรึง ซึ่งกำหนดโดย  

𝛾𝛾𝑢𝑢[𝜈𝜈+1] − 𝜃𝜃∆𝑢𝑢[𝜈𝜈+1] = 𝐺𝐺�𝑢𝑢[𝜈𝜈]� 

เมื ่อ 𝐺𝐺�𝑢𝑢[𝜈𝜈]� = �̅�𝐺�𝑢𝑢[𝜈𝜈]� + 𝛾𝛾𝑢𝑢[𝜈𝜈] และ 𝛾𝛾 > 0 แทนพารามิเตอรจุดตรึงที่ช วยในการคำนวณใหมีความเสถียร 

จากนั้นทำการดิสครีตไทซโดยวิธีการผลตางอันตะ จะไดวา 

𝛾𝛾�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 − 𝜃𝜃 �𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗� = 𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗  (15) 

โ ด ย ที่  𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗 = −𝛼𝛼 �1− (𝑧𝑧)𝑖𝑖,𝑗𝑗𝑒𝑒
−�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗� − 𝜃𝜃 �𝜕𝜕𝑥𝑥−�(𝑤𝑤1)𝑖𝑖,𝑗𝑗 − (𝑏𝑏1)𝑖𝑖,𝑗𝑗� + 𝜕𝜕𝑦𝑦−�(𝑤𝑤2)𝑖𝑖,𝑗𝑗 − (𝑏𝑏2)𝑖𝑖,𝑗𝑗�� +

𝛾𝛾�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗 สำหรับการทำซ้ำภายนอก เร่ิมตนจากการกำหนดคำตอบเร่ิมตน  𝑢𝑢[0] (ในกรณีเฉพาะ 𝑢𝑢[0] = 𝑧𝑧) จากนั้น

ใชการแปลงฟูเรียรแบบดิสครีต 𝐹𝐹 กับ (15) จะได 

   𝐹𝐹 �𝛾𝛾�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 − 𝜃𝜃 �𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗�� = 𝐹𝐹 �𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�     

หรือ       𝜁𝜁𝐹𝐹 ��𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗� = 𝐹𝐹 �𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�                                 
 

เม ื ่ อ  𝜁𝜁 = 𝛾𝛾 − 2𝜃𝜃 �cos �2𝜋𝜋𝜋𝜋
𝐴𝐴
� + cos �2𝜋𝜋𝜋𝜋

𝑀𝑀
� − 2�, 𝑖𝑖 ∈ [1,𝑀𝑀]

 
และ  𝑗𝑗 ∈ [1,𝑁𝑁]  แทนด ั ชน ี ใน โด เมน เวลา           

𝑟𝑟 ∈ [0,𝑀𝑀)  และ 𝑠𝑠 ∈ [0,𝑁𝑁) แทนดัชนีในโดเมนความถี่ ในขั้นตอนสุดทายเราไดรูปแบบปดของคำตอบของ 𝑢𝑢[𝜈𝜈+1] 

ที่จุดกริด (𝑖𝑖, 𝑗𝑗) 

   �𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 = 𝑅𝑅𝑒𝑒�𝐹𝐹−1 �
𝐹𝐹�𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�

𝜁𝜁
��   

    
 

ในที่นี้ 𝐹𝐹−1
 
แทนการแปลงฟูเรียรผกผันแบบดิสครีต และ 𝑅𝑅𝑒𝑒 เปนสวนจริงของจำนวนเชิงซอน 

ปญหายอย 𝑤𝑤 เมื่อตรึงตัวแปร (𝑢𝑢; 𝑏𝑏) ใน (11) แลวใชแคลคูลัสของการแปรผันจะไดสมการออยเลอร-ลากรานจที่

เก่ียวของกับตัวแปร 𝑤𝑤 ดังนี้  

        𝑤𝑤
|𝑤𝑤| + 𝜃𝜃(𝑤𝑤 − ∇𝑢𝑢 − 𝑏𝑏) = 0

            
 
 

ซึ่งคำตอบสามารถใชสูตรรูปแบบปด [15] 

(𝑤𝑤)𝑖𝑖,𝑗𝑗 = max ��∇(𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑏𝑏)𝑖𝑖,𝑗𝑗� −
1
𝜃𝜃

, 0� ∇(𝑢𝑢)𝑖𝑖,𝑗𝑗−(𝑏𝑏)𝑖𝑖,𝑗𝑗
�∇(𝑢𝑢)𝑖𝑖,𝑗𝑗−(𝑏𝑏)𝑖𝑖,𝑗𝑗�

              

และข้ันตอนสุดทายคือการปรับปรุงพารามิเตอรการทำซ้ำเบรกแมน โดยกำหนดให 𝑏𝑏 ← 𝑏𝑏 + ∇𝑢𝑢 − 𝑤𝑤   
 

2.3.2 วิธีการ SB สำหรับตัวแบบ JYTL 

เพื่อที่จะแกปญหาเชิงการแปรผนัสำหรับตัวแบบ JYTL ใน (7) ดวยวิธกีาร SB เราเร่ิมตนจากการแนะนำ

เวกเตอรเสริม 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2)𝑇𝑇  พารามิเตอรการทำซ้ำเบรกแมน (Bregman iterative parameter) 𝑏𝑏 = (𝑏𝑏1,𝑏𝑏2)𝑇𝑇 

และพารามิเตอรตัวโทษ (penalty parameter) 𝜃𝜃 > 0 เพื่อแปลงเปนปญหาเชิงการแปรผันซึ่งกำหนดโดย  
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min
𝑢𝑢
�𝒥𝒥𝐽𝐽𝐽𝐽𝑇𝑇𝑇𝑇(𝑤𝑤; 𝑏𝑏) = ∫ |𝑤𝑤|𝑑𝑑ΩΩ + 𝜃𝜃

2 ∫ (𝑤𝑤 − ∆𝑢𝑢 − 𝑏𝑏)2𝑑𝑑ΩΩ + 𝛼𝛼 ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)𝑑𝑑ΩΩ �    (16) 

ในทำนองเดียวกัน การแกปญหาสามารถทำไดโดยใชเทคนิคการทำซ้ำแบบสลบั โดยปญหาการหาคาต่ำสุดสองปญหา

ยอยสำหรับ 𝑢𝑢 และ 𝑤𝑤  และการปรับปรุงพารามิเตอร 𝑏𝑏 กำหนดโดย 

𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] = argmin
𝑢𝑢

�𝜃𝜃
2 ∫ �𝑤𝑤[𝑜𝑜𝑜𝑜𝑜𝑜] − ∆𝑢𝑢 − 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜]�

2
𝑑𝑑ΩΩ + 𝛼𝛼 ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)𝑑𝑑ΩΩ �      (17)  

𝑤𝑤[𝑛𝑛𝑛𝑛𝑤𝑤] = argmin
𝑤𝑤

�∫ |𝑤𝑤|𝑑𝑑ΩΩ + 𝜃𝜃
2 ∫ �𝑤𝑤 − ∆𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] − 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜]�

2
𝑑𝑑ΩΩ �        (18) 

𝑏𝑏[𝑛𝑛𝑛𝑛𝑤𝑤] = 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜] + ∆𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] −𝑤𝑤[𝑛𝑛𝑛𝑛𝑤𝑤]            (19) 

โดยเราจะดำเนินการทำซ้ำจนกระทั่งสอดคลองเกณฑการหยุด (13) โดยปญหายอยทั้งสองสามารถแกไดดังนี้ 

ปญหายอย 𝑢𝑢 เมื่อตรึงตัวแปร (𝑤𝑤; 𝑏𝑏) ใน (17) แลวใชแคลคูลัสของการแปรผันจะไดสมการออยเลอร-ลากรานจดังนี้ 

 −𝜃𝜃∆(∆𝑢𝑢) = �̅�𝐺(𝑢𝑢)   
                

(20) 

เมื่อ �̅�𝐺(𝑢𝑢) = −𝛼𝛼(1 − 𝑧𝑧𝑒𝑒−𝑢𝑢) − 𝜃𝜃∆(𝑤𝑤 − 𝑏𝑏) เพื่อแกปญหาสมการเชิงอนุพันธยอยไมเปนเชิงเสนใน (20) เราใช

วิธีการทำซ้ำแบบจุดตรึง กำหนดโดย 

𝛾𝛾𝑢𝑢[𝜈𝜈+1] − 𝜃𝜃∆�∆𝑢𝑢[𝜈𝜈+1]� = 𝐺𝐺�𝑢𝑢[𝜈𝜈]� 

เมื ่อ 𝐺𝐺�𝑢𝑢[𝜈𝜈]� = �̅�𝐺�𝑢𝑢[𝜈𝜈]� + 𝛾𝛾𝑢𝑢[𝜈𝜈] และ 𝛾𝛾 > 0  แทนพารามิเตอรจุดตรึง จากนั้นทำการดิสครีตไทซโดยวิธีการ

ผลตางอันตะจะไดวา 

𝛾𝛾�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 − 𝜃𝜃 �
𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗

+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗
� = 𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗  

(21) 

โดยที่ 𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗 = −𝛼𝛼 �1− (𝑧𝑧)𝑖𝑖,𝑗𝑗𝑒𝑒
−�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗� − 𝜃𝜃 �𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�(𝑤𝑤)𝑖𝑖,𝑗𝑗 − (𝑏𝑏)𝑖𝑖,𝑗𝑗� + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�(𝑤𝑤)𝑖𝑖,𝑗𝑗 − (𝑏𝑏)𝑖𝑖,𝑗𝑗�� +

𝛾𝛾�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗 สำหรับการทำซ้ำภายนอก เริ่มตนจากการกำหนดคำตอบเริ่มตน 𝑢𝑢[0]  (ในกรณีเฉพาะ 𝑢𝑢[0] = 𝑧𝑧) จากนั้น

ใชการแปลงฟูเรียรแบบดิสครีต 𝐹𝐹 กับ (21) จะได 

      𝐹𝐹 �𝛾𝛾�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 − 𝜃𝜃 �
𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗

+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗
�� = 𝐹𝐹 �𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�   

หรือ                        𝜁𝜁𝐹𝐹 ��𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗� = 𝐹𝐹 �𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�                
 

เม ื ่ อ  𝜁𝜁 = 𝛾𝛾 + 4𝜃𝜃 �cos �2𝜋𝜋𝜋𝜋
𝐴𝐴
� + cos �2𝜋𝜋𝜋𝜋

𝑀𝑀
� − 2�

2
, 𝑖𝑖 ∈ [1,𝑀𝑀]

 
และ  𝑗𝑗 ∈ [1,𝑁𝑁]  แทนด ัชน ี ใน โด เมนเวลา         

𝑟𝑟 ∈ [0,𝑀𝑀)  และ 𝑠𝑠 ∈ [0,𝑁𝑁) แทนดัชนีในโดเมนความถ่ี ดังนั้นผลเฉลยของ (20) ถูกกำหนดโดย 

�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 = 𝑅𝑅𝑒𝑒�𝐹𝐹−1 �
𝐹𝐹�𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�

𝜁𝜁
��      

   
 

ในที่นี้ 𝐹𝐹−1
 
แทนการแปลงฟูเรียรผกผันแบบดิสครีต และ 𝑅𝑅𝑒𝑒 เปนสวนจริงของจำนวนเชิงซอน 

ปญหายอย 𝑤𝑤 สำหรับการคำนวณเวกเตอร 𝑤𝑤 สามารถคำนวณไดจาก [15] 

        𝑤𝑤
|𝑤𝑤| + 𝜃𝜃(𝑤𝑤 − ∆𝑢𝑢 − 𝑏𝑏) = 0

             
ซึ่งมีผลเฉลยแมนตรง (exact solution) คือ 

(𝑤𝑤)𝑖𝑖,𝑗𝑗 = max ��∆(𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑏𝑏)𝑖𝑖,𝑗𝑗� −
1
𝜃𝜃

, 0� 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠�∆(𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑏𝑏)𝑖𝑖,𝑗𝑗�            

และข้ันตอนสุดทายคือการปรับปรุงพารามิเตอรการทำซ้ำเบรกแมน โดยกำหนดให b b u w← +∆ −    
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2.3.3 วิธีการ SB สำหรับตัวแบบ JYBH 

เพื่อแกปญหาเชิงการแปรผันสำหรับตัวแบบ JYBH ใน (8) เราจะแปลงปญหาดงักลาวเปนปญหาเชิงการแปร

ผันที่มีหลายตัวแปรซึ่งกำหนดโดย  

min
𝑢𝑢∈𝑢𝑢

�𝒥𝒥𝐽𝐽𝐽𝐽𝐵𝐵𝐵𝐵(𝑤𝑤; 𝑏𝑏) = ∫ |𝑤𝑤|𝑑𝑑ΩΩ + 𝜃𝜃
2 ∫ (𝑤𝑤 − ∇2𝑢𝑢 − 𝑏𝑏)2𝑑𝑑ΩΩ + 𝛼𝛼 ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)𝑑𝑑ΩΩ �    (22) 

ข้ันตอนถัดไป จะทำการแกปญหายอยสองปญหาสำหรับ 𝑢𝑢 และ 𝑤𝑤 และปรับปรุงพารามิเตอร 𝑏𝑏 ซึ่งกำหนดโดย 

𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] = argmin
𝑢𝑢

�𝜃𝜃
2 ∫ �𝑤𝑤[𝑜𝑜𝑜𝑜𝑜𝑜] − ∇2𝑢𝑢 − 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜]�

2
𝑑𝑑ΩΩ + 𝛼𝛼 ∫ (𝑢𝑢 + 𝑧𝑧𝑒𝑒−𝑢𝑢)𝑑𝑑ΩΩ �      (23) 

𝑤𝑤[𝑛𝑛𝑛𝑛𝑤𝑤] = argmin
𝑤𝑤

�∫ |𝑤𝑤|𝑑𝑑ΩΩ + 𝜃𝜃
2 ∫ �𝑤𝑤 − ∇2𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] − 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜]�

2
𝑑𝑑ΩΩ �       (24) 

𝑏𝑏[𝑛𝑛𝑛𝑛𝑤𝑤] = 𝑏𝑏[𝑜𝑜𝑜𝑜𝑜𝑜] + ∇2𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤] −𝑤𝑤[𝑛𝑛𝑛𝑛𝑤𝑤]              (25) 

ในกระบวนการนี้ เราจะดำเนินการทำซ้ำแบบสลับจนกระทั่งลำดับของ 𝑢𝑢 สอดคลองกับเกณฑการหยุด (13) 

ปญหายอย 𝑢𝑢 เมื่อตรึงตัวแปร (𝑤𝑤;𝑏𝑏) ใน (23) แลวใชแคลคูลัสของการแปรผันเพื่อแกปญหาคาต่ำที่สุดจะไดสมการ

ออยเลอร-ลากรานจที่เก่ียวของดังนี้ 

−𝜃𝜃𝑑𝑑𝑖𝑖𝜃𝜃2(∇2𝑢𝑢) = �̅�𝐺(𝑢𝑢)
                

(26) 

เมื่อ �̅�𝐺(𝑢𝑢) = −𝛼𝛼(1 − 𝑧𝑧𝑒𝑒−𝑢𝑢) − 𝜃𝜃𝑑𝑑𝑖𝑖𝜃𝜃2(𝑤𝑤 − 𝑏𝑏) ใชวิธีการทำซ้ำแบบจุดตรึงเพื่อแกสมการเชิงอนุพันธยอยไมเปน

เชิงเสนใน (26)  โดยที่ 𝜃𝜃 แทนดัชนีสำหรับข้ันตอนการทำซ้ำภายนอกที่กำหนดโดย 

𝛾𝛾𝑢𝑢[𝜈𝜈+1] − 𝜃𝜃𝑑𝑑𝑖𝑖𝜃𝜃2�∇2𝑢𝑢[𝜈𝜈+1]� = 𝐺𝐺�𝑢𝑢[𝜈𝜈]� 

เมื ่อ 𝐺𝐺�𝑢𝑢[𝜈𝜈]� = �̅�𝐺�𝑢𝑢[𝜈𝜈]� + 𝛾𝛾𝑢𝑢[𝜈𝜈] และ 𝛾𝛾 > 0  แทนพารามิเตอรจุดตรึง จากนั้นทำการดิสครีตไทซโดยวิธีการ

ผลตางอันตะจะไดวา 

𝛾𝛾�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 − 𝜃𝜃 �
𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑥𝑥+𝜕𝜕𝑦𝑦−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗

+𝜕𝜕𝑥𝑥−𝜕𝜕𝑦𝑦+𝜕𝜕𝑥𝑥−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗
� = 𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗  

(27) 

โดยที่    𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗 = −𝛼𝛼 �1− (𝑧𝑧)𝑖𝑖,𝑗𝑗𝑒𝑒
−�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗� − 𝜃𝜃 �𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�(𝑤𝑤1)𝑖𝑖,𝑗𝑗 − (𝑏𝑏1)𝑖𝑖,𝑗𝑗� + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑥𝑥+�(𝑤𝑤2)𝑖𝑖,𝑗𝑗 −

(𝑏𝑏2)𝑖𝑖,𝑗𝑗� + 𝜕𝜕𝑥𝑥−𝜕𝜕𝑦𝑦+�(𝑤𝑤3)𝑖𝑖,𝑗𝑗 − (𝑏𝑏3)𝑖𝑖,𝑗𝑗� + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑥𝑥+�(𝑤𝑤4)𝑖𝑖,𝑗𝑗 − (𝑏𝑏4)𝑖𝑖,𝑗𝑗�� + 𝛾𝛾�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗  

จากนั้นใชการแปลงฟูเรียรแบบดิสครีต 𝐹𝐹 กับ (27) จะได 

      𝐹𝐹 �𝛾𝛾�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜃𝜃 �
𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗

+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+𝜕𝜕𝑥𝑥−𝜕𝜕𝑥𝑥+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 + 𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+𝜕𝜕𝑦𝑦−𝜕𝜕𝑦𝑦+�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗
�� = 𝐹𝐹 �𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�     

หรือ                       𝜁𝜁𝐹𝐹 ��𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗� = 𝐹𝐹 �𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�              
    

เม ื ่ อ  𝜁𝜁 = 𝛾𝛾 + 4𝜃𝜃 �cos �2𝜋𝜋𝜋𝜋
𝐴𝐴
� + cos �2𝜋𝜋𝜋𝜋

𝑀𝑀
� − 2�

2
, 𝑖𝑖 ∈ [1,𝑀𝑀]

 
และ  𝑗𝑗 ∈ [1,𝑁𝑁]  แทนด ั ชน ี ใน โด เมน เวลา           

𝑟𝑟 ∈ [0,𝑀𝑀)  และ 𝑠𝑠 ∈ [0,𝑁𝑁) แทนดัชนีในโดเมนความถ่ี ดังนั้นผลเฉลยของ (26) ถูกกำหนดโดย 

�𝑢𝑢[𝜈𝜈+1]�𝑖𝑖,𝑗𝑗 = 𝑅𝑅𝑒𝑒�𝐹𝐹−1 �
𝐹𝐹�𝐺𝐺�𝑢𝑢[𝜈𝜈]�𝑖𝑖,𝑗𝑗�

𝜁𝜁
��      

   
 

ปญหายอย 𝑤𝑤 เมื่อตรึง (𝑢𝑢;𝑏𝑏) การคำนวณเวกเตอร 𝑤𝑤 สามารถคำนวณไดจาก [15] 

        𝑤𝑤
|𝑤𝑤| + 𝜃𝜃(𝑤𝑤 − ∇2𝑢𝑢 − 𝑏𝑏) = 0

            
 
 

ซึ่งมีผลเฉลยแมนตรง (exact solution) คือ 

(𝑤𝑤)𝑖𝑖,𝑗𝑗 = max ��∇2(𝑢𝑢)𝑖𝑖,𝑗𝑗 − (𝑏𝑏)𝑖𝑖,𝑗𝑗� −
1
𝜃𝜃

, 0� ∇2(𝑢𝑢)𝑖𝑖,𝑗𝑗−(𝑏𝑏)𝑖𝑖,𝑗𝑗
�∇2(𝑢𝑢)𝑖𝑖,𝑗𝑗−(𝑏𝑏)𝑖𝑖,𝑗𝑗�
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จากนั้นปรับปรุงพารามิเตอรการทำซ้ำเบรกแมน โดยกำหนดให 𝑏𝑏 ← 𝑏𝑏 + ∇2𝑢𝑢 − 𝑤𝑤   
 

3  ผลการศึกษา 

 เพื่อทดสอบประสิทธิภาพของวิธีการเชิงตัวเลขที่ไดนำเสนอ ผูวิจัยไดทำการทดลองเชิงตัวเลขกับภาพถาย

ดิจิทัลทั้งภาพสังเคราะหและภาพจริง โดยภาพตนฉบับแสดงดังรูปที่ 1 ในการทดลองเชิงตัวเลขผูวิจัยไดประยุกตใชคา

อัตราสวนของสัญญาณรบกวนสูงสุด (Peak Signal to noise  ratio : PSNR) (หนวยเปนเดซิเบล) ระหวางเวกเตอร

ของภาพตนฉบับที่ไมมีสัญญาณรบกวน 𝑢𝑢∗ และเวกเตอรของภาพผลลัพธ 𝑢𝑢 ที่ไดจากวิธีการที่นำเสนอ เพื่อทำการ

ประเมินคุณภาพของตัวแบบที่ไดนำเสนอ และประยุกตใชคาความคลาดเคลื่อนกำลังสองโดยเฉลี่ย (Mean Square 

Error : MSE) เพื่อตรวจสอบประสิทธิภาพของวิธีการที่ไดนำเสนอ โดยคาอัตราสวนของสัญญาณรบกวนสูงสุดถูกนิยาม

โดย 

𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 10 log10
2552

𝑀𝑀𝑆𝑆𝑀𝑀
  

และคาคลาดเคลื่อนกำลงัสองโดยเฉลี่ยถูกนิยามโดย  

𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑀𝑀𝑁𝑁

���(𝑢𝑢∗)𝑖𝑖,𝑗𝑗 − (𝑢𝑢)𝑖𝑖,𝑗𝑗�
2

𝐴𝐴

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

 

สำหรับการประเมินประสิทธิภาพของการกำจัดสัญญาณรบกวนที่ไดนำเสนอทุกการทดลองเชิงตัวเลขใชภาพที่มีความ

คมชัดขนาด 512 x 512 และในการประเมินประสิทธิภาพของขั้นตอนวิธีเชิงตัวเลขที่ไดพัฒนาขึ้นจะทำซ้ำจนกระทั่ง

เวกเตอรผลเฉลยลูเขาดวยเกณฑการหยุดคาคลาดเคลื่อนสัมพัทธ  
�𝑢𝑢[𝑛𝑛𝑛𝑛𝑛𝑛]−𝑢𝑢[𝑜𝑜𝑜𝑜𝑜𝑜]�𝑜𝑜2

2

�𝑢𝑢[𝑛𝑛𝑛𝑛𝑛𝑛]�𝑜𝑜2
2 < 10−4 หรือจำนวนการทำซ้ำ

สูงสุด 200 รอบ เมื่อ 𝑢𝑢[𝑛𝑛𝑛𝑛𝑤𝑤]  และ 𝑢𝑢[𝑜𝑜𝑜𝑜𝑜𝑜] แทนเวกเตอรของ 𝑢𝑢 ที่ไดจากการทำซ้ำรอบปจจบุันและการทำซ้ำรอบกอน

หนา ตามลำดับ สำหรับแตละการทดลองเชิงตัวเลข ผูวิจัยเลือกใชพารามิเตอร 𝛼𝛼, 𝛾𝛾 และ 𝜃𝜃 ที่ใหผลลัพธที่ดีที ่สุด 

ภายใตจำนวนรอบการทำซ้ำแบบจุดตรึงเทากับ 1  

   
รูปที่ 1 : ภาพดิจิทัลของภาพตนฉบับขนาด 512 x 512 พิกเซล โดยภาพสังเคราะห (คอลัมนแรก) และภาพจริง 

(คอลัมนที่ 2 และ 3) 

 

เพื่อแสดงใหเห็นประสิทธิภาพของตัวแบบที่ไดนำเสนอ พรอมดวยวิธีการ SB ผูวิจัยจึงไดนำเสนอผลการ

วิเคราะหจากการกำจัดสัญญาณรบกวนออกจากภาพที่มีสัญญาณรบกวนแบบการคูณที่มีคาความหนาแนน 0.03, 0.04 

และ 0.05 โดยพิจารณาจากคา PSNR และคา MSE ในการทดลองบนภาพสังเคราะห (ภาพ Smooth) และภาพจริง 
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(ภาพ Boat และภาพ Airplane)  จากตารางที่ 1 แสดงใหเห็นวาตัวแบบ JYBH ใหคา PSNR ที่สูงกวาตัวแบบ JY และ

ตัวแบบ JYTL และเมื่อพิจารณาคา MSE จะเห็นวาตัวแบบ JYBH ใหคา MSE ที่ต่ำกวาตัวแบบ JY และตัวแบบ JYTL 

ในทุกกรณี ซึ่งแสดงใหเห็นวาตัวแบบ JYBH พรอมดวยวิธีการ SB สามารถกำจัดสัญญาณรบกวนออกจากภาพอยาง

แมนยำ และใหคุณภาพของภาพผลลัพธที่ดีข้ึน โดยตัวแบบ JYBH ใหความแมนยำสูงกวาตัวแบบ JY และตัวแบบ JYTL 

ในทุกกรณี ซึ่งผลการทดลองเชิงตัวเลขแสดงดังตารางที่ 1  
 

ภาพ k 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅0 

 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅  MSE 

ตัวแบบ 

JY 

ตัวแบบ 

JYTL 

ตัวแบบ 

JYBH 

ตัวแบบ 

JY 

ตัวแบบ 

JYTL 

ตัวแบบ 

JYBH 

Smooth 

0.03 31.7418 33.0841 33.171 33.5271 31.9639 31.3305 28.8637 

0.04 30.4258 32.6883 32.4976 32.9989 35.0137 36.5858 32.5968 

0.05 29.1508 32.2177 31.5879 32.3728 39.0209 45.1109 37.6519 

Boat 

0.03 35.8861 40.2188 41.0886 42.0915 6.1821 5.0598 4.0163 

0.04 33.3958 38.0455 39.1573 40.6474 10.1973 7.8939 5.6009 

0.05 31.4541 37.2948 37.4415 39.3605 12.1218 11.719 7.5331 

Airplane 

0.03 33.2338 37.0639 37.0694 37.8076 12.7837 12.7676 10.7717 

0.04 30.7226 34.6961 34.974 35.7918 22.0522 20.6854 17.1345 

0.05 28.7981 34.5056 33.2382 34.7883 23.0409 30.8492 21.5889 

ตารางที่ 1 : ผลการทดลองเชิงตัวเลขดวยตัวแบบเชิงการแปรผันกับภาพสังเคราะห (ภาพ Smooth) และภาพจริง 

(ภาพ Boat และภาพ Airplane) 

 

นอกจากนี้ เพื่อเปนการแสดงใหเห็นประสิทธิภาพของตัวแบบที่ไดนำเสนอพรอมดวยวิธีการ SB ดังกลาว 

ผูวิจัยไดแสดงภาพผลลัพธจากการกำจัดสัญญาณรบกวนออกจากภาพในกรณีสัญญาณรบกวน k = 0.05 ดังแสดงในดัง

รูปที่ 2 
 

    
𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅0 = 29.1508  𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 32.2177 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 31.5879 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 32.3728 
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𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅0 = 31.4541  𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 37.2948 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 37.4415 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 39.3605 

    
𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅0 = 28.7981  𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 34.5056 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 33.2382 𝑃𝑃𝑃𝑃𝑁𝑁𝑅𝑅 = 34.7883 

รูปที่ 2 : คอลัมนแรกแสดงภาพที่มสีัญญาณรบกวน คอลัมนที่ 2 แสดงภาพผลลัพธจากการกำจัดสัญญาณรบกวนดวย

ตัวแบบ JY คอลัมนที่ 3 และ 4 แสดงภาพผลลัพธจากการกำจัดสัญญาณรบกวนดวยตัวแบบที่ไดนำเสนอ (ตัวแบบ 

JYTL และตัวแบบ JYBH ตามลำดับ) 

 

ในลำดับถัดไป ผูวิจัยไดทำการทดสอบประสิทธิภาพของตัวแบบเชิงการแปรผันพรอมดวยวิธีการที่ไดนำเสนอ

ในการกำจัดสัญญาณรบกวนออกจากภาพถายทางการแพทยซึ่งไมทราบคาของสัญญาณรบกวน ดังแสดงในรูปที่ 3 โดย 

คอลัมนแรกแสดงภาพถายทางการแพทย  คอลัมนที่ 2 - 4 แสดงภาพผลลัพธจากการกำจัดสัญญาณรบกวนดวยตัว

แบบ JY ตัวแบบ JYTL และตัวแบบ JYBH ตามลำดับ จากรูปที่ 3 พบวาตัวแบบ JY ตัวแบบ JYTL และตัวแบบ JYBH 

สามารถกำจัดสัญญาณรบกวนออกจากภาพได และตัวแบบ JYTL และตัวแบบ JYBH ใหภาพผลลัพธที่คมชัดกวาตัว

แบบ JY แมวาตวัแบบทั้งสามจะสามารถกำจัดสัญญาณรบกวนออกจากภาพถายทางการแพทยได แตภาพผลลัพธอาจ

เกิดความเบลอจากการกำจัดสัญญาณรบกวนในบางจุดมากเกินความจำเปน  

 

 
รูปที่ 3 : คอลัมนแรกแสดงภาพถายทางการแพทย  คอลัมนที่ 2 - 4 แสดงภาพผลลัพธจากการกำจัดสัญญาณรบกวน

ดวยตัวแบบ JY ตัวแบบ JYTL และตัวแบบ JYBH ตามลำดับ 
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4  สรุปผล 

 ในงานวิจัยนี้ ผูวิจัยไดนำเสนอตัวแบบเชิงการแปรผันจำนวน 2 ตัวแบบ คือ ตัวแบบ JYTL และตัวแบบ JYBH 

สำหรับกำจัดสัญญาณรบกวนแบบการคูณออกจากภาพดิจิทัลซึ่งใชขอดีของตัวแบบ JY และการแกปญหาปรากฏการณ

ขั้นบันไดโดยใชอนุพันธอันดับสูง ซึ่งผูวิจัยไดทำการทดลองกำจัดสัญญาณรบกวนออกจากภาพทั้งภาพสังเคราะหและ

ภาพจริง เพื่อแกปญหาเชิงการแปรผันที่เกี่ยวของผูวิจัยไดนำเสนอวิธีการ SB ซึ่งเปนวิธีการที่มีประสิทธิภาพในการ

แกปญหา ผลการทดลองเชิงตัวเลขแสดงใหเห็นวาตัวแบบที่ไดนำเสนอพรอมดวยวิธีการ SB สามารถกำจัดสัญญาณ

รบกวนออกจากภาพอยางแมนยำ และใหคุณภาพของภาพผลลัพธที่ดีข้ึน โดยตัวแบบที่ไดนำเสนอคือตัวแบบ JYBH ให

ความแมนยำสูงกวาตัวแบบ JY และตัวแบบ JYTL ในทุกกรณี นอกจากนี้ผูวิจัยไดทำการทดสอบความมีประสิทธิภาพ

ของตัวแบบที่ไดนำเสนอพรอมดวยวิธีการ SB ในการกำจัดสัญญาณรบกวนออกจากภาพถายทางการแพทย ผลการ

ทดสอบพบวาตัวแบบที่นำเสนอสามารถกำจดัสัญญาณรบกวนออกจากภาพไดอยางมีประสิทธิภาพ แตภาพผลลัพธอาจ

เกิดความเบลอจากการกำจัดสัญญาณรบกวนในบางจุดมากเกินความจำเปน เพื่อเพิ่มประสิทธิภาพในการกำจัด

สัญญาณรบกวนออกจากภาพถายทางการแพทยอาจมีการพัฒนาตัวแบบหรือวิธีการเชิงตัวเลขเพือ่ลดปญหาดังกลาว 
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บทความวิจัยนี้ 
 

เอกสารอางอิง 
[1] C. Zhao, J. Liu, and J. Zhang, A Dual Model for restoring image corrupted by mixture of additive 

and multiplicative noise. IEEE Access. 9 (2021), 168869-168888. 

[ 2 ]  C. Supakorn, Image denoising for Gaussian noise using deep learning and edge feature, Master 

Thesis of Chulalongkorn University. 2018. 

[ 3]  A. Ullah, W. Chen, M. A. Khan, and H. Sun, An efficient variational method for restoring images 

with combined additive and multiplicative noise. Int. J. Appl. Comput. Math. 3(3) (2017), 1999-

2019. 

[ 4]  L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms. 

Physica D. 60 (1992), 259–268. 

[5] T. Goldstein and S. Osher, The split bregman method for l1-regularized problems. SIAM Journal 

on Imaging Sciences. 2(2) (2009), 323–343.  

[6] G. Aubert and P. Kornprobst, Mathematical problems in image processing: partial 

differential equations and the calculus of variations, 2nd ed., Springer, New York, 2006.  

The 28th Annual Meeting in Mathematics (AMM2024)

260



 
 

[7] N. Chumchob, K. Chen, and C. B. Loeza, A new variational model for removal of combined additive 

and multiplicative noise and a fast algorithm for its numerical approximation. Int. J. Comput. Math. 

90(1), (2013), 140-161. 

[ 8]  G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise. SIAM J. Appl. 

Math. 68(4) (2008), 925–946. 

[9] Z. Jin and X. Yang, Analysis of a new variational model for multiplicative noise removal. J. Math. 

Anal. Appl. 362 (2010), 415–426.  

[10] Y.L. You and M. Kaveh, Fourth-order partial differential equations for noise removal. IEEE 

Transactions on Image Processing. 9(10) (2000), 1723–1730.  

[11] O. Scherzer, Denoising with higher order derivatives of bounded variation and an application to 

parameter estimation. Computing, 60(1) (1998), 1–27.  

[ 1 2]  L. I. Rudin, P. L. Lions, and S. Osher, Multiplicative denoising and deblurring: theory and 

algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics, S. Osher and 

N.Paragios, Eds., pp. 103-120, Springer, Berlin, Germany, 2003. 

[ 1 3]  J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise 

model. SIAM J. Imaging Sci. 1(3) (2008), 294–321. 

[ 1 4]  Y. Huang, M. Ng, and Y. Wen, A new total variation method for multiplicative noise removal. 

SIAM J. Imaging Sci. 2(1) (2009), 20–40. 

[15] W. Lu, J. Duan, Z. Qiu, Z. Pan, R.W. Lid, and L. Bai, Implementation of high-order variational 

models made easy for image processing. Mathematical Methods in the Applied Sciences. 39 

(2016), 4208–4233.  

 

 

 

The 28th Annual Meeting in Mathematics (AMM2024)

261



Proceedings of the
28th Annual Meeting in Mathematics (AMM 2024)
Department of Mathematics Statistics and Computer,
Faculty of Science, Ubon Ratchathani University,
Thailand
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บทคัดย่อ

งานวิจัยนี้นำเสนออัลกอริทึมผสมใหม่สำหรับการหาผลเฉลยเชิงตัวเลขของสมการไม่เชิงเส้นที่อยู่ในรูป
แบบ f(x) = 0 อัลกอริทึมดังกล่าวใช้วิธีของนิวตัน (ซึ่งเป็นวิธีแบบเปิด) ร่วมกับวิธีแก้ตำแหน่งผิด (ซึ่งเป็นวิธี
กำหนดค่าขอบ) โดยนำข้อดีของวิธีแบบเปิดคือสามารถลู่เข้าสู่ผลเฉลยได้อย่างรวดเร็ว และข้อดีของวิธี
กำหนดค่าขอบคือสามารถลู่เข้าสู่ผลเฉลยได้อย่างแน่นอน ผลการเปรียบเทียบการหาผลเฉลยเชิงตัวเลขของ
สมการไม่เชิงเส้นจำนวน 6 สมการ พบว่าอัลกอริทึมผสมใหม่มีจำนวนรอบในการทำซ้ำน้อยกว่าวิธีแก้
ตำแหน่งผิด วิธีของนิวตัน และอัลกอริทึมผสม CJ แต่วิธีของนิวตันใช้เวลาในการคำนวณหาผลเฉลยทั้ง 6
สมการน้อยที่สุด

คำสำคัญ: ผลเฉลยของสมการไม่เชิงเส้น, วิธีแก้ตำแหน่งผิด, วิธีของนิวตัน
2020 MSC: ปฐมภูมิ 65H04 ทุติยภูมิ 65H05

1 บทนำ
ในปัจจุบันการหาผลเฉลยของสมการไม่เชิงเส้น (Nonlinear equations) นอกจากจะถูกใช้ในสาขาคณิตศาสตร์
แล้ว ยังถูกใช้งานในสาขาอื่น ๆ อีกด้วย เช่น วิทยาศาสตร์ วิศวกรรมศาสตร์ เป็นต้น ซึ่งสมการดังกล่าวสามารถ
หาผลเฉลยของสมการได้ทั้งวิธีวิเคราะห์ (Analytic method) และวิธีเชิงตัวเลข (Numerical method) แต่ใน
บางสมการไม่สามารถหาผลเฉลยโดยวิธีวิเคราะห์ได้ (หรือหาได้ยาก) ดังนั้นสมการเหล่านี้จำเป็นจะต้องใช้วิธีเชิง
∗งานวิจัยเรื่องนี้ได้รับทุนสนับสนุนจากภาควิชาคณิตศาสตร์ และคณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา
†ผู้นำเสนอ ‡ผู้แต่งหลัก
อีเมล: 63030242@go.buu.ac.th (ลลิตภัทร สาโรจน์), apichat@buu.ac.th (อภิชาติ เนียมวงษ์).
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ตัวเลขโดยวิธีทำซ้ำ (Iterative method) เป็นทางเลือกหนึ่งที่ใช้ในการหาผลเฉลยเชิงตัวเลข (Numerical so-
lutions) ของสมการไม่เชิงเส้น นั่นคือใช้อัลกอริทึม (Algorithm) เพื่อหาค่าของผลเฉลยเชิงตัวเลข x ที่ทำให้
สมการ f(x) = 0 เป็นจริง และหนึ่งในวิธีทำซ้ำคือ วิธีแบ่งครึ่งช่วง (Bisection method) เป็นวิธีกำหนดค่า
ขอบ (Bracketing method) ซึ่งวิธีในกลุ่มนี้จะลู่เข้าสู่ผลเฉลยอย่างแน่นอน โดยมีแนวคิดในการหาผลเฉลยโดย
ใช้ทฤษฎีบทค่าระหว่างกลางเพื่อสร้างช่วงปิดย่อยที่มีผลเฉลยในช่วงปิดที่กำหนด [a, b] จะได้ c = a+b

2 แล้ว
พิจารณาเงื่อนไขของการมีผลเฉลยในช่วงปิดย่อย [a, c] หรือ [c, b] เป็นช่วงเริ่มต้นในรอบถัดไป และ [4] ได้กล่าว
ว่าวิธีนี้มีอันดับการลู่เข้าเท่ากับหนึ่ง อีกวิธีหนึ่งคือวิธีแก้ตำแหน่งผิด (Regula-falsi method) เป็นวิธีกำหนดค่า
ขอบ ซึ่งจะต้องกำหนดขอบเขตเริ่มต้นคือช่วงปิด [a, b] และมีแนวคิดในการหาผลเฉลยโดยสร้างเส้นตรงเชื่อมจุด
(a, f(a)) และ (b, f(b)) แล้วใช้จุดตัดของเส้นตรงดังกล่าวกับแกน x นั่นคือ c = af(b)−bf(a)

f(b)−f(a) เป็นค่าประมาณ
ของผลเฉลย โดยวิธีนี้มีจำนวนรอบทำซ้ำน้อยกว่าวิธีแบ่งครึ่งช่วง นอกจากนี้ยังมีวิธีแบบเปิด (Open method)
ซึ่งวิธีในกลุ่มนี้จะลู่เข้าสู่ผลเฉลยอย่างรวดเร็ว และหนึ่งในวิธีที่ใช้กันอย่างแพร่หลาย คือวิธีของนิวตัน (Newton’s
method) ซึ่งจะต้องกำหนดค่าเริ่มต้นคือ x0 ที่ใกล้กับผลเฉลย และสร้างเส้นตรงสัมผัสเส้นโค้งที่จุด (x0, f(x0))

แล้วใช้จุดตัดของเส้นสัมผัสดังกล่าวกับแกน x นั่นคือ x1 = x0 − f(x0)
f ′(x0)

เป็นจุดในการประมาณค่าในรอบถัดไป
วิธีนี้หาผลเฉลยได้อย่างรวดเร็วและมีอันดับการลู่เข้าเท่ากับสอง

ปัจจุบันมีนักวิจัยเป็นจำนวนมากทำการปรับปรุงวิธีของนิวตันเพื่อให้มีอันดับการลู่เข้าที่มากขึ้น หนึ่งในนั้น
คือ [5] นำเสนอการปรับปรุงวิธีของนิวตันจนทำให้มีอันดับการลู่เข้าเป็นสาม ต่อมา [2] ได้ทำการปรับปรุงวิธีของ
นิวตันจนทำให้มีอันดับการลู่เข้าเป็นสี่ อย่างไรก็ตามวิธีของนิวตันอาจเกิดการลู่ออก นั่นคือไม่สามารถหาผลเฉลย
ได้ ขึ้นอยู่กับการเลือกจุดเริ่มต้นที่เหมาะสม ดังนั้น [1], [3], [6] และ [7] จึงได้นำเสนออัลกอริทึมผสม (Hy-
brid algorithm) โดยการใช้สองวิธีร่วมกัน คือ วิธีแบ่งครึ่งช่วง และวิธีของนิวตัน โดยนำข้อดีของวิธีแบบเปิดคือ
สามารถลู่เข้าสู่ผลเฉลยได้อย่างรวดเร็ว และข้อดีของวิธีกำหนดค่าขอบคือสามารถลู่เข้าสู่ผลเฉลยได้อย่างแน่นอน
อีกทั้งยังนำเสนอผลการเปรียบเทียบจำนวนรอบการทำซ้ำ (Number of iterations) เพื่อทดสอบประสิทธิภาพ
ของอัลกอริทึมดังกล่าวอีกด้วย

อย่างไรก็ตามอัลกอริทึมผสมดังกล่าวนั้นยังไม่ครอบคลุมความเป็นไปได้ให้ครบทุกกรณี ดังนั้นในงานวิจัยนี้ผู้
วิจัยได้นำเสนออัลกอริทึมผสมใหม่ (New hybrid algorithm) สำหรับหาผลเฉลยของสมการไม่เชิงเส้น โดย
ใช้สองวิธี คือ วิธีของนิวตันร่วมกับวิธีแก้ตำแหน่งผิด โดยเปรียบเทียบจำนวนรอบในการทำซ้ำ และเวลาที่้ในการ
ประมวลผล (CPU time) ของอัลกอริทึมผสมใหม่กับวิธีอื่น ๆ

2 ความรู้พื้นฐาน
2.1 งานวิจัยที่เกี่ยวข้อง
ในงานวิจัยนี้ได้นำเสนออัลกอริทึมเพื่อหาผลเฉลยของสมการไม่เชิงเส้นที่อยู่ในรูปแบบ

f(x) = 0 (2.1)

โดยที่ f เป็นฟังก์ชันต่อเนื่องและหาอนุพันธ์ได้บนช่วงปิด [a, b] และสมการที่ (2.1) มีผลเฉลยอย่างน้อยหนึ่งผล
เฉลยในช่วงดังกล่าว โดยที่มีเงื่อนไขคือ f(a)f(b) < 0

ผู้วิจัยได้ศึกษาอัลกอริทึมผสมของ [6] ขั้นแรกหาค่าของ B โดยวิธีแบ่งครึ่งช่วง และนำค่า B ที่ได้ไปหาค่า N

โดยวิธีของนิวตัน ขั้นต่อไปถ้า N ∈ [a, b] นั่นคือ N ลู่เข้าสู่ผลเฉลย แล้วจะได้ผลเฉลยคือ N แต่ถ้า N /∈ [a, b]

แล้วจะใช้ B เป็นผลเฉลย โดยอัลกอริทึมนี้เรียกว่า อัลกอริทึมผสม KNOP และมี 7 ขั้นตอนดังนี้

ขั้นตอน 1 กำหนด f(x), f ′(x),ช่วงปิด[a, b], i = 1 และ Tolerance error (ϵ)
ขั้นตอน 2 หาค่า B = a+b

2 และ N = B − f(B)
f ′(B) จากสูตรของวิธีแบ่งครึ่งช่วงและวิธีของนิวตัน
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ขั้นตอน 3 ถ้า N ∈ [a, b] แล้ว xi = N แต่ถ้าไม่ xi = B

ขั้นตอน 4 ถ้า |f(xi)| < ϵ และได้ผลเฉลยโดยประมาณคือ xi แล้วไปขั้นตอนที่ 7
ขั้นตอน 5 ถ้า f(a)f(xi) < 0 แล้วให้ b = xi แต่ถ้าไม่ แล้วให้ a = xi

ขั้นตอน 6 กำหนดช่วงในรอบถัดไปคือ [a, b] และ i = i+ 1 แล้วกลับไปขั้นตอนที่ 2
ขั้นตอน 7 หยุดการทำซ้ำ

ต่อมา [3] ได้ปรับปรุงอัลกอริทึมผสมของ [6] โดยขั้นแรกใช้วิธีของนิวตันที่ขอบช่วง [a, b] เพื่อหาค่า a1, b1 ตาม
ลำดับ ขั้นต่อไปถ้า a1 หรือ b1 /∈ [a, b] แล้วจะใช้ผลเฉลยของวิธีแบ่งครึ่งช่วง [a, b] (ไม่ใช้ช่วง [a1, b1] เนื่องจาก
a1 หรือ b1 อยู่ห่างจากผลเฉลยมากกว่า a หรือ b) แต่ถ้า a1 และ b1 ∈ [a, b] แล้วจะใช้ผลเฉลยของวิธีแบ่งครึ่ง
ช่วง [a1, b1] (เนื่องจาก a1 และ b1 ที่ได้จากวิธีของนิวตันอยู่ใกล้ผลเฉลยมากกว่า a และ b) โดยอัลกอริทึมนี้
เรียกว่า อัลกอริทึมผสม CJ และมี 8 ขั้นตอนดังนี้

ขั้นตอน 1 กำหนด f(x), f ′(x),ช่วงปิด[a, b], i = 1 และ Tolerance error (ϵ)
ขั้นตอน 2 หาค่า a1 = a− f(a)

f ′(a) , b1 = b− f(b)
f ′(b) , c1 = a1+b1

2 และ c = a+b
2

ขั้นตอน 3 ถ้า a1 หรือ b1 /∈ [a, b] แล้ว
a∗ = a และ b∗ = c เมื่อ f(a)f(c) < 0 หรือ
a∗ = c และ b∗ = b เมื่อ f(a)f(c) > 0

ผลเฉลยคือ xi = c และไปขั้นตอนที่ 6
ขั้นตอน 4 ถ้า f(a1)f(b1) < 0 นั่นคือผลเฉลยอยู่ในช่วง [a1, b1] แล้ว

a∗ = a1 และ b∗ = c1 เมื่อ f(a1)f(c1) < 0 หรือ
a∗ = c1 และ b∗ = b1 เมื่อ f(a1)f(c1) > 0

ผลเฉลยคือ xi = c1 และไปขั้นตอนที่ 6
ขั้นตอน 5 ถ้า f(a1)f(b1) > 0 นั่นคือผลเฉลยไมอ่ยู่ในช่วง [a1, b1] แล้ว

(พิจารณาจากการเข้าใกล้ผลเฉลย โดยการเปรียบเทียบค่าของ |f(a1)| และ |f(b1)|)
ผลเฉลยคือ xi = a1 เมื่อ |f(a1)| < |f(b1)| หรือ
ผลเฉลยคือ xi = b1 เมื่อ |f(a1)| > |f(b1)|

ให้ a∗ = a1, b∗ = b1 และไปขั้นตอนที่ 6
ขั้นตอน 6 ถ้า |f(xi)| < ϵ และได้ xi เป็นผลเฉลยโดยประมาณ แล้วไปขั้นตอนที่ 8
ขั้นตอน 7 กำหนดช่วงในรอบถัดไปคือ [a, b] = [a∗, b∗] และ i = i+ 1 แล้วกลับไปขั้นตอนที่ 2
ขั้นตอน 8 หยุดการทำซ้ำ

ข้อสังเกตุ ในขั้นตอนที่ 4 ของอัลกอริทึมผสม CJ มีความเป็นไปได้ที่ค่าของ a∗ อาจจะมากกว่า b∗ ซึ่งทำให้การ
กำหนดช่วง [a, b] ในรอบถัดไปไม่ถูกต้อง (โดยทั่วไปวิธีกำหนดขอบค่าของ a < b เสมอ) และในขั้นตอนที่ 5
การเปรียบเทียบค่าของ |f(a1)| และ |f(b1)| ไม่สามารถระบุได้ว่าค่าของ a1 และ b1 ค่าใดมีค่าเข้าใกล้ผลเฉลย
มากกว่ากัน

3 อัลกอริทึมผสมใหม่ HA
ผู้วิจัยได้ปรับปรุงอัลกอริทึมผสมของ [3] โดยเปลี่ยนจากวิธีแบ่งครึ่งช่วงเป็นวิธีแก้ตำแหน่งผิด และปรับกระบวน
การของ [3] ให้มีเงื่อนไขครอบคลุมทุกกรณี (ดังภาพที่ 1-11) คือ กรณี 1: a1 และ b1 /∈ [a, b], กรณี 2: a1 ∈
[a, b] แต่ b1 /∈ [a, b], กรณี 3: b1 ∈ [a, b] แต่ a1 /∈ [a, b] และ กรณี 4: a1 และ b1 ∈ [a, b] เรียกว่า อัลกอริทึม
ผสมใหม่ HA (New Hybrid Algorithm) โดยมี 10 ขั้นตอนดังนี้
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ขั้นตอน 1 กำหนด f(x), f ′(x),ช่วงปิด[a, b], i = 1 และ Tolerance error (ϵ)
ขั้นตอน 2 หาค่า a1 = a− f(a)

f ′(a) , b1 = b− f(b)
f ′(b) ,

RF1 =
af(b)−bf(a)
f(b)−f(a) , RF2 =

af(a1)−a1f(a)
f(a1)−f(a) , RF3 =

a1f(b)−bf(a1)
f(b)−f(a1)

,
RF4 =

af(b1)−b1f(a)
f(b1)−f(a) , RF5 =

b1f(b)−bf(b1)
f(b)−f(b1)

และ , RF6 =
a1f(b1)−b1f(a1)

f(b1)−f(a1)

ขั้นตอน 3 (กรณี 1) ถ้า a1 และ b1 /∈ [a, b] (ดังภาพที่ 1) แล้วหา RF1 บนช่วงปิด [a, b]

a∗ = a และ b∗ = RF1 เมื่อ f(a)f(RF1) < 0 หรือ
a∗ = RF1 และ b∗ = b เมื่อ f(a)f(RF1) > 0

ผลเฉลยคือ xi = RF1 และไปขั้นตอนที่ 8
ขั้นตอน 4 (กรณี 2) ถ้า a1 ∈ [a, b] แต่ b1 /∈ [a, b] และ

(กรณี 2A) ถ้า f(a)f(a1) < 0 (ดังภาพที่ 2) แล้วหา RF2 บน [a, a1]

a∗ = a และ b∗ = RF2 เมื่อ f(a)f(RF2) < 0 หรือ
a∗ = RF2 และ b∗ = b เมื่อ f(a)f(RF2) > 0

ผลเฉลยคือ xi = RF2 และไปขั้นตอนที่ 8
(กรณี 2B) แต่ถ้า f(a)f(a1) > 0 (ดังภาพที่ 3) แล้วหา RF3 บน [a1, b]

a∗ = a1 และ b∗ = RF3 เมื่อ f(a1)f(RF3) < 0 หรือ
a∗ = RF3 และ b∗ = b เมื่อ f(a1)f(RF3) > 0

ผลเฉลยคือ xi = RF3 และไปขั้นตอนที่ 8
ขั้นตอน 5 (กรณี 3) ถ้า b1 ∈ [a, b] แต่ a1 /∈ [a, b] และ

(กรณี 3A) ถ้า f(a)f(b1) < 0 (ดังภาพที่ 4) แล้วหา RF4 บน [a, b1]

a∗ = a และ b∗ = RF4 เมื่อ f(a)f(RF4) < 0 หรือ
a∗ = RF4 และ b∗ = b1 เมื่อ f(a)f(RF4) > 0

ผลเฉลยคือ xi = RF4 และไปขั้นตอนที่ 8
(กรณี 3B) แต่ถ้า f(a)f(b1) > 0 (ดังภาพที่ 5) แล้วหา RF5 บน [b1, b]

a∗ = b1 และ b∗ = RF5 เมื่อ f(b1)f(RF5) < 0 หรือ
a∗ = RF5 และ b∗ = b เมื่อ f(b1)f(RF5) > 0

ผลเฉลยคือ xi = RF5 และไปขั้นตอนที่ 8
ขั้นตอน 6 (กรณี 4.1) ถ้า a1 และ b1 ∈ [a, b] & f(a1)f(b1) < 0

(กรณี 4.1A) ถ้า f(a)f(a1) > 0 (ดังภาพที่ 6) แล้วหา RF6 บน [a1, b1]

a∗ = a1 และ b∗ = RF6 เมื่อ f(a1)f(RF6) < 0 หรือ
a∗ = RF6 และ b∗ = b1 เมื่อ f(a1)f(RF6) > 0

ผลเฉลยคือ xi = RF6 และไปขั้นตอนที่ 8
(กรณี 4.1B) ถ้า f(a)f(a1) < 0 (ดังภาพที่ 7) แล้วหา RF6 บน [b1, a1]

a∗ = b1 และ b∗ = RF6 เมื่อ f(b1)f(RF6) < 0 หรือ
a∗ = RF6 และ b∗ = a1 เมื่อ f(b1)f(RF6) > 0

ผลเฉลยคือ xi = RF6 และไปขั้นตอนที่ 8
ขั้นตอน 7 (กรณี 4.2) ถ้า a1 และ b1 ∈ [a, b] & f(a1)f(b1) > 0

(กรณี 4.2A) ถ้า f(a)f(a1) < 0 & a1 < b1 (ดังภาพที่ 8) แล้วหา RF2 บน [a, a1]

a∗ = a และ b∗ = RF2 เมื่อ f(a)f(RF2) < 0 หรือ
a∗ = RF2 และ b∗ = a1 เมื่อ f(a)f(RF2) > 0

ผลเฉลยคือ xi = RF2 และไปขั้นตอนที่ 8
(กรณี 4.2B) ถ้า f(a)f(a1) < 0 & b1 < a1 (ดังภาพที่ 9) แล้วหา RF4 บน [a, b1]

a∗ = a และ b∗ = RF4 เมื่อ f(a)f(RF4) < 0 หรือ
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a∗ = RF4 และ b∗ = b1 เมื่อ f(a)f(RF4) > 0

ผลเฉลยคือ xi = RF4 และไปขั้นตอนที่ 8
(กรณี 4.2C) ถ้า f(a)f(a1) > 0 & b1 > a1 (ดังภาพที่ 10) แล้วหา RF5 บน [b1, b]

a∗ = b1 และ b∗ = RF5 เมื่อ f(b1)f(RF5) < 0 หรือ
a∗ = RF5 และ b∗ = b เมื่อ f(b1)f(RF5) > 0

ผลเฉลยคือ xi = RF5 และไปขั้นตอนที่ 8
(กรณี 4.2D) ถ้า f(a)f(a1) > 0 & a1 > b1 (ดังภาพที่ 11) แล้วหา RF3 บน [a1, b]

a∗ = a1 และ b∗ = RF3 เมื่อ f(a1)f(RF3) < 0 หรือ
a∗ = RF3 และ b∗ = b เมื่อ f(a1)f(RF3) > 0

ผลเฉลยคือ xi = RF3 และไปขั้นตอนที่ 8
ขั้นตอน 8 ถ้าค่าคลาดเคลื่อนสัมพัทธ์ |f(xi)−f(xi−1)|

|f(xi)| < ϵ และได้ xi เป็นผลเฉลยโดยประมาณ
แล้วไปขั้นตอนที่ 10

ขั้นตอน 9 กำหนดช่วงในรอบถัดไปคือ [a, b] = [a∗, b∗] และ i = i+ 1 แล้วกลับไปขั้นตอนที่ 2
ขั้นตอน 10 หยุดการทำซ้ำ

ภาพที่ 1: กราฟ (ซ้าย) แสดง กรณี 1: a1 และ b1 /∈ [a, b] และ (ขวา) แสดงจุด RF1 ที่ได้จากวิธีแก้ตำแหน่งผิด
บนช่วงปิด [a, b] เมื่อ x∗ คือผลเฉลยแท้จริง

ภาพที่ 2: กราฟ (ซ้าย) แสดง กรณี 2A: a1 ∈ [a, b] แต่ b1 /∈ [a, b] & f(a)f(a1) < 0 และ (ขวา) แสดงจุด
RF2 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [a, a1] เมื่อ x∗ คือผลเฉลยแท้จริง
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ภาพที่ 3: กราฟ (ซ้าย) แสดง กรณี 2B: a1 ∈ [a, b] แต่ b1 /∈ [a, b] & f(a)f(a1) > 0 และ (ขวา) แสดงจุด
RF3 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [a1, b] เมื่อ x∗ คือผลเฉลยแท้จริง

ภาพที่ 4: กราฟ (ซ้าย) แสดง กรณี 3A: b1 ∈ [a, b] แต่ a1 /∈ [a, b] & f(a)f(b1) < 0 และ (ขวา) แสดงจุด
RF4 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [a, b1] เมื่อ x∗ คือผลเฉลยแท้จริง

ภาพที่ 5: กราฟ (ซ้าย) แสดง กรณี 3B: b1 ∈ [a, b] แต่ a1 /∈ [a, b] & f(a)f(b1) > 0 และ (ขวา) แสดงจุด
RF5 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [b1, b] เมื่อ x∗ คือผลเฉลยแท้จริง

The 28th Annual Meeting in Mathematics (AMM2024)

267



ภาพที่ 6: กราฟ (ซ้าย) แสดง กรณี 4.1A: a1 และ b1 ∈ [a, b] & f(a1)f(b1) < 0 & f(a)f(a1) > 0 และ
(ขวา) แสดงจุด RF6 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [a1, b1] เมื่อ x∗ คือผลเฉลยแท้จริง

ภาพที่ 7: กราฟ (ซ้าย) แสดง กรณี 4.1B: a1 และ b1 ∈ [a, b] & f(a1)f(b1) < 0 & f(a)f(a1) < 0 และ
(ขวา) แสดงจุด RF6 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [b1, a1] เมื่อ x∗ คือผลเฉลยแท้จริง

ภาพที่ 8: กราฟ (ซ้าย) แสดง กรณี 4.2A: a1 และ b1 ∈ [a, b] & f(a1)f(b1) > 0 & f(a)f(a1) < 0

& a1 < b1 และ (ขวา) แสดงจุด RF2 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [a, a1] เมื่อ x∗ คือผลเฉลยแท้จริง
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ภาพที่ 9: กราฟ (ซ้าย) แสดง กรณี 4.2B: a1 และ b1 ∈ [a, b] & f(a1)f(b1) > 0 & f(a)f(a1) < 0

& b1 < a1 และ (ขวา) แสดงจุด RF4 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [a, b1] เมื่อ x∗ คือผลเฉลยแท้จริง

ภาพที่ 10: กราฟ (ซ้าย) แสดง กรณี 4.2C: a1 และ b1 ∈ [a, b] & f(a1)f(b1) > 0 & f(a)f(a1) > 0

& b1 > a1 และ (ขวา) แสดงจุด RF5 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [b1, b] เมื่อ x∗ คือผลเฉลยแท้จริง

ภาพที่ 11: กราฟ (ซ้าย) แสดง กรณี 4.2D: a1 และ b1 ∈ [a, b] & f(a1)f(b1) > 0 & f(a)f(a1) > 0

& a1 > b1 และ (ขวา) แสดงจุด RF3 ที่ได้จากวิธีแก้ตำแหน่งผิดบนช่วงปิด [a1, b] เมื่อ x∗ คือผลเฉลยแท้จริง
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4 ผลการศึกษา
ในตารางที่ 1 แสดงผลการเปรียบเทียบจำนวนรอบการทำซ้ำ (รอบ) เวลาที่ใช้ในการประมวลผล (วินาที) ผล
เฉลยโดยประมาณ และค่าคลาดเคลื่อนสัมพัทธ์ ของวิธีแก้ตำแหน่งผิด (RF), วิธีของนิวตัน (NR), อัลกอริทึมผสม
CJ และอัลกอริทึมผสมใหม่ HA ในการหาผลเฉลยของสมการไม่เชิงเส้นที่อยู่ในรูปแบบสมการที่ (2.1) จำนวน 6
สมการ และมีผลเฉลยอย่างน้อยหนึ่งผลเฉลยบนช่วงปิด [a, b] (ให้ a เป็นจุดเริ่มต้นสำหรับวิธีของนิวตัน) โดย
กำหนดไว้คือ f1(x) : sin(x3) = 0 บนช่วง [1.4, 1.6], f2(x) : esin(x) − 2x = 0 บนช่วง [0.1, 4.0],
f3(x) : −x5 + 3x − 2 = 0 บนช่วง [−2.0,−1.0], f4(x) : x3 − 8x − 4 = 0 บนช่วง [2.0, 4.0],
f5(x) : cos(x) − x3 = 0 บนช่วง [0.1, 1.0] และ f6(x) : 10xe−x2 − 1 = 0 บนช่วง [1.0, 2.0] โดยใช้
ค่าคลาดเคลื่อนสัมพัทธ์ |xi−xi−1|

|xi| และ Tolerance error, ϵ = 1× 10−10

และในตารางที่ 2 เป็นการเปรียบเทียบเวลาที่ใช้ในการประมวลผลและค่าคลาดเคลื่อนสัมพัทธ์ โดยการกำหนด
จำนวนรอบการทำซ้ำที่เท่ากันคือ 3 รอบ

ตารางที่ 1: แสดงจำนวนรอบการทำซ้ำ (รอบ) เวลาที่ใช้ในการประมวลผล (วินาที) ผลเฉลยโดยประมาณ และ
ค่าคลาดเคลื่อนสัมพัทธ์ของวิธีแก้ตำแหน่งผิด (RF), วิธีของนิวตัน (NR), อัลกอริทึมผสม CJ และอัลกอริทึมผสม
ใหม่ HA โดยใช้ ϵ = 1× 10−10

ฟังก์ชัน f(x) = 0 วิธี จำนวนรอบ เวลา (sec.) ผลเฉลยโดยประมาณ ค่าคลาดเคลื่อน

f1(x) : sin(x3) = 0

RF 5 0.000591 1.46459188756152 1.7586588e-14
NR 5 0.000523 1.46459188756152 1.5160852e-16
CJ 7 0.001377 1.46459188756152 4.3194631e-11
HA 3 0.001542 1.46459188756152 1.0712961e-11

f2(x) : esin(x) − 2x = 0

RF 38 0.026655 1.31594217966101 5.6688825e-11
NR 6 0.000416 1.31594217974302 7.5420865e-12
CJ 8 0.001287 1.31594217974302 ∼0.0000000
HA 5 0.001683 1.31594217974302 ∼0.0000000

f3(x) : −x5 + 3x− 2 = 0

RF 39 0.001655 -1.44685724776065 8.1818542e-11
NR 7 0.000619 -1.44685724791387 1.5346684e-16
CJ 13 0.001382 -1.44685724791387 9.0545434e-15
HA 5 0.001979 -1.44685724791387 3.7138975e-14

f4(x) : x3 − 8x− 4 = 0

RF 21 0.001068 3.05137424163987 6.2137358e-11
NR 8 0.000580 3.05137424173104 ∼0.0000000
CJ 10 0.001513 3.05137424173104 4.4869194e-13
HA 4 0.001851 3.05137424173104 8.3080050e-11

f5(x) : cos(x)− x3 = 0

RF 13 0.000978 0.86547403310019 1.2135339e-11
NR 11 0.000804 0.86547403310161 1.1332183e-12
CJ 9 0.001434 0.86547403310161 ∼0.0000000
HA 4 0.001744 0.86547403310161 1.2827918e-16

f6(x) : 10xe−x2 − 1 = 0

RF 19 0.001179 1.67963061048606 8.0497634e-11
NR 5 0.000573 1.67963061042845 1.8677001e-11
CJ 8 0.001393 1.67963061042845 1.4647591e-13
HA 4 0.001699 1.67963061042845 1.3219848e-16
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ตารางที่ 2: แสดงจำนวนรอบการทำซ้ำ (รอบ) เวลาที่ใช้ในการประมวลผล (วินาที) ผลเฉลยโดยประมาณ และ
ค่าคลาดเคลื่อนสัมพัทธ์ของวิธีแก้ตำแหน่งผิด (RF), วิธีของนิวตัน (NR), อัลกอริทึมผสม CJ และอัลกอริทึมผสม
ใหม่ HA โดยกำหนดให้จำนวนรอบการทำซ้ำ คือ 3 รอบ

ฟังก์ชัน f(x) = 0 วิธี จำนวนรอบ เวลา (sec.) ผลเฉลยโดยประมาณ ค่าคลาดเคลื่อน

f1(x) : sin(x3) = 0

RF 3 0.000437 1.46459188514296 1.0555032e-05
NR 3 0.000372 1.46459188806748 1.8591463e-05
CJ 3 0.000782 1.46459188806748 1.8591463e-05
HA 3 0.001542 1.46459188756152 1.0712961e-11

f2(x) : esin(x) − 2x = 0

RF 3 0.000432 0.96338604616086 1.9337086e-01
NR 3 0.000324 1.31788083269659 3.4873415e-02
CJ 3 0.000762 1.31788083269659 2.0363591e-01
HA 3 0.001429 1.31594217514529 1.3641307e-03

f3(x) : −x5 + 3x− 2 = 0

RF 3 0.000607 -1.32671339825160 5.6786598e-02
NR 3 0.000442 -1.45284370164767 4.0375926e-02
CJ 3 0.000825 -1.45284370164767 4.0375926e-02
HA 3 0.001762 -1.44682970720008 1.4930916e-02

f4(x) : x3 − 8x− 4 = 0

RF 3 0.000529 2.99583866628475 3.6289087e-02
NR 3 0.000413 3.21704489807048 1.7842458e-01
CJ 3 0.001103 3.05163835253246 7.8380862e-03
HA 3 0.001732 3.05137424147753 3.4831530e-04

f5(x) : cos(x)− x3 = 0

RF 3 0.000473 0.86309198477770 2.0046884e-02
NR 3 0.000402 3.44334400191801 5.0591468e-01
CJ 3 0.000892 0.86547407595298 2.4274236e-04
HA 3 0.001568 0.86547403310161 4.5812050e-06

f6(x) : 10xe−x2 − 1 = 0

RF 3 0.000434 1.69357702223456 1.7942062e-02
NR 3 0.000369 1.67962488207810 1.4571204e-03
CJ 3 0.000710 1.67962488207810 1.4571204e-03
HA 3 0.001507 1.67963061042845 2.0359108e-07

5 สรุปผลและข้อเสนอแนะ
ผู้วิจัยได้นำเสนออัลกอริทึมผสมใหม่เป็นวิธีทำซ้ำเพื่อหาผลเฉลยเชิงตัวเลขของสมการไม่เชิงเส้นจำนวน 6 สมการ
มีผลการเปรียบเทียบดังตารางที่ 1 และผู้วิจัยพบว่าอัลกอริทึมผสมใหม่ HA มีจำนวนรอบของการทำซ้ำคือ 3,
5, 5, 4, 4 และ 4 รอบ ตามลำดับ ซึ่งน้อยกว่าวิธีแก้ตำแหน่งผิด วิธีของนิวตัน และอัลกอริทึมผสม CJ [3]
โดยทั้ง 4 วิธีให้ผลเฉลยโดยประมาณใกล้เคียงกัน แต่วิธีของนิวตันใช้เวลาในการคำนวณหาผลเฉลยทั้ง 6 สมการ
น้อยที่สุด คือ 0.000523, 0.000416, 0.000619, 0.000580, 0.000804 และ 0.000573 วินาที ตามลำดับ
และเมื่อกำหนดให้ทุกวิธีมีจำนวนรอบการทำซ้ำ 3 รอบเท่ากันในตารางที่ 2 พบว่าอัลกอริทึมผสมใหม่ HA มีค่า
คลาดเคลื่อนสัมพัทธ์น้อยที่สุด คือ 1.0712961e-11, 1.3641307e-03, 1.4930916e-02, 3.4831530e-04,
4.5812050e-06 และ 2.0359108e-07 ตามลำดับ อย่าไรก็ตามผู้วิจัยมีข้อสังเกตคืออัลกอริทึมผสมใหม่ HA มี
ขั้นตอนที่ซับซ้อนเมื่อเทียบกับทั้ง 3 วิธีที่นำมาเปรียบเทียบ เพราะว่าจะต้องกำหนดเงื่อนไขให้ครอบคลุมทุกกรณี
ที่เป็นไปได้ ดังนั้นผู้วิจัยคิดว่าอัลกอริทึมผสมใหม่ HA นี้ควรจะถูกปรับปรุงให้มีความกระชับมากกว่านี้ในอนาคต
อีกทั้งควรเพิ่มผลการวิเคราะห์เรื่องอัตราและอันดับของการลู่เข้า (Rate and order of convergence) ของอัล
กอริทึมผสมใหม่ HA ด้วย
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Abstract

The Black-Scholes pricing model is a significant tool for the financial market to predict the
current value of the European call option. In this paper, the Black-Scholes model with two
assets is modified in the form of time fractional derivative. The fractional derivative used here
is the Caputo derivative. An approximate analytical solution of the fractional Black-Scholes
European option pricing with two assets is investigated by utilizing the residual power series
method (RPSM). An analytical solution for such a fractional problem is in the form of a
special function, the Mittag-Leffler function. The RPSM technique is to assume the solution
of differential equations as a fractional power series and then solve for the coefficients of the
series iteratively under certain requirements. Another primary outcome demonstrates that
the RPSM approach is not more complicated but is more effective in solving both differential
equations and fractional differential equations.

Keywords: Residual power series method, fractional Black-Scholes equation, approximate an-
alytical solution, fractional power series.
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1 Introduction
Options trading can be an effective way for investors to speculate on the future direction of the
overall stock market or individual securities, like stocks or bonds. Options contracts give traders
the flexibility to buy or sell an underlying asset at a specified price (also known as the strike
price) by a specified date without actually having to buy the asset. This means that traders can
potentially profit from changes in the price of an asset without having to invest large amounts of
capital upfront. Mainly, options can be isolated into two types of options: put and call [1]. The
terms ”put option” and ”call option” refer to contract options that give the holder the right,
†Speaker. ‡Corresponding author.
Email: s6304021820082@email.kmutnb.ac.th (P.Winyarat), panumart.s@sci.kmutnb.ac.th (P.Sawangtong).
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but not the obligation, to buy or sell an underlying asset at a predetermined price (strike price)
within a certain time period.

Put Option: a put option gives the holder the right to sell the underlying asset at the strike
price. The put option holder benefits when the market price of the underlying asset is lower
than the strike price.

Call Option: a call option gives the holder the right to buy the underlying asset at the strike
price. The call option holder benefits when the market price of the underlying asset is higher
than the strike price.

Put and call options allow investors to manage risk and implement investment strategies
based on their expectations of the future price movements of the underlying asset.

This study will focus on the European call option, a contract that allows the buyer or seller
to execute the option only at its expiration date, following the assumptions of the Black-Scholes
model (BSM) [2].

The BSM is a widely used options pricing model that was developed by Fisher Black, Myron
Scholes, and Robert Merton in 1973, referred to as [3, 4]. The Black-Scholes model is used to
calculate the premium value of a call or put option based on current stock prices, expected
dividends, the option’s strike price, anticipated interest rates, expiry date, and volatility. By
using the BSM, investors can calculate the fair price of options and make informed tool for
investors looking to manage risk and maximize returns in today’s complex financial markets.

In the past, there have been many researchers studying the BSM by various analytical meth-
ods [5–10] such as the generalized differential transform technique, the Homotopy perturbation
scheme, the Adomian decomposition scheme, the variation iteration method, etc. The residual
power series (RPS) approach is a powerful numeric-analytic technique that has been devel-
oped to solve a wide range of ordinary, partial, fuzzy differential equations, integral-differential
equations, and integral-differential equations of fractional order. This approach is particularly
effective because it provides closed-form solutions in terms of known functions, making it an at-
tractive optimization technique for solving complex problems. For example, it has been success-
fully applied to solve time-fractional Fokker-Planck models, Newell-Whitehead-Segel equations
of fractional order, and fractional integral equations, among others. This versatility makes it
a valuable tool in many areas of science and engineering [11]. Another advantage of the RPS
approach is its ability to provide accurate and efficient solutions to non-linear problems. By
coupling analytical approaches with the Laplace transform operator, the RPS approach can in-
crease the accuracy of solutions and reduce the time required to solve complex problems. This
is particularly important in fields of natural science where accurate solutions are crucial for
understanding complex phenomena.

In the following, we provide a brief overview of the history of fractional calculus and the
reasons why authors use fractional derivatives to develop the BS model in fractional-order form.

Fractional calculus was first introduced in 1695, when L’Hopital’s wrote a letter to Leibniz
[12] asking what would be the result of ∂

1
2 x

∂x
1
2

. Since then, numerous mathematicians have started
to be interested in this field. Led to many famous fractional derivatives that were developed [13],
for example, Caputo fractional derivatives, Reiman-Liouville fractional derivatives, Atangana-
Baleanu fractional derivatives, etc. Fractional-order ordinary and partial differential equations
have been applied to many fields, such as finance, engineering, and science. Fractional-order
derivatives and integrals have indeed proven to be very useful in describing the memory and
hereditary properties of various real-world processes [14]. This is because these derivatives and
integrals can capture the behavior of systems that exhibit non-local, long-range, or multi-scale
dependencies. In other words, they can account for the way in which past events influence the
behavior of the system at any given moment in time, even if those events occurred a long time
ago [15].

In this article, we will find the approximate analytical solution of a two-dimensional fractional
Black-Scholes European option pricing equation based on the Caputo derivative by applying the
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RPS method.
The Black-Scholes European option pricing equation with two assets is in the following

form [16]:

∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

+ wS1S2σ1σ2
∂2u

∂S1S2
+ l(S1

∂u

∂S1
+ S2

∂u

∂S2
)− lu = 0 (1.1)

for S1, S2 ∈ (0,∞), and t ∈ [0, T ]. The terminal condition is given by:

u(S1, S2, T ) = max(β1S1 + β2S2 −K, 0), (1.2)

where the meaning of each variable is described in Table 1.

Table 1: Parameters Identification of The two-dimensional fractional Black-Scholes European
option pricing equation

Symbol Identification
u the value of the call option
S1 price of underlying asset 1
S2 price of underlying asset 2
T expiring date
σ1 volatility of underlying asset 1
σ1 volatility of underlying asset 2
w correlation coefficient between price of underlying asset 1 and asset 2
l risk free rate of interest
β1 proportion of investment on asset 1
β2 proportion of investment on asset 2
K max(k1, k2)
k1 strike price of asset 1
k2 strike price of asset 2

Next, we simplify the BS Model (1.1) and its terminal condition (1.2) via the following
transformation:

x = ln(S1)− (l − 1

2
σ2
1)τ, y = ln(S2)− (l − 1

2
σ2
2)τ, t = T − τ,

and
u = (x, y, τ) = e−r(T−τ)v(x, y, t).

Note that the procedure for obtaining the simplified version of the Black-Scholes model may be
found in references [17–19]. The reduction process provided a rewritten Black-Scholes partial
differential equation for a European call option with two assets:

vt =
1

2
σ2
1

∂2v

∂x2
+

1

2
σ2
2

∂2v

∂y2
+ wσ1σ2

∂2v

∂x∂y
, for (x, y, t) ∈ R× R× [0, T ], (1.3)

and the initial condition (IC):

v(x, y, 0;α) = max(c1ex + c2e
y −K, 0), (1.4)

where c1 and c2 are constants determined by c1 = β1e
(l− 1

2
σ2
1)T and c2 = β2e

(l− 1
2
σ2
2)T .
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The Black-Scholes European option pricing equation with two assets will be modified in this
article by substituting the integer-order time derivative in equation (1.3) with the time-fractional
derivative in the Caputo sense with order α ∈ (0, 1] as follows:

Dα
t v =

1

2
σ2
1

∂2v

∂x2
+

1

2
σ2
2

∂2v

∂y2
+ wσ1σ2

∂2v

∂x∂y
for (x, y, t) ∈ R× R× [0, T ], (1.5)

with the IC:

v(x, y, 0;α) = max(c1ex + c2e
y −K, 0), (1.6)

where c1 and c2 are constants defined by (1.4) and the symbol Dα
t represents the Caputo deriva-

tive with order α as defined in Definition 2.5.
The aim of this study is to use the RPS approach to provide an approximate analytical

solution for the fractional Black-Scholes European option pricing problem with two assets (1.5)-
(1.6), based on the Caputo derivative.

2 Preliminaries
This section provides definitions of special functions, fractional integrals, and derivatives [20],
which will subsequently be used throughout the work. Let us start with the first special function,
the Gamma function.

Definition 2.1. The Gamma function, denoted by Γ, is defined as:

Γ(z) =

∫ ∞

0
tz−1e−tdt for z > 0.

The next lemma deals with some properties of Gamma function.

Lemma 2.2. (Some properties of Gamma function)

a) Γ(z + 1) = zΓ(z) for any z > 0.

b) Γ(z + 1) = z! if z is positive integer.

Definition 2.3. The Mittag-Leffler (ML) function with order α > 0, denoted by Eα, is given
by:

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
for z is any real number.

It follows from Definition 2.3 that E1(z) =
∑∞

n=0
zn

Γ(n+1) = ez.
Next, we will introduce the definition of fractional integral and derivative, used in this work,

together with their respective properties [13].

Definition 2.4. The Reimann-Liouville fractional integral operator of order α > 0 for the
function g is determined by:

Jα
t g(t) =

∫ t

0
(t− τ)α−1g(τ)dτ, for t > 0,

if the integral exists.
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Definition 2.5. The Caputo fractional derivative with order 0 < α ≤ 1 for the function g is
defined by:

Dα
t g(t) =

1

Γ(1− α)

∫ t

0
(t− τ)−αg(τ)dτ, for t > 0,

if the integral exists.

The following give some properties of the fractional integral and derivative used throughout
this paper.

Lemma 2.6. (Some properties of the fractional integral and derivative) Let β and γ be any
constant.

a) J0
t g(t) = g(t) for t > 0.

b) Dβ
t t

γ = 0 if γ < β.

c) Dβ
t t

γ = Γ(γ+1)
Γ(γ+1−β) t

γ−β if γ ≥ β and γ + 1− β is not equal to zero.

We next introduce the fractional-order power series with the parameter α [21].

Definition 2.7. (The fractional-order power series with the parameter α ) The fractional-order
power series with the parameter α (in three variables) around 0 with respect to t ≥ 0 is an
infinite series of the form:

∞∑
n=0

gn(x, y)
tnα

Γ(1 + nα)
for any (x, y, t) ∈ R× R× [0, T ],

where gn represents the coefficient of the nth term for any n ∈ N ∪ {0}.

Note that the fractional-order power series with the parameter α can be reduced to the
classical power series when α = 1.

3 RPSM Methodology
Let us begin by considering the generalized fractional nonlinear differential equation:

Dα
t h(x, y, t) +K[x, y]h(x, y, t) +Q[x, y]h(x, y, t) = G(x, y, t), (x, y, t) ∈ R× R× [0, T ], (3.1)

and satisfies initial condition:

h(x, y, 0) = g(x, y), (x, y) ∈ R× R, (3.2)

where K[x, y] and Q[x, y] are the linear and non-linear operator in x and y, G(x, y, t) is the
continuous function, and Dα

t denotes the Caputo fractional derivative with order α.
The RPSM process, modified from [10], consists of the following steps.

Step 1. We assume that the solution h of the generalized fractional differential equation (3.1)
and (3.2) is in the form of the fractional power series about the point t = 0:

h(x, y, t) =

∞∑
n=0

gn(x, y)
tnα

Γ(1 + nα)
, (3.3)
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where the function gn(x, y) is determined by the process below.
It is clear that h(x, y, 0) = g(x, y) = g0(x, y).
We next define the kth truncated series hk(x, y, t) for h by:

hk(x, y, t) =

k∑
n=0

gn(x, y)
tnα

Γ(1 + nα)
for any k = 1, 2, 3, . . . ,

or

hk(x, y, t) = g(x, y) +

k∑
n=1

gn(x, y)
tnα

Γ(1 + nα)
for any k = 1, 2, 3, . . . . (3.4)

Step 2. Before finding the value of coefficient gn(x, y) for n = 1, 2, 3, . . . in equation (3.4), we
define the residual function Resh for the fractional problem (3.1) and (3.2) by:

Resh(x, y, t) = Dα
t h(x, y, t) +K[x, y]h(x, y, t) +Q[x, y]h(x, y, t)−G(x, y, t), (3.5)

and the kth residual function Resh,k for the fractional problem (3.1) and (3.2) by: for any
k = 1, 2, 3, . . . ,

Resh,k(x, y, t) = Dα
t hk(x, y, t) +K[x, y]hk(x, y, t) +Q[x, y]hk(x, y, t)−G(x, y, t), (3.6)

It is obvious that Resh(x, y, t) = 0 and lim
k→∞

Resh,k(x, y, t) = Resh(x, y, t) for any (x, y, t) ∈
R× R× [0, T ].

In order to specific the value of coefficient gn, we must to use the following requirements:

D
(k−1)α
t Resh,k(x, y, 0) = 0, for any k = 1, 2, 3, . . . . (3.7)

Step 3. We substitute all values of gn in equation (3.3). In the end, we get the desired solution
for the generalized fractional differential equations (3.1) and (3.2).

4 Main Results
In this section, we solve the fractional Black-Scholes European option pricing equation with two
assets defined by (1.5) and (1.6) by the RPSM technique. Let us start:

Step 1. We assume that the solution v of the fractional Black-Scholes European option pricing
equation with two assets defined by (1.5) and (1.6) is in the form of the fractional power
series about the point t = 0:

v(x, y, t) =
∞∑
n=0

gn(x, y)
tnα

Γ(1 + nα)
, for (x, y, t) ∈ R× R× [0, T ]. (4.1)

It is clear that

v(x, y, 0) = g0(x, y) = max(c1ex + c2e
y −K, 0).

We next define the kth truncated series vk(x, y, t) for v by:

vk(x, y, t) = g0(x, y) +

k∑
n=1

gn(x, y)
tnα

Γ(1 + nα)
for , k = 1, 2, 3, . . . . (4.2)
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Step 2. The residual function Resv for the fractional Black-Scholes European option pricing
equation with two assets (1.5) and (1.6) is constructed by:

Resv(x, y, t) = Dα
t v −

1

2
σ2
1x

2 ∂
2v

∂x2
− 1

2
σ2
2y

2∂
2v

∂y2
− wσ1σ2

∂2v

∂x∂y
,

and the kth residual function Resv of the fractional problem (1.5) and (1.6) is given by:

Resv,k(x, y, t) = Dα
t vk −

1

2
σ2
1x

2 ∂2

∂x2
vk −

1

2
σ2
2y

2 ∂2

∂y2
vk − wσ1σ2

∂2

∂x∂y
vk. (4.3)

To find the first unknown coefficient g1, we let k = 1 in equation (4.2) and (4.3) and then,
we have:

Resv,1(x, y, t) = Dα
t v1 −

1

2
σ2
1x

2 ∂2

∂x2
v1 −

1

2
σ2
2y

2 ∂2

∂y2
v1 − wσ1σ2

∂2

∂x∂y
v1, (4.4)

and

v1(x, y, t) = g0(x, y) + g1(x, y)
tα

Γ(1 + α)
. (4.5)

By substituting equation (4.5) into equation (4.4), we obtain:

Resv,1(x, y, t) = g1(x, y)−
1

2
σ2
1

[
g0xx(x, y) + g1xx(x, y)

tα

Γ(1 + α)

]
+
1

2
σ2
2

[
g0yy(x, y)

+ g1yy(x, y)
tα

Γ(1 + α)

]
−wσ1σ2

[
g0xy(x, y) + g1xy(x, y)

tα

Γ(1 + α)

]
.

Then, the residual function at t = 0 is:

Resv,1(x, y, 0) = g1(x, y)−
1

2
σ2
1g0xx(x, y)−

1

2
σ2
2g0yy(x, y)− wσ1σ2g0xy(x, y).

By the condition (3.7), Resv,1(x, y, 0) = 0, that we obtain that:

g1(x, y) =
1

2
σ2
1g0xx(x, y) +

1

2
σ2
2g0yy(x, y) + wσ1σ2g0xy(x, y),

or

g1(x, y) =
1

2
σ2
1max(c1ex, 0) +

1

2
σ2
2max(c2ey, 0).

Hence, the first RPS approximate analytical solution of the fractional problem (1.5) and
(1.6) is:

v1(x, y, t) = max(c1ex + c2e
y − k, 0) +

1

2
σ2
1max(c1ex, 0) +

1

2
σ2
2max(c2ey, 0)

tα

Γ(1 + α)
.

Now putting k = 2 in equations (4.2) and (4.3) to determine the second unknown coefficient
g2(y), we have:

Resv,2(x, y, t) = Dα
t v2 −

1

2
σ2
1x

2 ∂2

∂x2
v2 −

1

2
σ2
2y

2 ∂2

∂y2
v2 − wσ1σ2

∂2

∂x∂y
v2, (4.6)

and

v2(x, y, t) = g(x, y) + g1(x, y)
tα

Γ(1 + α)
+ g2(x, y)

t2α

Γ(1 + 2α)
. (4.7)
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From equations (4.6) and (4.7), we get:

Resv,2(x, y, t) = g1(x, y) + g2(x, y)
tα

Γ(1 + α)

− 1

2
σ2
1

[
g0xx(x, y) + g1xx(x, y)

tα

Γ(1 + α)
+ g2xx(x, y)

t2α

Γ(1 + 2α)

]
− 1

2
σ2
2

[
g0yy(x, y) + g1yy(x, y)

tα

Γ(1 + α)
+ g2yy(x, y)

t2α

Γ(1 + 2α)

]
− wσ1σ2

[
g0xy(x, y) + g1xy(x, y)

tα

Γ(1 + α)
+ g2xy(x, y)

t2α

Γ(1 + 2α)

]
.

Let us consider:

Dα
t Resv,2(x, y, t) = g2(x, y)

− 1

2
σ2
1

[
g1xx(x, y) + g2xx(x, y)

tα

Γ(1 + α)

]
− 1

2
σ2
2

[
g1yy(x, y) + g2yy(x, y)

tα

Γ(1 + α)

]
− wσ1σ2

[
g1xy(x, y) + g2xy(x, y)

tα

Γ(1 + α)

]
.

It follows by the condition (3.7), Dα
t Resv,2(x, y, 0) = 0, that we have:

g2(x, y) =
1

2
σ2
1g1xx(x, y) +

1

2
σ2
2g1yy(x, y) + wσ1σ2g1xy(x, y),

or

g2(x, y) =

(
1

2
σ2
1

)2

max(c1ex, 0) +
(
1

2
σ2
2

)2

max(c2ey, 0).

Hence the second RPS approximate solution of the fractional problem (1.5) and (1.6) is:

v2(x, y, t) = max(c1ex + c2e
y − k, 0) +

[
1

2
σ2
1max(c1ex, 0) +

1

2
σ2
2max(c2ey, 0)

]
tα

Γ(1 + α)

+

[(
1

2
σ2
1

)2

max(c1ex, 0) +
(
1

2
σ2
2

)2

max(c2ey, 0)
]

t2α

Γ(1 + 2α)
.

To determine the third unknown coefficient g3, we let k = 3 in equations (4.2) and (4.3),
and then we get:

Resv,3(x, y, t) = Dα
t v3 −

1

2
σ2
1x

2 ∂2

∂x2
v3 −

1

2
σ2
2y

2 ∂2

∂y2
v3 − wσ1σ2

∂2

∂x∂y
v3, (4.8)

and

v3(x, y, t) = g(x, y) + g1(x, y)
tα

Γ(1 + α)
+ g2(x, y)

t2α

Γ(1 + 2α)
+ g3(x, y)

t3α

Γ(1 + 3α)
. (4.9)

In following, we substitute equation (4.9) into equation (4.8) and then we use the condition
(3.7), D2α

t Resv3(x, y, 0) = 0. Finally, we obtain:

g3(x, y) =

(
1

2
σ2
1

)3

max(c1ex, 0) +
(
1

2
σ2
2

)3

max(c2ey, 0),
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and the third RPS approximate solution is:

v3(x, y, t) = max(c1ex + c2e
y − k, 0)

+

[(
1

2
σ1

)2

max(c1ex, 0) +
(
1

2
σ2

)2

max(c2ey, 0)
]

tα

Γ(1 + α)

+

[(
1

2
σ2
1

)2

max(c1ex, 0) +
(
1

2
σ2
2

)2

max(c2ey, 0)
]

t2α

Γ(1 + 2α)

+

[(
1

2
σ2
1

)3

max(c1ex, 0) +
(
1

2
σ2
2

)3

max(c2ey, 0)
]

t3α

Γ(1 + 3α)
.

Likewise, the coefficients of gn and the n-th RPS approximate solution vn for any n ≥ 4
can be evaluated as previously discussed and

gn(x, y) =

(
1

2
σ2
1

)n

max(c1ex, 0) +
(
1

2
σ2
2

)n

max(c2ey, 0),

and

vn(x, y, t) = max(c1ex + c2e
y − k, 0)

+

[(
1

2
σ1

)2

max(c1ex, 0) +
(
1

2
σ2

)2

max(c2ey, 0)
]

tα

Γ(1 + α)

+

[(
1

2
σ2
1

)2

max(c1ex, 0) +
(
1

2
σ2
2

)2

max(c2ey, 0)
]

t2α

Γ(1 + 2α)

+

[(
1

2
σ2
1

)3

max(c1ex, 0) +
(
1

2
σ2
2

)3

max(c2ey, 0)
]

t3α

Γ(1 + 3α)

...

+

[(
1

2
σ2
1

)n

max(c1ex, 0) +
(
1

2
σ2
2

)n

max(c2ey, 0)
]

tnα

Γ(1 + nα)
, (4.10)

respectively.

Step 3. By equation (4.10), the solution of the fractional Black-Scholes European option pricing
equation with two assets defined by (1.5) and (1.6) is in the following form:

v(x, y, t) =
∞∑
n=0

gn(x, y)
tnα

Γ(1 + nα)

= max(c1ex + c2e
y − k, 0)

+
∞∑
n=1

[(
1

2
σ2
1

)n

max(c1ex, 0) +
(
1

2
σ2
2

)n

max(c2ey, 0)
]

tnα

Γ(1 + nα)

= max(c1ex + c2e
y − k, 0)

+ max(c1ex, 0)
∞∑
n=1

(
1

2
σ2
1

)n tnα

Γ(1 + nα)
+ max(c2ey, 0)

∞∑
n=1

(
1

2
σ2
2

)n tnα

Γ(1 + nα)

= max(c1ex + c2e
y − k, 0)

+ max(c1ex, 0)
[ ∞∑
n=0

(
σ2
1

2

)n tnα

Γ(1 + nα)
− 1

]
+max(c2ey, 0)

[ ∞∑
n=0

(
σ2
2

2

)n tnα

Γ(1 + nα)
− 1

]
= max(c1ex + c2e

y − k, 0)

+ max(c1ex, 0)
[ ∞∑
n=0

(
σ2
1t

α

2

)n

Γ(1 + nα)
− 1

]
+max(c2ey, 0)

[ ∞∑
n=0

(
σ2
2t

α

2

)n

Γ(1 + nα)
− 1

]
,
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or

v(x, y, t) = max(c1ex + c2e
y − k, 0) + max(c1ex, 0)

[
Eα

(
σ2
1

2
tα
)
−1

]
+max(c2ey, 0)

[
Eα

(
σ2
2

2
tα
)
−1

]
,

where Eα is the ML function with order α.

The following theorem is the main result.

Theorem 4.1. The analytical solution for the fractional Black-Scholes European option pricing
equation with two assets defined by (1.5) with the IC (1.6) is in the following form:

v(x, y, t) = max(c1ex + c2e
y −K, 0) + max(c1ex, 0)

[
Eα

(
σ2
1

2
tα
)
−1

]
+max(c2ey, 0)

[
Eα

(
σ2
2

2
tα
)
−1

]
,(4.11)

where Eα is the ML function with order α. Furthermore, by the RPSM approach, the nth

truncated series of the approximate analytical solution for (1.5) with the IC (1.6) is given by:

vn(x, y, t) = max(c1ex + c2e
y −K, 0)

+

[(
1

2
σ1

)2

max(c1ex, 0) +
(
1

2
σ2

)2

max(c2ey, 0)
]

tα

Γ(1 + α)

+

[(
1

2
σ2
1

)2

max(c1ex, 0) +
(
1

2
σ2
2

)2

max(c2ey, 0)
]

t2α

Γ(1 + 2α)

+

[(
1

2
σ2
1

)3

max(c1ex, 0) +
(
1

2
σ2
2

)3

max(c2ey, 0)
]

t3α

Γ(1 + 3α)

...

+

[(
1

2
σ2
1

)n

max(c1ex, 0) +
(
1

2
σ2
2

)n

max(c2ey, 0)
]

tnα

Γ(1 + nα)
. (4.12)

The following is consequence from Theorem 4.1.

Corollary 4.2. The analytical solution for the Black-Scholes European option pricing equation
with two assets is in the following form:

v(x, y, t) = max(c1ex + c2e
y −K, 0) + max(c1ex, 0)

[
e

σ2
1t

2 − 1

]
+max(c2ey, 0)

[
e

σ2
2t

2 − 1

]
.

Proof. To get the proof of this corollary, we may analyze Theorem 4.1 with the value of α set
to 1.

5 Numerical Results and Discussions
In this part, we use Python program to plot graph of the analytical solution of the European call
option for two assets in the time fractional Black Scholes model, based on the Caputo derivative.
Each value of model parameters is shown in Table 2.

Graphs of the analytical solution u, given by (4.11), for the fractional Black-Scholes equation
(1.5) with the IC (1.6) with α = 1, α = 0.8, α = 0.5, and α = 0.25, are illustrated in Figure 1.
Obviously, the analytic solution of the two assets time fractional Black Scholes European call
Option in Caputo derivative sense of α = 1 and other alphas have an agree tendency as shown
in Figure 1. The graphs of option prices in Equation (4.11) corresponding to the assets x and y
in Figure 2-3 illustrate the outcome in the identical direction.

The European call option prices have lower values when α < 1 compared to when α = 1, as
seen in Table 3 and Figure 2-3. This implies that there is a direct proportionality between α
and v. As the quantity of alpha decreases, the value of European call options also lowers.
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Table 2: The values of model parameters

Model parameters Value
strike price(dollars): K 70

risk free rate of interest: l; 0.05
expiration date(year): t 2

volatility of the underlying stock 1: σ1 0.1
volatility of the underlying stock 2: σ2 0.2
proportion of investment on asset 1: β1 2
proportion of investment on asset 2: β2 1

Figure 1: European call option prices for α = 1(a),α = 0.8(b),α = 0.5(c),α = 0.25(d)

Table 3: Values of European call option as α = 1,α = 0.8,α = 0.5,α = 0.25

alpha α = 1 α = 0.8 α = 0.5 α = 0.25

x 2.9057 2.9057 2.9057 2.9057
y 3.8520 3.8520 3.8520 3.8520
t 2 2 2 2
v 19.1274 18.9782 18.6581 18.3201
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Figure 2: European call option prices for α = 1,α = 0.8, α = 0.5,α = 0.25,t = 2 years with
y = 4.19118

Figure 3: European call option prices for α = 1,α = 0.8, α = 0.5,α = 0.25,t = 2 years with
x = 3.52941

6 Conclusion

The application of the residual power series method (RPSM) allows us to derive an analytical
solution, as given by equation (4.11), and an approximate analytical solution, as determined
by equation (4.12), for a two-dimensional fractional Black-Scholes pricing model in the Caputo
sense, as described in equation (1.5), with the IC specified in equation (1.6), as presented in
Theorem 4.1. As with the main result, the residual power series method only needs a few
iterations to get a good answer, as shown in Theorem 4.1. According to the numerical result
in Figures 1-3, option pricing for α = 1 and α < 1 displays an agreed tendency, which shows
that the solutions of the time-fractional Black-Scholes equation in the sense of Caputo fractional
derivative and the classical Black-Scholes equation with two assets are concurred. However, we
observe that the order α of the fractional derivative in the Caputo sense has an effect on the
price of the European option. The smaller the number of alphas, the lower the price of the
European option, according to Table 3 and Figure 4.
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Figure 4: Value of the options for α = 1(a),α = 0.8(b),α = 0.5(c),α = 0.25(d)
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Abstract  
 This article estimates the value-at-risk of the buy-and-sell strategy by using the 
relative strength index (RSI) indicator on the EUR/USD exchange rate to assess market 
risk in financial asset portfolios. It focusing on potential declines in market value due to 
fluctuations in interest rates, foreign exchange rates, equity prices, or commodity prices. 
The historical sample covers January 4, 2021, to December 29, 2023 (780 days). We 
simulate the buy-and-sell strategy in 10,000 scenarios, using the relative strength index 
(RSI) indicator for the EUR/USD exchange rate. For each scenario, we generate the 
sequence of daily rate-of-return of the EUR/USD exchange rate over 260 days to 
approximate the probability of loss. Then, we use quadratic polynomial regression to 
determine the value-at-risk. The simulation measures investment risk at 95% and 99% 
confidence levels, indicating the probability that portfolio losses are smaller than 
estimated by the risk measure. The simulation result is that the maximum loss will not 
exceed 9.48% with 95% confidence and 12.27% with 99% confidence. 

Keywords: value at risk, relative strength index, forex, quadratic polynomial 
regression. 
2020 MSC: Primary 90-10. 
 

1 Introduction 

The value-at-risk model assesses market risk by gauging the potential decline in a portfolio's 
value within a specified timeframe and probability attributable to fluctuations in market 
prices or rates. Value-at-risk measurements typically represent percentiles aligned with the 
chosen confidence level. In practical applications, these estimates are computed across 
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percentiles ranging from the 90th to the 99.9th, with the 95th to 99th percentile range being 
the most frequently employed [5]. 

For calculating the value at risk of an investment in one year, we need to know the 
number of trading days in a year to calculate an investment's risk value. As previously noted, 
the forex market operates around the clock, 24 hours each day, but exclusively for six days a 
week, excluding Saturdays. Even on Sundays, the market has limited hours, commencing at 
5 p.m. EST (Eastern Standard Time) with minimal volatility until early Monday morning, 
when market liquidity is high. The value-at-risk calculation considers only five trading days 
per week, disregarding Saturdays and Sundays [4]. Consequently, there are a total of 5×52 = 
260 days annually. 

Despite over 50 currencies being traded regularly, the US dollar (USD) reigns 
supreme, with the euro (EUR) and Japanese yen (JPY) trailing behind. The US dollar 
(USD) holds a dominant position as a vehicle currency, involved in nearly 90% of global 
foreign exchange transactions. Vehicle currency is used as a unit of account, medium of 
exchange, and store of value not only for transactions within the country but also 
for international public and private transactions. Illustrating the global role of the US dollar 
as the main vehicle currency, the top three most traded currency pairs, with EUR/USD 
leading at 23%, followed by USD/JPY at 14%, and GBP/USD at 10%. So, EUR/USD 
remains the largest currency pair [3]. 

Welles Wilder created the relative strength index (RSI) indicator and published it in 
1978 [7]. In several trading systems, the Relative Strength Index (RSI) is a popular oscillator 
[6]. Anson et al. provide three situations: the buy signal appears when the RSI crosses 30 
from above, and the sell signal appears when the RSI crosses 70 from below. Second, when 
the RSI goes back to 30 from below, it signals a buy, and when it goes back to 70 from above, 
it signals a sell. Third, a more complicated analysis of the RSI is made to obtain buying and 
selling signals [2]. 

The relative strength index (RSI) is a technical analysis indicator used to assess 
overbought or oversold conditions in an asset's price. It is a bounded oscillator ranging from 
0 to 100. Classically, an RSI above 70 suggests overbought conditions, signaling a potential 
price correction, while an RSI below 30 indicates oversold conditions, suggesting a potential 
price rebound.  The formula for calculating RSI is 

𝑅𝑅𝑅𝑅𝑅𝑅 =  100 −
100

1 + Average of 𝑛𝑛 days’ up closes
Average of 𝑛𝑛 days’ down closes

 , 

where 𝑛𝑛 represents the number of periods that the trader chooses to analyze. The RSI (30,70) 
is widely used; for example, Anderson, B., and Li, S. (2015) explore the Relative Strength 
Index (RSI) trading profitability using daily data for the Swiss franc/US dollar exchange rate. 
The standard RSI thresholds of ≤ 30 and ≥ 70 for buy or sell signals have shown no trading 
profit but a slight loss over the past decade. However, modifying the threshold parameters 
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reveals that deviating from the commonly used combination can result in profitable trading 
signals using RSI [1]. 

Marek and Sediva [6] compare four trading strategies: RSI with standard parameters, 
daily optimized parameters, a simple buy-and-hold strategy, and a Kelly gambling-based 
strategy. Simulations were conducted using randomized time intervals spanning from 
February 15, 2007, to February 14, 2017. Sixteen companies from the S&P 500, which ranked 
among the top 10 largest companies from 2006 to 2009, were selected for simulation. The 
results revealed that the best strategy is buy-and-hold strategy [6].   

In this article, we generate the sequence of the daily rate of return of EUR/USD 
exchange rates over 260 days from the average and standard deviation of the historical sample 
covering January 4, 2021, to December 29, 2023 (780 days). Next, we simulate buy-and-sell 
strategy in 10,000 scenarios, using the Relative Strength Index (RSI) indicator for the 
EUR/USD exchange rate to approximate the probability of loss. Then, we use quadratic 
polynomial regression to determine the value at risk. The simulation measures investment 
risk at 95% and 99% confidence levels. 
 

2  Data and Simulation Methodology 
 
2.1  The RSIBS (30,70) Strategy 

In this section, we shall introduce the RSIBS (30,70) strategy, which is considered the signal 
for buying and selling with an RSI equal to 30 and 70, respectively.  
The procedure of the RSIBS (30,70) strategy is as follows:  

1. We start with the initial capital of 𝑅𝑅0 = 10000 USD. In the first order, investors 
wait until the RSI of the exchange rate EUR/USD reaches 30 to open a buy or sell 
order.  

2. In the 𝑘𝑘 − 𝑡𝑡ℎ order,  
2.1 If the (𝑘𝑘 − 1) − 𝑡𝑡ℎ order is a buy order, we shall wait until 𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 70 and close 

it. After that, we shall open a sell order immediately. 
2.2 If the (𝑘𝑘 − 1) − 𝑡𝑡ℎ order is a sell order, we shall wait until 𝑅𝑅𝑅𝑅𝑅𝑅 ≤ 30 and close it. 

After that, we shall open a buy order immediately. 
2.3 If the last order wasn't closed within the specified timeframe, it would not be 

considered. 
 

However, most investors focus on returns without calculating the risks involved. This 
research presents another form of risk measurement called value at risk using the RSIBS 
(30,70) strategy. 

Let 𝑇𝑇𝑘𝑘 be the time of investment in k-th order and 𝑃𝑃𝑛𝑛 be the price of EUR/USD at 
time 𝑛𝑛. The activity of the strategy is described as follows: 
The first order is considered in two situations: 
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Case 1: The 1-st order is a buy order, the investor has 𝐼𝐼0
𝑃𝑃𝑇𝑇1

 lots. At the time 𝑇𝑇2, the investor 

close the buy order and open the sell order immediately. The profit of the portfolio at the 
time 𝑇𝑇2 is 

𝐼𝐼0×𝑃𝑃𝑇𝑇2
𝑃𝑃𝑇𝑇1

− 𝑅𝑅0 = 𝑅𝑅0(𝑃𝑃𝑇𝑇2−𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇1

) and the value of the portfolio at the time 𝑇𝑇2 is  

𝑅𝑅1 = 𝑅𝑅0 + 𝑅𝑅0 �
𝑃𝑃𝑇𝑇2−𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇1

� = 𝑅𝑅0 �1 + 𝑃𝑃𝑇𝑇2−𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇1

� . 

Case 2: The 1-st order is a sell order, the investor has 𝐼𝐼0
𝑃𝑃𝑇𝑇1

 lots. At the time 𝑇𝑇2, the investor 

close the sell order and open the buy order immediately. The profit of the portfolio at the 
time 𝑇𝑇2 is 𝑅𝑅0 −

𝐼𝐼0×𝑃𝑃𝑇𝑇2
𝑃𝑃𝑇𝑇1

= 𝑅𝑅0(𝑃𝑃𝑇𝑇1−𝑃𝑃𝑇𝑇2
𝑃𝑃𝑇𝑇1

) and the value of the portfolio at the time 𝑇𝑇2 is  

𝑅𝑅1 = 𝑅𝑅0 + 𝑅𝑅0(𝑃𝑃𝑇𝑇1−𝑃𝑃𝑇𝑇2
𝑃𝑃𝑇𝑇1

) = 𝑅𝑅0 �1 − 𝑃𝑃𝑇𝑇2−𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇1

� . 

Similarly, the value of the portfolio in the 𝑘𝑘 − 𝑡𝑡ℎ order at the time 𝑇𝑇𝑘𝑘  is 

𝑅𝑅𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧𝑅𝑅𝑘𝑘−1 �1 +

𝑃𝑃𝑇𝑇𝑘𝑘 − 𝑃𝑃𝑇𝑇𝑘𝑘−1
𝑃𝑃𝑇𝑇𝑘𝑘−1

�    , the (𝑘𝑘 − 1) − th order is a buy order,

𝑅𝑅𝑘𝑘−1 �1 −
𝑃𝑃𝑇𝑇𝑘𝑘 − 𝑃𝑃𝑇𝑇𝑘𝑘−1

𝑃𝑃𝑇𝑇𝑘𝑘−1
�    , the (𝑘𝑘 − 1) − th order is a sell order.

 

For the convenient, we denote  

𝜋𝜋(𝑘𝑘 − 1) = �
0   , the (𝑘𝑘 − 1) − th order is a buy order,
1  , the (𝑘𝑘 − 1) − th order is a sell order.  

Therefore, we have  

𝑅𝑅𝑘𝑘 = 𝑅𝑅𝑘𝑘−1 �1 + (−1)𝜋𝜋(𝑘𝑘−1) 𝑃𝑃𝑇𝑇𝑘𝑘 − 𝑃𝑃𝑇𝑇𝑘𝑘−1
𝑃𝑃𝑇𝑇𝑘𝑘−1

� 

= 𝑅𝑅0��1 + (−1)𝜋𝜋(𝑚𝑚) 𝑃𝑃𝑇𝑇𝑚𝑚+1 − 𝑃𝑃𝑇𝑇𝑚𝑚
𝑃𝑃𝑇𝑇𝑚𝑚

� .
𝑘𝑘−1

𝑚𝑚=1

 

So that, the investor has the percent of loss at the time 𝑇𝑇𝑘𝑘  as  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇𝑘𝑘) = −
𝑅𝑅𝑘𝑘 − 𝑅𝑅0
𝑅𝑅0

 

= −���1 + (−1)𝜋𝜋(𝑚𝑚) 𝑃𝑃𝑇𝑇𝑚𝑚+1 − 𝑃𝑃𝑇𝑇𝑚𝑚
𝑃𝑃𝑇𝑇𝑚𝑚

�
𝑘𝑘−1

𝑚𝑚=1

− 1� 

= �1−��1 + (−1)𝜋𝜋(𝑚𝑚) 𝑃𝑃𝑇𝑇𝑚𝑚+1 − 𝑃𝑃𝑇𝑇𝑚𝑚
𝑃𝑃𝑇𝑇𝑚𝑚

�
𝑘𝑘−1

𝑚𝑚=1

�. 

Finally, the value at risk (𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑇𝑇)) of the portfolio at the confidence level 𝛼𝛼 is the minimum 
percent of loss that could occur to the portfolio over the last order at the time 𝑇𝑇 defined by  

𝑉𝑉 𝑉𝑉𝑅𝑅𝛼𝛼(𝑇𝑇)  = min{𝑥𝑥 ∈ 𝑅𝑅 ∶  𝑃𝑃𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇) ≤ 𝑥𝑥) ≥ 𝛼𝛼} 
where 𝛼𝛼 ∈ (0,1). 
 
2.2  Estimating the Value at Risk 
 
This article analyzes value-at-risk approaches. We generate simulation approaches over 260 
days. The historical sample data covers January 4, 2021, to December 29, 2023 (780 days). 
The data consists of daily exchange rates (close prices collected by Metra trader 5) against 
the U.S. dollar for the Euro. For example, the EUR/USD exchange rate is 1.07. It takes 1.07 
US Dollars (USD) to buy one Euro (EUR). The simulation methodology consists of two steps: 
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1. (Parameter estimation) We use the Kolmogorov-Smirnov test to test the rate of 
return. The results show that there is a statistical value equal to 0.04092. At a 
significance level of 0.05, there will be a critical value equal to 0.04866, making it 
accepted that there is a normal distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2) with a significance level of 
0.05. We consider EUR/USD exchange rate simulation via daily rate of return, 
which has a normal distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2). Using maximum likelihood estimation, 
we have  

𝜇𝜇 = 1
779

∑ 𝑃𝑃𝑖𝑖779
𝑖𝑖=1   and  𝜎𝜎2 = 1

779
∑ (𝑃𝑃𝑖𝑖 − 𝜇𝜇)2  779
𝑖𝑖=1  

where 𝑃𝑃𝑖𝑖 = 𝑝𝑝𝑖𝑖−𝑝𝑝𝑖𝑖−1
𝑝𝑝𝑖𝑖−1

, 𝑖𝑖 = 1,2,3, . . . ,779,  and 𝑝𝑝0,𝑝𝑝1, … ,𝑝𝑝779  are historical 

EUR/USD exchange rate (780 days). We obtain that 𝜇𝜇 = −0.00012  and  
𝜎𝜎 = 0.00496.  

2. (Approximate probability of loss) We generate the sequence of daily rate of return 
of EUR/USD exchange rates over 260 days to approximate the probability of loss 
using 10,000 scenarios. For each percent of loss 𝑥𝑥 = 0.01, 0.02, … ,0.20. 

  2.1 Set 𝑐𝑐𝐿𝐿𝑐𝑐𝑛𝑛𝑡𝑡 = 0 and 𝑗𝑗 = 1. 
  2.2 For the j-th scenarios, the price at time m is calculated by 

𝑃𝑃𝑚𝑚
(𝑗𝑗) = 𝑃𝑃0

(𝑗𝑗) ��1 + 𝑅𝑅𝑖𝑖
(𝑗𝑗)�

𝑚𝑚

𝑖𝑖=1

 

 
where 𝑅𝑅𝑖𝑖

(𝑗𝑗) ∼ 𝑁𝑁(−0.00012,0.00496),𝑚𝑚 = 1,2,3, … ,259 and 𝑃𝑃0
(𝑗𝑗) = 1.2247 

is the fixed EUR/USD exchange rate on January 4, 2021, for all j. 
2.3 Use RSIBS (30,70) strategy on 𝑃𝑃0

(𝑗𝑗),𝑃𝑃1
(𝑗𝑗), … ,𝑃𝑃259

(𝑗𝑗) . We have the percent of 
loss is 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗).  

𝑐𝑐𝐿𝐿𝑐𝑐𝑛𝑛𝑡𝑡 = �
𝑐𝑐𝐿𝐿𝑐𝑐𝑛𝑛𝑡𝑡 + 1, If 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗) ≤ 𝑥𝑥
𝑐𝑐𝐿𝐿𝑐𝑐𝑛𝑛𝑡𝑡 + 0, If 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗) > 𝑥𝑥 

 
                      2.4 Let 𝑗𝑗 = 𝑗𝑗 + 1 and repeat 2.2 and 2.3 until 𝑗𝑗 > 10,000. 
                      2.5 Probability of loss is approximated by 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐

10000
.   

Finally, we use quadratic polynomial regression to determine the value at risk. The simulation 
measures investment risk at 95% and 99% confidence levels. 
 

3  Results 

Estimating parameters of the rate of return with a normal distribution using maximum 
likelihood estimation, the average and standard deviation are -0.00012 and 0.00496, 
respectively. So, we create a rate of return from the parameters obtained, and then, we 
simulate the situation by creating a closing price of EUR/USD (260 days) using the rate of 
return value. We repeat this process 10,000 times and get the results in table 1. Table 1 shows 
the probability of loss of the portfolio at loss from 0.01 to 0.20. 
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Table 1: Probability of loss obtained from simulation by setting value at risk 

Percent of loss Probability of 
loss 

Percent of 
loss 

Probability of 
loss 

0.01 0.6753 0.11 0.9726 
0.02 0.7144 0.12 0.9796 
0.03 0.7707 0.13 0.9883 
0.04 0.8056 0.14 0.9919 
0.05 0.8544 0.15 0.9943 
0.06 0.8771 0.16 0.9968 
0.07 0.9095 0.17 0.9977 
0.08 0.9273 0.18 0.9988 
0.09 0.9488 0.19 0.9991 
0.10 0.9614 0.20 0.9996 

 
We want to estimate the value at risk at 95% and 99% confidence levels. So, we took 
the loss and the probability of loss and plotted the graph in Figure 1. We found that 
the quadratic polynomial graph of cumulative distribution function of loss was the 
closest to the point. The quadratic polynomial regression with an R-square value of 

98.96% is 𝑦𝑦 =  −14.759𝑥𝑥2  +  4.6428𝑥𝑥 +  0.6425. So, we solve the quadratic polynomial 
regression to find the value at risk at the probability of loss from 0.80 to 0.99. Table 
2 shows the value at risk of the portfolio at 95% and 99% confidence levels, which are 
0.0948 and 0.1227, respectively. This means that with 9 5 %  confidence level, the 
maximum loss will not exceed 9.48% .  Similarly, with 9 9 %  confidence level, the 
maximum loss will not exceed 12.27%. 

Table 2: The value at risk obtained from solving the quadratic polynomial regression 

𝜶𝜶 Value at 
risk 

𝜶𝜶 Value at 
risk 

0.80 0.0387 0.90 0.0719 
0.81 0.0416 0.91 0.0760 
0.82 0.0445 0.92 0.0802 
0.83 0.0476 0.93 0.0848 
0.84 0.0507 0.94 0.0896 
0.85 0.0539 0.95 0.0948 
0.86 0.0573 0.96 0.1005 
0.87 0.0607 0.97 0.1068 
0.88 0.0643 0.98 0.1140 
0.89 0.0680 0.99 0.1227 
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Loss 

Figure 1: The quadratic polynomial graph of loss and the value at risk. The red 
circle is the loss. The blue line is the quadratic polynomial regression. The blue 
diamond is the value-at-risk for the portfolio at 95% and 99% confidence levels 

 
4  Conclusions 

From the historical sample, the daily EUR/USD exchange rates data covers January 4, 2021, 
to December 29, 2023 (780 days). We generate a rate of return over 260 days by average and 
standard deviation (-0.00012,0.00496) of this historical sample. We use the daily close price 
of EUR/USD on January 4, 2021, as the starting point for the calculation. Then, we generate 
a daily close price of EUR/USD by using the rate of return that was generated. Next, we 
simulate the buy-and-sell strategy in the EUR/USD exchange rate in 10,000 scenarios, using 
the Relative Strength Index (RSI) indicator to approximate the probability of loss. Then, we 
use quadratic polynomial regression with an R-square value of 98.96%, 𝑦𝑦 =  −14.759𝑥𝑥2  +
 4.6428𝑥𝑥 +  0.6425, to estimate the value at risk. The resulting value-at-risk for the portfolio 
at 95% and 99% confidence levels were estimated to be 0.0948 and 0.1227, respectively. Thus, 
the maximum loss will not exceed 9.48% at a 95% confidence level. The maximum loss will 
also not exceed 12.27%, with 99% confidence. Thus, there is less risk. Most investors focus 
on returns without calculating the risks involved. This study recommends estimating the 
value-at-risk of an asset before investing. In addition, the value obtained should be acceptable 
to investors. 

Further studies should investigate the value-at-risk of another buy/sell threshold 
parameter. For example, Is the RSI(20,80) strategy more or less risky than the RSI(30,70) 
strategy on the EUR/USD exchange rate? In addition, further studies should investigate and 
compare the value-at-risk of other foreign exchange rates. 
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Abstract

Safe-haven strategy usually used to reduce the risk among the market turbulence. It is
hypothesized that inclusion of safe-haven asset may reduce the market volatility during the
bubble. In this study, we propose the new model of financial bubble that generalizes the
previous models by adding the safe-haven asset that interacts with the behavioral change
of investors. The stability condition is derived to confine the parameter space avoiding the
stable fixed point. The numerical results are used to calculate the amplitude and duration
of bubbles. The effect of involved parameters are analyzed. This result indicates that
information from a safe-haven asset model based on mean reversion helps reduce the severity
of financial bubbles resulting from herd behavior of profit seekers in the market. Additionally,
it suggests that if these profit seekers consistently use data from safe-haven assets in the
market, the severity of financial bubbles would decrease significantly compared to when
profit seekers are interested in safe-haven assets only during crisis events.

Keywords: financial bubbles, safe-haven asset, price dynamic, herding behavior.
2020 MSC: Primary 91B55; Secondary 34A34, 37-XX, 82-XX.

1 Introduction
Financial bubbles are economic phenomena that have occurred multiple times in history. The
definition or description of financial bubbles and the process of their bursting continue to vary
and have diverse interpretations. For instance, a definition related to financial bubbles by Didier
Sornette suggests that if the price of an asset experiences rapid growth beyond exponential,
there is a possibility that the asset may become a financial bubble [10]. Another definition
highlights that financial bubbles and the bursting of financial bubbles are temporary events
where asset prices deviate and fluctuate around their fundamental value temporarily [8]. One
prominent example of a financial bubble event is the Subprime Crisis of 2008. According to
’Review of economic bubble (2016)’ [5], the crisis was initiated by a continuous increase in
real estate accompanied by loose monetary policies of central banks and governments, which
reduced interest rates to encourage more people to own real estate. Additionally, the softening
†Speaker. ‡Corresponding author.
Email: juanjenkit.sorathan@gmail.com (S. Juanjenkit), klotpat@gmail.com (K. Patanarapeelert).
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of lending standards brought subprime borrowers into the market. All these factors compounded
the growth of real estate, leading people to speculate and invest more, resulting in skyrocketing
real estate prices. While everyone was enjoying the prosperity of life, some events were unfolding
in the background. ’Inflation’ has started creeping in gradually. The low-interest rates, combined
with subprime borrowers, led to people defaulting on their loans, and debts began to pile up
rapidly. Many homes were foreclosed by banks and released into the market simultaneously with
decreased consumer spending. People panicked and wanted to minimize their losses as much as
possible, but it was too late.

The research about the financial bubble has been conducted and explored from various
perspectives in recent years [11], [7], [10] and [4]. Questions such as where financial bubbles
originate, how the mechanics of financial bubbles work, when financial bubbles form and burst,
or what factors are related to the occurrence or size of financial bubbles are central to current
research. These questions were addressed through various disciplines. For instance, [2] suggested
that risky monetary policies by governments and central banks are factors in the emergence of
profit-seeking bubbles in the market. Thomas Lux states that financial bubbles arise from the
collective behavior and sequential actions of investors in buying or selling until an imbalance
occurs between buying and selling demand [8]. What supports the readiness in the behavior of
investors to follow each other is fundamental economic variables such as actual returns. While
the previous study highlighted the possible influence of herding behavior and the feedback of
price during the bubble event, hedging strategy that helps to minimize and offset risks within
the portfolio of investors was neglected. Financial hedging is more common amongst short-term
noised traders, as market volatility tends to increase. However, research analyzing the impact
of other assets on the financial bubble of another asset is relatively limited. Which asset is most
important to people in the market?

According to Baur and Lucey (2010), A safe-haven is defined as an asset that is uncorrelated
of negatively correlated with another asset or portfolio in times of market stress or turmoil. As
an example, gold or land, which are well-known and have long lasting value over time may be
considered as safe-haven assets for stock trading and other risky asset. A safe-haven asset must
therefore be some asset that holds its value in ’stormy weather’ or adverse market conditions” [3].
For some profit-seeking investors, using safe haven assets to hedge against risk is one of the
investment and risk mitigation strategies [1]. In some cases, it is not necessary to include the
safe-haven asset into their portfolio but use safe-haven asset data, price volatility of assets, or
market returns to make trading decisions in other profit-generating assets. If this is a case
during the financial bubble event, how the bubble pattern changes or conditioned might be a
crucial issue. In this study, we aim to address these questions and will provide insight into
what happens when profit-seeking investors in the market employ strategies and track the price
movements of profit-generating assets. How will the financial bubble of those assets develop,
shrink, or expand, and what impact will it have on the severity of the economic aftermath?

Due to the wide variety of valuable researches on financial bubbles, all accompanied by var-
ious definitions of bubbles, we must choose just one that we deem suitable as a solid foundation
to begin addressing the questions. This study extends Thomas Lux’s model that emphasized
on the impact of Herding behavior on Bubble, and Crash. Herding behavior was explained
as events stemming from the collective behavior and sequential actions of investors in buying
or selling, leading to an imbalance between buying and selling demand. What reinforces the
readiness in investors’ behavior to follow each other is fundamental economic variables such as
actual returns. This type of model will be integrated with the model of safe-haven asset that
we will present in the next section. The model results will be subsequently used to investigate
and compare the effect of crucial parameters.
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2 Models
2.1 Review of Lux’s Model
First, we will present for mutual understanding the characteristics of the market under consider-
ation and the definition of the financial bubble based on the previous study. A key feature of the
market is that profit-seekers in the market exhibit a behavior known as herd behavior, wherein
profit-seekers tend to follow the direction of the crowd in one direction. We presume a market
population consisting of a total of 2N market participants. Within this population, individu-
als are divided into two ideological groups: those who perceive the market negatively, denoted
as n−, representing individuals predisposed to selling assets, and those who view the market
positively, denoted as n+, representing individuals inclined to purchase assets. Additionally,
investors are assumed to make buy or sell decisions based on the contagion process, where each
individual is immediately prepared to switch from their current group to the larger or predom-
inant group. We introduce the superiority of each group’s population with x = (n+ − n−)/2N ,
where x is within the range [−1, 1]. In cases where x > 0, it indicates a prevailing demand
for buying assets in the market; conversely, x < 0 denotes a predominance of selling. When
x = 0, it signifies market equilibrium, while x = 1 and x = −1 represent extreme cases where
all market participants converge on the same perspective.

Next, our focus shifts to the properties of market participants, specifically herd behavior or
the contagion process within the market. In the market under consideration, we assume that
individuals’ decisions depend on others within the market, meaning each market participant’s
decision to buy or sell assets depends on the prevailing sentiment or noise in the market. We
further assume that at any given moment, individuals in the market have a probability of
switching from being buyers to sellers or vice versa, denoted as p−+ and p+−, respectively.
Conversely, in the opposite direction, we have p+− and p−+, which, combined with the contagion
process, are determined by the collective sentiment of market participants x. Thus, we define
p−+ = p−+(x) and p+− = p+−(x) based on the overall market sentiment x.

Since there are the probabilities of the transition between optimistic one and pessimistic
one, such that we are starting to consider the change of average disposition x. Consequently,
we expect fraction n−p+− to switch from the n− to the n+ group which means those who are
pessimistic traders turn to an optimistic attitude with probability p+−, and vice versa. From
this it follows that the change in time of the number of optimistic and pessimistic traders is :
dn+/dt = n−p+− − n+p−+ and dn−/dt = n+p−+ − n−p+−. Including with n and x that we
defined:

dx/dt = [(N − n)p+−(x)− (N + n)p−+(x)]/N

= (1− x)p+−(x)− (1 + x)p−+(x).
(2.1)

We note that the original arguments serve the stochastic model. However, the derivation of this
equation was carried out via the Master equation approach which calculated the dynamic of
expectation of the population variables.

The transition probabilities will be specified in order to perceive how (2.1) potentially-
describes. Note that the requirements for p+− and p−+ is, (1) all transition probabilities have
to be positive, (2) if the prevailing disposition of the population is already optimistic then
p−+ > p+−. Moreover, it seems reasonable to assume that dp+−/p+− = a dx, that is the
relative changes in probability to switch from pessimism to optimism increases linearly with-
changes in x, and vice versa dp−+/p−+ = −a dx. These assumptions may suggest the following
functional form commonly chosen in the related literature:

p+−(x) = veax, p−+(x) = ve−ax. (2.2)
Here, a gives a measure for the strength of herd behavior, v is a variable for the speed of

change (x = 0, balanced disposition we have p+− = p−+ = v > 0). This means that a little
change from equilibrium point is the starting point of herd behavior.
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Follow by properties of the hyperbolic sine and cosine and this specification of transition
rates the time development of the mean value of the index x becomes:

dx/dt = (1− x)veax − (1 + x)ve−ax = 2v[sinh(ax)− x cosh(ax)]

= 2v[tanh(ax)− x] cosh(ax).
(2.3)

The equation (2.3) represents changes in the majority Sentiment of the market. As the price
of focusing securities changes according to the excess demand, the further assumption relies on
the direct proportionality of the excess demand on the market sentiment and the deviation of
price from the fundamental value. These two factors used the different proportionality constants
that distinguishes between the trading volume of speculative investors and of fundamentalists.
The corresponding dynamics are given by

dx

dt
= 2v[tanh(a1ṗ/v + a2x)− x] cosh(a1ṗ/v + a2x),

dp

dt
= β[xTN + TF (pf − p)],

(2.4)

where dp/dt, representing the rate of change in the price of the underlying asset. Fundamen-
tal traders, who trade based on the perceived discrepancy between current prices-and fundamen-
tal values, and Noise traders, who follow others’ actions. The excess demand of Fundamental
traders is denoted by TF (pf − p), where TF is the trading volume of Fundamental-traders, and
pf is the Fundamental price of the underlying asset. On the other hand, Noise-traders’ excess
demand is represented by xTN , with TN being the trading volume of Noise-traders. a1 is weight
factor describing how much information investors try to draw from price and a2 is weight factor
describing how much information investors drawn from the behavior of others.

Furthermore, the contagion process and price dynamics have different mean time lags, de-
noted by 1/v and 1/β, respectively. Assuming instantaneous market clearing, the equation
implies that p = pf + (TN/TF )x and ṗ = (TN/TF )ẋ, where the expected returns influence the
readiness of profit-seekers to follow suit in the market. This readiness is influenced by the cu-
mulative difference between the true returns of the underlying asset and the expected returns
in the market.

dx

dt
= 2v[tanh(a0 + a2x)− x] cosh(a0 + a2x),

da0
dt

= τ

[
r + τ−1(TN/TF )ẋ

pf + (TN/TF )x
−R

]
,

(2.5)

Here, r is the nominal dividend payment and defines R = r/pf as the expected return, with τ
interpreted as an adjustment coefficient. Finally, it is noted that when the accumulated market
return a0 becomes less than 0, it indicates the occurrence of a financial bubble burst.

2.2 The Model with Safe-Haven Asset
Suppose that the safe-haven has an impact on the decision of all traders with some weight. In
this section we include the price dynamic of the safe-haven in Equation (2.5). We adopt the
assumption that the change in return of a safe-haven asset denoted by s follows a mean-reverting
process, as discussed in [9]. To adhere to the definition of a safe-haven asset as outlined in [3],
it is an asset that attracts profit-seekers when the underlying asset market enters a downturn,
and diminishes in attractiveness when the market returns to a profitable state. Building on the
research by [2], which emphasizes the significance of economic indicators on financial bubbles,
we introduce −Ex as a factor in our safe-haven asset model, where E > 0 represents a basic
economic factor influencing investors (akin to a weight factor). Hence, the safe-haven asset
model is given by:

ds

dt
= α [TS(sf − s)− Ex] (2.6)
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In this context, α signifies the speed of change of the safe-haven asset, TS represents the
trading volume for the safe-haven asset, and sf denotes the fundamental price of the safe-haven
asset. In this equation, the return of safe-haven tends to decrease as the current financial market
booms. Furthermore, considering the economic indicators’ involvement with financial bubbles, it
becomes imperative to contemplate a new model for the underlying asset. Therefore, we derive
the following equation:

dp

dt
= β[xTN + TF (pf − p) + E] (2.7)

It is clear that Equation (2.6)-(2.7) describes that for both asset price are driven by the
market sentiment. As a result, the dynamic of accumulative return is adjusted as

da0
dt

= τ

[
r + τ−1(TN/TF )ẋ

pf + (TN/TF )x+ E/TF
−R

]
(2.8)

Here, R = r/(pf + E/TF ). To complete the model modification, we extend the transition
probability by assuming that additional information is also drawn from the safe-haven return
with directly but negatively proportional to the change in return of the safe-haven asset. By this
assumption, dynamic of safe-haven becomes negatively associated with the price of the focusing
asset. However, this assumption can be considered as two possibilities that is the relationship
between two assets can be discrete and continuous. Thus, it is reasonable to separate the model
into two sub-models as follows.

2.2.1 Model 1: Continuous Relationship

In light of the definition of safe-haven assets as cited in [3], it is reasonable to include a3ds/dt as a
factor influencing the readiness of profit-seekers to follow the crowd in the market. Consequently,
the system of equations for the financial bubble model we are considering is represented by the
following equation:

dx

dt
= 2v[tanh(a0 + a2x+ a3ṡ)− x] cosh(a0 + a2x+ a3ṡ),

da0
dt

= τ

[
r + τ−1(TN/TF )ẋ

pf + (TN/TF )x+ E/TF
−R

]
,

ds

dt
= α [TS(sf − s)− Ex] ,

(2.9)

where a3 is an adjustment coefficient that express strength of safe-haven asset to herd behavior.

2.2.2 Model 2: Discrete Relationship

In order to align more closely with the safe-haven asset’s definition we have discussed. We now
define function A(a0),

A(a0) =

{
0, if a0 ≥ 0

1, if a0 < 0

Incorporating the term A(a0) to refine and adjust equation (2.9) would enhance the system
to adhere more closely to the defined definition. The influence of the returns of safe-haven assets
on market participants’ decision-making would come into play only when the value of a0, or the
accumulated actual return of the market is negative. Now we have

dx

dt
= 2v[tanh(a0 + a2x+ a3ṡA(a0))− x] cosh(a0 + a2x+ a3ṡA(a0)). (2.10)

where a3 is defined as the same as the previous model. Therefore, the present models are (2.10)
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2.3 Stability Analysis

In this section, we aim to determine the (local) stability condition for the equilibrium point
of model (2.9). This is because when considering the definition of a bubble as a transient
situation where prices oscillate around the fundamental price, analyzing the stability of the
system becomes an important aspect. As the bubble may occur when the system undergoes the
unstable equilibrium state, the derived condition can be used to confine the parameter space for
further investigation.

To determine the equilibrium point of the system (2.9), we first put dx/dt = 0, da0/dt = 0,
and ds/dt = 0, respectively. As a result, it is obvious that da0/dt = 0 is always true. So,
we consider only remained two equations. We also observe that x = 0 is only solution for
the first equation. Hence, s = sf is a result. Therefore, we can conclude that our system
inherently possesses a unique equilibrium E(x, a0, s) = E(0, 0, sf ), representing a scenario where
the majority of dispositions are balanced, actual returns are zero, and the price of the safe-haven
asset equals its fundamental price. For assessing system stability, we rely on the Routh-Hurwitz
stability criterion [6]

After computing the coefficients of the characteristic equation of our differential equation
system and constructing the Routh-Hurwitz array, we identified the stability conditions as fol-
lows: the equilibrium is stable if and only if either a < 0 and b < 0. The values of a and b are
determined as follows:

a = −αTS + 2vC − 2a3αEv +
2TNRv

rTF
,

b = 2v

(
RTN (αTS − τR)

rTF
+ αTS

(
C +

τR2TN

αrTF (TS + 2a3Ev)− 2v(CrTF +RTN )

))
,

(2.11)

where R = r/(pf + E/TF ) and C = a2 − 1.
Before proceeding to the next section, it’s important to acknowledge the scope of our stability

analysis. While we have successfully identified conditions under which our system exhibits
instability, it’s essential to note that our focus has been primarily on understanding fluctuations
around the fundamental price. However, it’s worth mentioning that determining conditions for
periodic events remains an ongoing challenge. Despite this limitation, our analysis provides
valuable insights into the behavior of our system within the context of instability.

3 Results
In the context of financial bubble phenomena, two factors can indicate its severity. First is its
size, which refers to the magnitude of its price fluctuations around the fundamental value, rep-
resented by the height from crest to trough. The second factor is its duration, which represents
the time it takes for the price fluctuations to complete one cycle, indicated by the length from
crest to crest.

We have omitted the analysis of events in the early stages of the mechanism concerning size
and duration in both (2.9) and (2.10) due to their non-periodic nature. Instead, we focus on the
analysis of events in the second stage when the system exhibits periodic solutions, as depicted
in Figure 1.

In this section, we calculate the two indicators from the numerical solutions of the models
using the parameter values in Table 1. To verify whether the results align with our hypothesis,
which posits that the inclusion of information from safe-haven assets reduces the severity of
financial bubbles which are temporary events where asset prices deviate and follow with the
fluctuation around their fundamental value, we consider the stability conditions outlined in the
previous section. Given the unique equilibrium point of the system, it is sufficient to select
parameters that induce instability in system (2.9) for this analysis.
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Table 1: Parameter values used in numerical calculations

Parameter Description Value(unit)
a2 Strength of herd behavior 1.125
a3 Strength of safe-haven asset 1.25
r Constant nominal dividend payment 1.0
TN Trading volume of speculative investor 21/160
TF Trading volume of fundamental investor 3/4
pF Fundamental price of underlying asset 7/10
TS Trading volume of safe-haven asset 1.0
sF Fundamental price of safe-haven asset 1.3
α Speed of change on safe-haven asset 1.0
β Speed of change on underlying asset 1.0
E Economic factor 0.02
v Speed of change on probability 0.5
τ Adjustment coefficient 1.0

Figure 1: Sample of price dynamics/movements of the underlying asset for each model with a set of
initial conditions p = 0.8, x = 0.5, a0 = 1 and s = 1

3.1 Model 1’s Result

According to model (2.9), it demonstrates how safe-haven assets play a role in investors’ decision-
making at all times. When considering the weight factor variable a3, which represents the weight
that profit-seekers give to information about safe-haven assets, from Figure 2b, it can be observed
that as a3 increases, the height of the bubble decreases. In this scenario, we might argue that
when profit-seekers who exhibit herding behavior take a moment to observe information from
safe-haven assets before considering buying/selling the underlying asset they are interested in,
in cases where these profit-seekers make mistakes in their decision-making, it may help reduce
the resulting losses.

As for the weight factor variable a2, which represents the weight that profit-seekers give to
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the noise of the crowd before considering buying/selling the underlying asset they are interested
in, from Figure 2a, it can be observed that as a2 increases, the height of the bubble also increases.
It is evident that when people are ready to make decisions to buy/sell the underlying asset solely
because others are doing so, it is not surprising that the price of this asset may soar to the sky
or plummet underground.

(a) Impact of a2 on asset’s amplitude as a3 is 1 (b) Impact of a3 on asset’s amplitude as a2 is 1

Figure 2: Impacts of a2 and a3 on underlying asset’s amplitude of model 1 as a3 is 1 and a2 is 1
respectively

(a) Impact of a2 on asset’s period as a3 is 1 (b) Impact of a3 on asset’s period as a2 is 1

Figure 3: Impacts of a2 and a3 on underlying asset’s period of model 1 as a3 is 1 and a2 is 1 respectively

Upon examining financial bubble in term of the duration in Figures 3a and 3b, both vari-
ables a2 and a3 yield similar results. That is, as these variables increase, the duration of price
fluctuations around the fundamental value for one cycle also increases. This may be beneficial
as it suggests a decrease in market volatility.
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(a) Impacts of a2 and a3 on underlying asset’s am-
plitude

(b) Impacts of a2 and a3 on underlying asset’s pe-
riod

Figure 4: Impacts of a2 and a3 on underlying asset’s price of model 1 in contour plot

Figures 4a and 4b represent contour plots illustrating the impacts of a2 and a3 on the
underlying asset’s price in terms of amplitude and period in Model 1. We have seen that the
change in combination of two parameters does not make significant change of the amplitudes and
periods from the pattern when fixing one parameter. The results are more relatively sensitive to
the change of a2 than a3. The contour plot shows that the safe-haven strategy and the herding
behavior are uncorrelated.

(a) Impact of a2 on asset’s amplitude as a3 is 1 (b) Impact of a3 on asset’s amplitude as a2 is 1

Figure 5: Impacts of a2 and a3 on underlying asset’s amplitude of model 2 as a3 is 1 and a2 is 1
respectively

3.2 Model 2’s Result
For the results of model (2.10), where we stated that safe-haven assets play a role in investors’
decision-making only when the market enters a crisis or downturn, as indicated by the actual
return a0 being less than 0, the outcomes, whether in terms of amplitude as shown in figures 5a
and 5b, or in terms of period as shown in figures 6a and 6b, yield similar Model 1(a continuous
relationship) both numerical result and interpretations. However, when comparing the outcomes
of both models from both the amplitude and period perspectives by the effect from a3, it is
evident that Model 1 provides better results in both aspects, as depicted in figures 8a and 8b.
Therefore, we can conclude that investors’ continuous interest in safe-haven assets at all times
leads to less market volatility compared to when they only pay attention to them during crisis
periods.
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(a) Impact of a2 on asset’s period as a3 is 1. (b) Impact of a3 on asset’s period as a2 is 1

Figure 6: Impacts of a2 and a3 on underlying asset’s period of model 2 as a3 is 1 and a2 is 1 respectively

(a) Impacts of a2 and a3 on underlying asset’s am-
plitude

(b) Impacts of a2 and a3 on underlying asset’s pe-
riod

Figure 7: Impacts of a2 and a3 on underlying asset’s price of model 2 in contour plot

(a) Comparison between model 1&2 on ampli-
tude from impact of a3

(b) Comparison between model 1&2 on period
from impact of a3

Figure 8: Comparison between model 1&2 on amplitude and period from impact of a3

Figures 7a and 7b represent contour plots illustrating the impacts of a2 and a3 on the
underlying asset’s price in terms of amplitude and height in Model 2.
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4 Conclusion
Our findings from the safe-haven asset model, as illustrated by the Mean Reversion model,
confirm our underlying assumption in both respects. This indicates that when investors base
their decisions to buy or sell the underlying asset on information beyond mere consensus, it can
reduce market volatility. In this context, volatility refers to the intensity of financial bubbles.
Or in other words, wisdom prevails over emotions.

We have proposed the mechanistic models extended from the previous work. The model
composes of the dynamics of disposition variables, the accumulative difference of returns and
safe-haven asset. The present model always has only one equilibrium point. The stability
conditions are more complicate than of the previous work since the number of parameters of
safe-haven asset are added. However, the common necessary conditions are that a2 < 1. This
implies that the onset of financial bubble requires the strong influence of herding behavior.

Understanding the existence of financial bubbles and being able to explain them in another
form, as we have proposed, would be beneficial for analyzing whether the current situation
warrants diversification of our investment risks or not. In addition to that, safe-haven assets
are likely to be another option for hedging or portfolio allocation. Since the parameters used
in our experiments are not specified, it may be possible to consider the proportions of holding
safe-haven assets for hedging or portfolio allocation.

This research, while explaining the influence of safe-haven assets on financial bubbles in a
deterministic form, also paves the way for exploring stochastic models. This extension could en-
compass various aspects, including price prediction models or financial bubble models, sentiment
analysis of profit seekers in the market, or expressing it in other forms. There are numerous
avenues to explore. Another potential direction is to include other assets beyond safe-haven
assets to observe the behavior of profit seekers, price movements, and sentiment, which could be
beneficial for hedging or portfolio allocation. Undoubtedly, there is much more to investigate.

As mentioned earlier, this paper is an extension of Thomas Lux’s work on ”Herd behavior,
bubbles and crashes”. In this regard, it raises the question of what would happen if other assets
were involved with the underlying asset, and we chose it as the safe-haven asset. While our
proposed safe-haven asset model may not fully capture the characteristics indicative of a safe-
haven asset and could prompt questions about its efficacy, this could serve as a starting point
for further development of Thomas Lux’s model from another interesting perspective.
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Abstract  
 The novel Coronavirus or COVID-19 pandemic is a massive outbreak that has 
affected almost every country in the world. Many methods have been sought to stop its 
spreading. A mathematical model is an effective instrument that helps analyze the 
pandemic situation. In this research, a new model of transmission in Thailand consisting 
of vaccination, quarantine, and hospitalization is presented, aiming at seeking factors 
affecting the pandemic and guidelines for reducing the spread of this disease. Equilibrium 
points and basic reproduction numbers were analyzed and stability was tested. Model 
fitting was performed to obtain parameter values suitable for the pandemic. Besides, 
numerical results revealed that infection rates and the efficiency of vaccines played a 
significant role in reducing the number of patients and controlling the pandemic 
situation. 
 

Keywords: COVID-19, standard dynamical modeling, model fitting, sensitivity 
analysis, globally. 
2020 MSC: 92-10; 93D20. 

1 Introduction 
 

Recently, the world faced the fifth wave of the spread of severe acute respiratory 
syndrome Coronavirus (SARS-COV-2), widely known as COVID-19 [1]. It was indicated as 
the most infectious wave since the pandemic was reported. It had a huge effect on those 
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having underlying diseases since the pandemic occurred rapidly. The infection can be 
transmitted by small respiratory droplets, such as sneezing or coughing or exposure to 
secretions on surfaces [2]. Therefore, social distancing and wearing surgical masks are one of 
the various methods that can help prevent the spread of the disease. After getting the 
infection, the incubation period for the coronavirus is between 2 and 14 days [3-4].  Next, if 
the human body loses immunity, symptoms among infected people range from muscle pain, 
body aches, sore throat, dry throat, and high fever to severe symptoms that can destroy the 
respiratory system [3, 5].  

According to the global situation report on 2 November 2023, there were 771,679,618 
confirmed cases and 6,977,023 deaths. On 23 October 2023, a total of 13,534,457,273 vaccine 
doses were reported. As for the situation in Thailand, there were 4,758,125 confirmed cases 
and 34,487 deaths and on 31 August 2023, a total of 139,343,323 vaccine doses were reported 
[6]. Based on the current situation, prevention by vaccination is a strategy that the 
government is focusing on helping to control the disease spread [2,7-8]. Many companies 
develop their vaccines to be efficient to meet people’s needs promptly. Vaccines that are 
accepted and widely used by the Thai government and private sector are AstraZeneca which 
is suitable for people aged 18 years and above with 2 doses of the vaccine, 10-12 weeks apart, 
CoronaVac or Sinovac COVID-19 vaccine is an inactivated vaccine suitable for people aged 
18 – 59 years with 2 doses, 2-4 weeks apart, Pfizer is a messenger RNA (mRNA) vaccine 
suitable for those aged 16 years and above with doses, 21-28 days or 3-4 weeks apart, and 
other vaccines [9-10]. Preventing vaccination is one of the strategies. Many other strategies 
will help control the situation like social distancing, wearing surgical masks, and quarantine 
to help reduce the spread of the virus. 

Mathematical modeling plays a vital role in assessing the situation, control efficiency, 
and preparedness to cope with a future outbreak [11-12]. A lot of researchers are interested 
in developing a model to keep pace with the current situation.  Yang [13] proposed an 
epidemic model by considering the quarantine population in the pre-incubation phase 
including the home isolation and hospital isolation. It was found that early isolation could 
help to control the spread of disease effectively.  Ibrahim et al. [14] designed SVEIsIaImR model 
to keep up-to-date with the situation by considering vaccination factors, asymptomatic 
infection, symptomatic infection, and Omicron infection to finely isolate people. The study 
revealed that vaccination alone was not enough to fight against the spread of COVID-19. 
There should be other measures to help stop the spread of co-infection. Lamwong et al. [15] 
designed a standard dynamic model by considering vaccinated people, asymptomatic people, 
symptomatic people, and hospitalized people and determining the most suitable strategy to 
control the spread of the disease.  Strategies used for the control were vaccination measures 
and people who received immunity from vaccination. It was found that disease control could 
be implemented by setting other measures to help control the situation, such as wearing face 
masks and social distancing, making the disease control more effective.  

In this article, importance is given to vaccination, quarantine, and hospitalization. 
Topics are arranged as follows: Part 2 designs and describes the dynamic of the disease in the 
model. Equilibrium points and basic reproduction number are found and the stability of DEF 
and EE is tested. Part 3 presents a numerical model by analyzing actual data of the spread 
in Thailand in conjunction with the model. Meanwhile, the sensitivity index is analyzed to 
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examine input parameters affecting basic reproduction number. The final part prepares the 
conclusion as shown in Part 4. 
 
2  Materials and Methods 
 
2.1 Model Formulation 

Mathematical modeling is a method that helps analyze the spread situation, designing 
control measures and finding strategies to help prevent the spread of COVID-19. In this 
research, the model was designed by dividing people into 7 groups, i.e. susceptible group ( )S , 
vaccinated group ( )V , exposed group ( )E , infected group ( )I , quarantine group ( )Q , 
hospitalized group ( )H , and recovered group ( )R . The basis is from the SEIQR model and 
importance is given to vaccinated people, quarantine people, and hospitalized people as shown 
in Figure 1.  

 
Figure 1. Diagram showing the relationship of the 5th wave of COVID-19 spread 

Table 1. Definitions of variables and parameters 
Variables/Parameters Description         Units 

S  The number of susceptible group Person 
V  The number of vaccinated group Person 
E  The number of exposed group Person 
I  The number of infected group Person 
Q  The number of quarantine group Person 
H  The number of hospitalized group Person 
R  The number of recovered group Person 
Π  Initial population. day-1 

                    β  Infection rate. Per person ⋅ days-1 
ε  Vaccination rate. day-1 
ρ  Vaccination prevention efficacy. N/A 
φ  Incubation rate.           days-1 
ψ  Transition rate from incubation group to 

quarantine group. 
          days-1 
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θ  Transition rate from infected group to 
quarantine group. 

days-1 

ω  Transition rate from infected group to 
hospitalized group. 

days-1 

ν  Transition rate from quarantine group to 
hospitalized group. 

days-1 

Iγ  Recovery rate from infected group. days-1 
Qγ  Recovery rate from quarantine group. days-1 
Hγ  Recovery rate from hospitalized group. days-1 
µ  Natural mortality rate. days-1 
τ  Mortality rate from COVID-19. days-1 

 
From Figure 1, the relationship of the spread can be described as follow: The initial population 
Π  is at risk of getting infected with COVID-19 from the group of susceptible population and 
the group of vaccinated population at a rate of β  and ρβ  respectively. When the population 
is infected, the virus incubates in the body at a rate of .φ  Some people get vaccinated to 
prevent the spread of disease at a rate of .ε  When getting vaccinated, some individuals 
improve their immunity while some people have low immunity and they can get infected. 
Once they get infected with COVID-19, they are required to stay in quarantine at a rate of 
θ  as their symptoms are not much severe. However, during staying in quarantine, they 
express severe symptoms, they need to be transferred to a hospital at a rate ofω  . During the 
infection period, infected group, quarantine group, and hospitalized group, patients may die 
from the disease at a rate of .τ  After they completely undergo treatments, they enter into 
recovered group at a rate of ,I Qγ γ  and Hγ  respectively. The differential equation can be 
written in the following form.   

( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ),
( ) (

I

Q

H

I

S t S t I t S t
V t S t V t I t V t
E t S t I t V t I t E t
I t E t I t
Q t I t E t Q t
H t I t Q t H t
R t I t

β ε µ
ε ρβ µ
β ρβ φ ψ µ
φ θ ω γ µ τ
θ ψ ν γ µ τ

ω ν γ µ τ
γ

′ = Π − − +
′ = − −
′ = + − + +
′ = − + + + +
′ = + − + + +

′ = + − + +
′ = ) ( ) ( ) ( ).Q HQ t H t R tγ γ µ












+ + −

        (2.1) 

Where       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).N t S t V t E t I t Q t H t R t= + + + + + +         (2.2) 
With initial conditions as follow: 

             (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0.S V E I Q H R> > > > > > >           (2.3) 
Since the initial conditions are all positive (2.3), all time t > 0, the biologically feasible region 
will be considered: 

( ) 7, , , , , , :S V E I Q H R N
µ+

 Π
Ω = ∈ ≤ 

 
 .         (2.4) 

 
2.2 Stability Analysis 

In this subpart, standard dynamical modeling is performed to analyze an equilibrium 
point, basic reproduction number and stability of the model, which can be seen as follows. 
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2.2.1 Equilibrium Point and Basic Reproduction Number  
To find the equilibrium point of the system, simply set all the ordinary differential 

equations in the system (2.1) equal to zero as follows: ( ) 0, ( ) 0,S t V t′ ′= = ( ) 0,E t′ =

( ) 0, ( ) 0, ( ) 0, ( ) 0.I t Q t H t R t′ ′ ′ ′= = = = Two equilibrium points are obtained, i.e. disease-free 
equilibrium point  

                  
* * * * * * * *
0 0 0 0 0 0 0 0( , , , , , , ) , ,0,0,0,0,0

( )
K S V E I Q H R ε

ε µ µ ε µ
 Π Π

= =  + + 
                (2.5) 

where 0 1R <    
and the endemic equilibrium point   * * * * * * * *

1 1 1 1 1 1 1 1( , , , , , , )K S V E I Q H R= ,                  (2.6)  

where  *
1 *

1

,S
Iβ ε µ

Π
=

+ +
*

1 * *
1 1

,
( )( )

V
I I

ε
β ε µ ρβ µ

Π
=

+ + +

* *
* 1 1
1 * *

1 1

( ( ) ) ,
( )( )( )

I IE
I I

β µ β ε ρ
β ε µ ρβ µ φ ψ µ

Π + +
=

+ + + + +
*

* 1
1 ,

I

EI φ
θ ω γ µ τ

=
+ + + +

* *
* 1 1
1 ,

Q

I EQ θ ψ
ν γ µ τ

+
=

+ + +

* *
* 1 1
1 ,

H

Q IH ν ω
γ µ τ

+
=

+ +

* * *
1 1 1*

1 ,I Q HI Q H
R

γ γ γ
µ

+ +
=  

where 0 1.R >  

Where 0R  is basic reproduction number. Basic reproduction number is calculated by using 
next-generation method. In this study ( ), ( ), ( )E t I t Q t and ( )H t expressions are taken into 
consideration for calculating basic reproduction number from next-generation method [16-17]. 

The non-linear differential equation is arranged in the following form: ( ) ( ),dx F x V x
dt

= −  where 

( )F x  is the matrix of new infection and ( )V x   is the matrix of transfer as follows:  

0
0
0

SI VI

F

β ρβ+ 
 
 =
 
 
 

, 

( )
( )

( )
( )

I

Q

H

E
E I

V
I E Q

I Q H

φ ψ µ
φ θ ω γ µ τ
θ ψ ν γ µ τ
ω ν γ µ τ

+ + 
 − + + + + + =
 − − + + + +
 
− − + + + 

. 

Thus, the Jacobian matrix can be obtained at the disease-free equilibrium point (2.5) as 
follow: 

( ) 0 0 00 0 0
( ) 0 00 0 0 0

,
( ) 00 0 0 0

0 ( )0 0 0 0

I

Q

H

S V

F V

φ ψ µβ ρβ
φ θ ω γ µ τ
ψ θ ν γ µ τ

ω ν γ µ τ

+ ++   
   − + + + +  = =
   − − + + +
   − − + +   

. 

The basic reproduction number 0( )R can be calculated from the spectral radius of 1( )FVρ −

 
by considering eigenvalues which can be obtained from the following: 

  
1

0
( )( )

( )( )( )I

R FV βφ µ ερρ
µ ε µ φ ψ µ θ ω γ µ τ

− Π +
= =

+ + + + + + +
.                   (2.7) 

 
2.2.2 Global Stability Analysis 
Theorem 2.1. If 0 1R <  and  

  
*

0

,
( )S V
µ τβ

ρ
+

=
+

                            (2.8) 

then the disease-free equilibrium point *
0K  is globally asymptotically stable in its feasible 

region. 
Proof.   To reveal the result, Lyapunov function is considered as follows: 
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* *
0 0 *

0

( ) ( ln ) .SX t S S S E I Q H R
S

= − − + + + + +  

The derivative of ( )X t  will be:   

*
0

*
0

* *
*0 0

0

( ) 1

( ( ) ) 1 ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( )

1 ( ) 1

I

Q H I Q H

S
X t S E I Q H R

S

S
SI S SI VI E E I

S
I E Q I Q H I Q H R

S S
S S I VI

S S

β ε µ β ρβ φ ψ µ φ θ ω γ µ τ

θ ψ ν γ µ τ ω ν γ µ τ γ γ γ µ

ε µ β ρβ

 
′ ′ ′ ′ ′ ′ ′= − + + + + + 

 
 

= Π − − + − + + − + + + − + + + + 
 

+ + − + + + + + − + + + + + −

   
= Π − − + − + +   

   

( )
*

* *0
0 0*

0

( ) ( ) ( )

1 ( ) 1 ( ) ( ) ( ) ( ) .

E I Q H R

S SS S V I E Q H R
S S

µ µ τ µ τ µ τ µ

ε µ β ρ µ τ µ µ τ µ τ µ

− − + − + − + −

   
= Π − + + − + + − + − − + − + −   

   

From the hypothesis (2.8), the following equation is obtained.  

         

*
*0

0 *
0

( ) 1 ( ) 1 ( ) ( ) .
S SX t S E Q H R
S S

ε µ µ µ τ µ τ µ
   

′ = Π − + + − − − + − + −   
   

 

Replace the equilibrium point * * * * * * * *
0 0 0 0 0 0 0 0( , , , , , , ) , ,0,0,0,0,0

( )
K S V E I Q H R ε

ε µ µ ε µ
 Π Π

= =  + + 
, shall be 

obtained. 
*

0
*

0

( ) 1 1 ( ) ( )
S SX t E Q H R
S S

µ µ τ µ τ µ
   

′ = Π − +Π − − − + − + −   
   

 

         

*
0

*
0

2 ( ) ( )
S S E Q H R
S S

µ µ τ µ τ µ
 

= Π − − − − + − + − 
 

 

* 2
0

*
0

( )
( ) ( ) ( ) 0

S S
X t E Q H R

S S
µ µ τ µ τ µ

  −′ = − Π + + + + + + ≤  
   

      (2.9) 

Since all parameters have positive value,
 

( ) 0X t′ ≤ . ( ) 0X t′ =  , if *
0 ,S S= 0, 0, 0E Q H= = = and 

0R = .  Therefore, it is compliant with the LaSalle’s Invariance Principle. It means that the 
model (2.1) is globally asymptotically stable in Ω .     □ 
 
Theorem 2.2. If 0 1,R > then the endemic equilibrium point *

1K  is globally asymptotically 
stable in its feasible region. 
Proof. Lyapunov function is determined as follow [14]: 

* * * * * * * *
1 1 1 1 1 1 1 1* * * *

1 1 1 1

* * * * * *
1 1 1 1 1 1* * *

1 1 1

( ) ( ln ) ( ln ) ( ln ) ( ln )

( ln ) ( ln ) ( ln ).

S V E IY t S S S V V V E E E I I I
S V E I

Q H RQ Q Q H H H R R R
Q H R

= − − + − − + − − + − −

+ − − + − − + − −
 

The derivative of Lyapunov function is considered, is obtained. 
* * * * * * *

1 1 1 1 1 1 1( ) 1 1 1 1 1 1 1 .S V E I Q H RY t S V E I Q H R
S V E I Q H R

             
′ ′ ′ ′ ′ ′ ′ ′= − + − + − + − + − + − + −             

             
 

The derivative from the system (2.1) is replaced,  
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{ } { } { }

{ } { }

{ } { }

* * *
1 1 1

* *
1 1

* *
1 1

( ) ( ) 1 1 ( ) 1

( ) 1 ( ) 1

( ) 1 1 .

I Q

H I Q H

S V EY t SI S S VI V SI VI E
S V E

I QE I I E Q
I Q

H RI Q H I Q H R
H R

β ε µ ε ρβ µ β ρβ φ ψ µ

φ θ ω γ µ τ θ ψ ν γ µ τ

ω ν γ µ τ γ γ γ µ

     
′ = Π − − + − + − − − + + − + + −     

     
   

+ − + + + + − + + − + + + −   
   
   

+ + − + + − + + + − −   
   

 

Putting * * * * * *
1 1 1 1 1 1, , , , ,S S S V V V E E E I I I Q Q Q H H H= − = − = − = − = − = − and *

1R R R= − is 
obtained. 

( ) ( ){ } ( ) ( ){ }

( ){ } ( ){ }

( ){ } ( ){ }

* *
* * * *1 1

1 1 1 1

* *
* *1 1

1 1

* *
* *1 1

1

( ) ( )

( ) ( )

( ) ( )

I

Q H

S S V VY t I S S S S S I V V V V
S V

E E I ISI VI E E E I I
E I

Q Q H HI E Q Q I Q H H
Q H

β ε µ ε ρβ µ

β ρβ φ ψ µ φ θ ω γ µ τ

θ ψ ν γ µ τ ω ν γ µ τ

   − −′ = Π − − − + − + − − − −   
   
   − −

+ + − + + − + − + + + + −   
   
   − −

+ + − + + + − + + − + + −  
   

( ){ }
*

* 1
1I Q H

R RI Q H R R
R

γ γ γ µ



 −
+ + + − −  

 

       

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2* * * ** *
1 1 1 11 1

2 2* ** *
1 1*1 1

1

* *
1 1

( )

( ) ( )

( )

I

Q

S S S S V V V VS VI S S I
S S S V V V

E E I IE ESI SI VI VI E EI
E E E I

QQ QI I E E
Q Q

β ε µ ε ε ρβ µ

β β ρβ ρβ φ ψ µ φ φ θ ω γ µ τ

θ θ ψ ψ ν γ µ τ

− − − −   
= Π −Π − − + + − − −   

   

− −   
+ − + − − + + + − − + + + +   

   

−   
+ − + − − + + +   

   

( )

( ) ( )

2* * *
1 1 1

2 2* ** * *
1 11 1 1( ) .H I I Q Q Q Q

Q H HI I Q Q
Q H H

H H R RR R RI I Q Q Q Q
H R R R R

ω ω ν ν

γ µ τ γ γ γ γ γ γ µ

   
+ − + −   

   

− −     
− + + + − + − + − −     

     

A new equation is arranged as  
( )Y t A B′ = −  

where  
,I Q QA S SI VI E I E I Q I Q Qε β ρβ φ θ ψ ω ν γ γ γ= Π + + + + + + + + + + +  

( ) ( ) ( ) ( )

( ) ( )

( )

2 2 2 2* * * ** *
1 1 1 11 1

2 2* ** * *
1 11 1 1

2** * *
11 1 1

( )

( ) ( )

( )

I

Q

S S S S V V V VS VB I S I
S S S V V V

E E I IE E ISI VI E
E E E I I

Q QQ Q HI E I
Q Q Q H

β ε µ ε ρβ µ

β ρβ φ ψ µ φ θ ω γ µ τ

θ ψ ν γ µ τ ω

− − − −   
= Π + + + + + +   

   

− −     
+ + + + + + + + + + +     

     

−    
+ + + + + + +    

    

( )

( )

2**
11

2** * *
11 1 1

( )

.

H

I Q Q

H HHQ
H H

R RR R RI Q Q
R R R R

ν γ µ τ

γ γ γ µ

−  
+ + + +  

  

−     
+ + + +     

     

 

It can be seen that, ( ) 0Y t′ < , when A B<  for  0 1R >  and ( ) 0Y t′ = when * * *
1 1 1, , ,S S V V E E= = =

* *
1 1, ,I I Q Q= =  *

1H H= and *
1 .R R=  Since all parameters have positive values, it is compliant 

with LaSalle’s invariance principle. The endemic equilibrium point *
1K  is global 

asymptotically stable in its feasible region, if A B< .      □ 
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3  Numerical Results 
3.1 Model Fitting  

In this part, the fitting of the parameters of the model (2.1) is performed. As some 
parameters are difficult to predict. We obtain parameters that are precise and suitable for 
the model, fmincon algorithm in MATLAB is employed to analyze parameters suitable for 
the actual data of the disease spread in Thailand. The parameters performed fitting are shown 
in Table 2. The remaining parameters are obtained from the observation of disease behavior 
and demographic factors connected to the disease. In this study, the data analyzed referred 
to the actual data of the disease spread in Thailand, in which daily infection data from 11 
January 2022 to 1 May 2022 were considered (since the spread of Omicron was reported), 
concerning the data collection of Ministry of Public Health [18]. The black circle displays the 
data on daily infection in Thailand while the opaque line displays the numerical analysis of 
the model (2.1) with 2 0.9544R =  as seen in Figure 2. 

 
Figure 2. Fitting model with the data of daily infection in Thailand 

 
3.2 Numerical Analysis Result 

In this subpart, numerical simulation of the model (2.1) was presented by considering 
the stability of the endemic equilibrium point. The parameters used in this simulation are 
shown in Table 2. In the simulation, initial population values were determined as follow: 

(0) 1000, (0) 1000, (0) 100, (0) 100,S V E I= = = = (0) 1053,Q = (0) 1002H = and (0) 13456000R =  show 
the stability of the endemic equilibrium point. It can be seen that the time is passed, the 
results were convergent to the equilibrium point at *

1K  Figure 4 – Figure 5 show numerical 
results in 2D and 3D trajectories. In the simulation,  0.00000009β =  was used to display the 
trajectory of convergence to the equilibrium more clearly. A comparison between infection 
rate  ( )β  and vaccination prevention efficacy ( )ρ  was made and presented in Figure 6 – 
Figure 7. From Figure 6, when the infection rate reduced from 

0.0000009,0.0000008,0.0000007,0.0000006,0.0000005,β =  it can be clearly seen that the 
population number increased, indicating that a high infection rate results in a faster control 
period than a lower infection rate. Figure 7 shows an increase in the vaccination prevention 
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efficacy. From 0.4,0.5,0.6,0.7,0.8ρ = , it can be noticeable that when the vaccine efficacy is 
higher, the control of disease spread is better. It is evident that vaccination strategy is a 
method to control the spread of COVID-19 in an efficient manner. 

Table 2. Shows the parameters used in the numerical analysis 
Parameters Description        Value       Source 

Π  Initial population. 560 Fitted 
                    β  Infection rate.       0.000009 Fitted 

ε  Vaccination rate. 0.4 Fitted 
ρ  Vaccination prevention efficacy. 0.5 Fitted 
φ  Incubation rate. 1/6 Fitted 
ψ  Transition rate from incubation 

group to quarantine group. 
  0.08       Fitted 

θ  Transition rate from infected 
group to quarantine group. 

0.02 Fitted 

ω  Transition rate from infected 
group to hospitalized group. 

0.005 [19] 

ν  Transition rate from quarantine 
group to hospitalized group. 

0.03 Fitted 

Iγ  Recovery rate from infected 
group. 

0.001 [13] 

Qγ  Recovery rate from quarantine 
group. 

0.03 [13] 

Hγ  Recovery rate from hospitalized 
group. 

1/14 [19] 

µ  Natural mortality rate.     0.000036529 [14] 
τ  Mortality rate from COVID-19. 0.00286 [15] 

 

 
Figure 3. Graph showing the numerical results of the model (2.1) for 0 1R >  and the 
parameters used in this simulation are shown in Table 2 

Time(days)

0 50 100 150 200 250 300

Th
e 

nu
m

be
r p

op
ul

at
io

ns

10 4

0

0.5

1

1.5

2

2.5

3

S

V

E

I

Q

H

The 28th Annual Meeting in Mathematics (AMM2024)

316



 
 

 

 
 
Figure 4. Graph showing 2D trajectory of the results (2.1) on the plane * *

1 1( , )S I and * *
1 1( , )V I  

for 0 1R >  and the parameters used in this simulation are shown in Table 2 
 
 

 
 
Figure 5. Graph showing 3D trajectory of the results (2.1) on the plane for 0 1R >  and the 
parameters used in this simulation are shown in Table 2 
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Figure 6. Graph showing the numerical results of the model (2.1) by comparing the infection 
rate ( )β for 0 1R >  and the parameters used in this simulation are shown in Table 2 
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Figure 7. Graph showing the numerical results of the model (2.1) by comparing the 
vaccination prevention efficacy ( )ρ  for 0 1R >  and the parameters used in this simulation are 
shown in Table 2 
 
3.3 Sensitivity Analysis 

In this subpart, sensitivity analysis of the basic reproduction number 0( )R was 
performed since the basic reproduction number indicates the status of the disease spread. 
Sensitivity analysis was performed to verify parameters significantly affecting the disease 
spread. The normalized forward sensitivity index can be calculated as follows:  
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0 0

0

.R R
Rσ
σ

σ
∂

ϒ = ×
∂

                                                  (3.1) 

Where σ  are parameters of the disease spread and  0R  is the basic reproduction number. The 
parameters used in the sensitivity index are shown in Table 2 and the analysis results are 
shown in Table 3. 

Table 3. Basic reproduction number sensitivity index 
Parameters Sensitivity 

         Π  1.000000 
                   β  1.00000 

ε  -0.017304 
ρ  0.964758 
φ  0.827651 
ψ  -0.827274 
θ  -0.692125 
ω  -0.173031 

Iγ  -0.034606 
µ  -0.984337 
τ  -0.098973 

 
From Table 3, the sensitivity index results showed that the parameters that most likely 
affected the disease spread were initial population ( )Π  and infection rate ( )β , which can be 
described as follow: The initial population and infection rate is equal to 1, meaning that an 
increase or decrease of the initial population and the infection rate of 10% shall result in an 
increase or decrease of the basic reproduction number by 10%. Consequently, to achieve 
efficient disease control, it is necessary to have tight control, avoid meeting people at risk of 
getting infected, maintain social distancing, and wear a face mask to reduce the infection 
rate. 
 

4  Conclusions                                   

In conclusion, to describe the dynamic of COVID-19 spread, a new model for the 
Omicron variant in Thailand was introduced. The model gives importance to the vaccinated 
population, quarantine population, and hospitalized population. Equilibrium points, basic 
reproduction number, and model stability were analyzed. The findings from the study 
revealed that at the disease-free equilibrium point, the model was stable when  0 1R <   and at 
the endemic equilibrium point, the model was stable when 0 1.R >  According to the numerical 
result analysis, we describe the dynamic of the disease spread and to ensure the results 
obtained are close to actual data of the spread in Thailand. Model fitting was performed to 
obtain parameter values suitable for the model and the disease spread in Thailand. 
Meanwhile, the basic reproduction number sensitivity index was analyzed.  The basic 
reproduction number was defined in the form of  0R  and it was given by  

   0
( ) .

( )( )( )I

R βφ µ ερ
µ ε µ φ ψ µ θ ω γ µ τ

Π +
=

+ + + + + + +
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According to the basic reproductive number analysis of the parameters, the top 3 positive 
parameters that affected the basic reproduction number are the initial population ( )Π , 
infection rate ( )β  and vaccination prevention efficacy ( )ρ , respectively and the top 3 
negative parameters that affected the basic reproduction number are natural mortality rate 
( )µ , transition rate from incubation group to quarantine group ( )ψ  and transition rate from 
infected group to quarantine group ( )θ , respectively. The analysis of parameters affecting the 
basic reproduction number indicated that an increase in infection rate results in faster control 
of the disease spread and an increase in vaccination efficacy results in significant reduction of 
the infection. It can be noticeable that prevention of the disease by vaccination is a strategy 
that helps control the disease spread. However, a combination of measures can be imposed 
for the prevention and reduction of COVID-19 to reduce uncertainty about the spread of this 
disease in the future.  
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Abstract  
 The Flowshop Scheduling Problem (FSP) is a powerful optimization technique used 
to maximize resource utilization and operational efficiency across various industries and 
applications. This includes production planning in manufacturing, logistics scheduling, 
service appointment optimization, and even task scheduling in computer science and 
software engineering. The NEH (Nawaz, Enscore, and Ham) algorithm is a well-
established construction heuristic method for FSP. However, its effectiveness depends on 
the initial job sequence selection. This research proposes an enhanced NEH algorithm 
that leverages a combination of diverse data shapes and a robust tie-breaking rule to 
improve decision-making capabilities. Numerical experiments conducted with standard 
benchmarks demonstrate that the proposed approach, NEHDL, reduces the relative 
percentage deviation (RPD) compared to the classic NEH algorithm, emerging as the 
preferred method for minimizing completion time. Additionally, NEHDL offers simplicity 
compared to E-NEH, NEH3TF, and NEH4TF methods, making it straightforward to 
apply. 
 

Keywords: flowshop scheduling problem, construction heuristic method,  

NEH algorithm, resource utilization, optimization. 

2020 MSC: Primary 90B35; Secondary 90C35, 90C59, 68M20. 

1 Introduction 
 
The flowshop scheduling problem (FSP) has garnered significant research attention due to 
its applicability across diverse sectors [1]. This optimization technique finds utility in 
production lines (e.g., automotive, electronics), logistics (e.g., delivery routes, flight 
scheduling), healthcare surgery scheduling, service appointment management, and even task 
scheduling within computer science and software engineering (e.g., parallel processing).  In 
essence, FSP serves as a valuable tool for optimizing resource utilization and enhancing 
operational efficiency across a wide spectrum of industries and applications. 
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The selection of the objective function within FSP is contingent upon the specific priorities 
and constraints of the given instance. For example, minimizing tardiness might be prioritized 
if timely delivery is paramount. Conversely, minimizing completion time (makespan) or idle 
time might be more relevant if cost minimization is a primary objective. The core elements 
of FSP are: 

(i) Fixed Machines and Jobs: This entails a predefined set of M machines 
arranged in a specific order, along with N jobs slated for processing on those 
machines in a particular sequence. 

(ii) Single Processing: Under this condition, each job is restricted to being 
processed on only one machine at any given time, while each machine can 
handle only one job simultaneously.  

(iii) Once an operation begins, the sequence of jobs cannot be interrupted, and the 
processing times of each job are unaffected by the order in which the N jobs 
are arranged. The solution to the Flowshop Scheduling Problem (FSP) 
involves determining a sequence of N jobs that minimizes operation times or 
other relevant objective functions. 

The makespan (Cmax) represents the total time elapsed between when the first job begins 
processing on the first machine and when the last job finishes on the last machine. It 
essentially reflects the total completion time for all jobs in the schedule. 
While an analytical solution exists for the FSP with just two machines [2, 3], the problem 
becomes computationally intractable for more machines. It is proven to be NP-complete [4], 
signifying that finding the optimal solution becomes exponentially more time-consuming as 
the problem size increases. Given the immense number of possible job sequences (N!), various 
algorithms have been developed to efficiently identify "good" (near-optimal) solutions in a 
reasonable amount of time. 
Nawaz-Enscore-Ham [5] proposed NEH algorithmm, is known for its effectiveness in FSP. 
However, its performance is highly dependent on the initial sequence selection, which can be 
challenging to optimize. Subsequently, multiple enhancements to the NEH algorithms have 
been suggested [6-8]. Framinan et al. [9] tackled this issue by examining the effects of different 
initial sequencing rules on the NEH heuristic while aiming to minimize three objectives: 
makespan, idle time, and flow time. Through their comprehensive investigation, they 
identified specific initial sequencing rules that consistently surpassed the standard NEH 
approach across all three objectives. This underscores the continuous endeavors to refine and 
optimize NEH methodologies [10-12]. Through systematic experimentation and analysis, this 
research seeks to provide valuable insights into optimizing the NEH algorithm for solving the 
FSP, by identifying effective initial sequencing rules. The study aims to contribute to 
advancing heuristic methods in optimization and addressing practical challenges in industrial 
scheduling. 
 
2  Preliminaries  
Dong et al. [8] proposed an improved method for generating the initial sequence. They sorted 
jobs based on the sum of the average and standard deviation of their processing times. This 
approach aims to consider both central tendency and processing time variability when 
selecting initial jobs. Moonsan and Remsungnen [13] explored a broader range of data 
characteristics for job selection. They defined several sorting criteria using combinations of 
factors like average processing time, standard deviation, skewness, and kurtosis. Additionally, 
they incorporated the sum of total flowtime and total operation time as a secondary criterion 
during the partial sequence selection step. Ito et al. [14] introduced a new method called E-
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NEH for flowshop scheduling. This method dynamically adapts to different problem scenarios 
by employing various priority rules at each step of the algorithm. While E-NEH outperforms 
other NEH-based methods in terms of solution quality, it requires more computational time. 
Our proposed approach will also be evaluated alongside these existing works for comparison. 
 
2.1 Completion Time (Cmax) 
 
Let P = j1j2…jN be a member of possible solutions in N! permutation space, and let p(i,j) be a 
given processing time of job j on machine i, then a completion time of job j on machine i, Ci,j 
denoted as, 
 

Ci,j = max(Ci,j-1, Ci-1,j) + p(i,j),    (2.1) 
 
where i = 1, 2, 3, …, M;  j = 1, 2, 3, …, N ; C0,j = 0 and Ci,0 = 0 the Cmax(P) = CM,N. 
 
Let we have a task of 5 machines (M) and 5 jobs (N), their processing times and data shapes 
which obtained from equation (2.2)-(2.5) are shown in Table 1. 
 
Table 1. The processing time of job j on machine i, p(i,j) with data shapes of each job, i.e., 
total (Tj), average (AVGj), standard deviation (STDj), skewness (SKEWj) and kurtosis 
(KURTj). Their corresponding C(i,j) tables for J3J1J2J4J5 and J2J1J4J5J3 orders which result 
Cmax values of 62 and 65, respectively 
 

p(i,j) J1 J2 J3 J4 J5 
M1 6 8 7 3 8 
M2 8 4 9 7 6 
M3 7 6 4 5 7 
M4 6 3 7 2 7 
M5 5 4 8 4 6 
Tj 32 25 35 21 34 
AVGj 6.4 5.0 7.0 4.2 6.8 
STDj 1.02 1.79 1.67 1.72 0.75 

 

SKEWj 0.405 0.94 -1.15 0.59 0.51 
KURTj -1.04 -1.05 -0.5 -1.01 -1.15 

 

Ci,j J3 J1 J2 J4 J5 
M1 7 7+6=13 13+8=21 21+3=24 24+8=32 
M2 7+9=16 16+8=24 24+4=28 28+7=35 35+6=41 
M3 16+4=20 24+7=31 31+6=37 37+5=42 42+7=49 
M4 20+7=27 31+6=37 37+3=40 42+2=44 49+7=56 
M5 27+8=35 37+5=42 42+4=46 46+4=48 56+6=62 

  
Ci,j J2 J1 J4 J5 J3 
M1 8 8+6 =14 14+3 = 17 17+8 = 25 25+7 = 32 
M2 8+4 = 12 14+8 = 22 22+7 = 29 29+6 = 35 35+9 = 46 
M3 12+6 = 18 22+7=29 29+5 = 34 35+7 = 41 46+4 = 50 
M4 18+3 = 21 29+6 = 35 35+2 = 37 41+7 = 48 50+7 = 57 
M5 21+4 = 25 35+5 = 40 40+4 = 44 48+6 = 54 57+8 = 65 

 
In Table 1 illustrates the processing times, p(i,j), for each job j on each machine i, along with 
their corresponding completion times, Ci,j for two job scheduling sequences: J3J1J2J4J5 and 
J2J1J4J5J3. Notably, the order in which jobs are processed can significantly impact the Cmax. 
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As demonstrated here, the first sequence achieves a Cmax of 62, while the second sequence 
results in a Cmax of 65. This highlights the importance of optimizing the job scheduling 
sequence to minimize completion time in FSP. 
 
2.2 NEH Algorithm 
 
Classical NEH algorithm is show step by step as follows; 

Step 1: Obtain the total processing time of each job, Tj, which is the sum of its 
processing times across all machines. Then sort jobs in decreasing order of Tj.  
 Step 2: Take the first two jobs and schedule them so as to minimize the partial 
makespan.  
 Step 3: For k = 3 to N, insert the kth job into the partial schedule, in the k possible 
position which minimizes the makespan. 
 
Since the classical NEH algorithm relies on Tj to order jobs initially. This work proposes a 
more informative approach for step one, incorporating not only Tj but also the data shape of 
processing times to create a richer initial sequence. This data shape is captured by a 
combination of statistical measures, including: 
 

• Average Processing Time (AVGj): Represents the central tendency of processing 
times. 

𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗 =  ∑ 𝑝𝑝(𝑖𝑖,𝑗𝑗)𝑀𝑀
𝑖𝑖=1
𝑀𝑀

       (2.2) 

• Standard Deviation (STDj): Indicates the variability of processing times around the 
average. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 =  ∑ (𝑝𝑝(𝑖𝑖,𝑗𝑗)−𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗)2𝑀𝑀
𝑖𝑖=1

𝑀𝑀
      (2.3) 

• Skewness (SKEWj): Measures the asymmetry in the distribution of processing times 
(positive or negative skew). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = 𝑀𝑀
(𝑀𝑀−1)(𝑀𝑀−2)

∑ �𝑝𝑝
(𝑖𝑖,𝑗𝑗)−𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗)

𝑆𝑆𝑆𝑆𝐷𝐷𝑗𝑗
�
3

𝑀𝑀
𝑖𝑖=1     (2.4) 

• Kurtosis (KURTj): Captures the "peakedness" of the processing time distribution 
compared to a normal distribution. 

𝑆𝑆𝐾𝐾𝐾𝐾𝑆𝑆𝑗𝑗 =
∑ �𝑝𝑝(𝑖𝑖,𝑗𝑗)−𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗)�

4𝑀𝑀
𝑖𝑖=1

𝑀𝑀∙𝑆𝑆𝑆𝑆𝐷𝐷𝑗𝑗
4           (2.5) 

By incorporating these data shape elements alongside Tj, we aim to create a more robust and 
informative initial job sequence for subsequent NEH steps. Additionally, we address the 
potential for encountering multiple partial sequences with the same Cmax in step two with 
simple tie-breaking strategies first or last. The combinations are shown in Table 2. 
It is important to note that the core complexity of the NEH algorithm, which is O(MN3) 
remains unchanged. This complexity is primarily determined by the sequence insertion 
process and the calculation of Cmax throughout the algorithm. The data shape-based approach 
for step one does not significantly impact this complexity. 
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Table 2. The combinations of data shapes and tie-breaking strategies 
 
Name Data shape combination First-Last tie-breaking 
NEHCF Tj First 
NEHCL Tj Last 
NEHDF AVGj + STDj First 
NEHDL AVGj + STDj Last 
NEH3TF AVGj + STDj + SKEWj First 
NEH3TL AVGj + STDj + SKEWj Last 
NEH4TF AVGj + STDj + SKEWj + KURTj First 
NEH4TL AVGj + STDj + SKEWj + KURTj Last 

 
3  Main Results 
 
To assess the effectiveness of our enhanced NEH approach, we conducted extensive numerical 
experiments. The well-known Taillard's benchmark and widely employed as standard for 
FSP, had been utilized. This benchmark provides a diverse set of test instances with varying 
complexities, allowing for a comprehensive evaluation.  
The performance of proposed method will be compared against the classical NEH algorithm, 
NEHC and some recently published NEH variants. The results are presented in Table 3, 
displaying the performance metrics known as relative percentage deviation (RPD), as outlined 
in equation (3.1). This comparison will allow us to quantify the improvements achieved by 
incorporating the data-shape analysis and tie-breaking strategies within our enhanced NEH 
approach. 

   𝐾𝐾𝑅𝑅𝑆𝑆𝑝𝑝   =   100 �𝐻𝐻𝑝𝑝−𝑈𝑈𝐵𝐵𝑝𝑝�
𝑈𝑈𝐵𝐵𝑝𝑝

                                    (3.1) 

Where Hp, Solution value (e.g., Cmax) obtained by a heuristic algorithm for problem instance 
p, and UBp, Upper bound (known best possible solution value) for problem instance p 
provided by Taillard's benchmark, which consists of 10 instances for each of the 12 problem 
sizes. The average RPD metric serves as the benchmark for solution quality, with lower RPD 
signifying solutions closer to the optimal value and hence, superior performance.  
The proposed NEH variants (NEHDL, NEH3TF, and potentially others) consistently achieve 
lower average RPD values compared to the classical NEH (NEHC, NEHD) and other existing 
methods (NEHSKE) across various problem sizes. This observation underscores the 
effectiveness of incorporating data shape analysis and strategic tie-breaking strategies in 
improving solution quality. 
While E-NEH [14] demonstrates the best overall average RPD (2.75), it requires significantly 
more computational steps as it selects the best solution after applying at least four initial 
sequences from different rules. This underscores a pivotal strength of our approach: it yields 
highly competitive RPD values (NEHDL: 2.85, NEH3TF: 2.86) while demonstrably 
improving computational efficiency. Moreover, in some instances, our approach even 
outperforms E-NEH, showcasing its superior solution quality in addition to its efficiency gains. 
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Table 3. Average RPD values of different NEH variants on Taillard's Benchmark: Average 
RPD values for each problem size and overall average 

* Take values from [14].  

 
Since the NEH method relies on arranging jobs from largest to smallest from the first position 
to the last. By utilizing the NEHDL rule, which prioritizes placing the current job in the last 
feasible slot while ensuring priority positions for subsequent smaller jobs, one can effectively 
reorder and optimize job sequences.  
However, while NEH variants like NEHCF and NEHDF, which prioritize the initial job 
encounter order during tie-breaking, yield lower RPD compared to NEHCL and NEHDL, but 
NEH3TF and NEH4TF result in higher RPD compared to NEH3TL and NEH4TL. These 
findings suggest that a tie-breaking rule based on encounter order may not consistently 
enhance solution quality. 
Moreover, the impact of different methods on RPD seems to vary depending on the problem 
size (number of jobs and machines). For instance, the proposed NEHDL performs well across 
most sizes, while some methods like NEHSKE show more size-dependent performance. This 
warrants further investigation into the influence of problem characteristics on optimal NEH 
variant selection.  
In conclusion, the proposed NEH enhancements, particularly the NEHDL variant, offer a 
significant contribution to the domain of flowshop scheduling algorithms. NEHDL stands out 
for its simplicity and effectiveness in minimizing completion time while maintaining 
competitive solution quality (low RPD) and improved computational efficiency compared to 
E-NEH and other variants. However, further research may be needed to fully validate its 
effectiveness across various scenarios. Future work could explore problem size dependence 
and conduct statistical comparisons between the proposed methods and existing ones for a 
more robust evaluation. 
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F 

N
EH

4T
L 

1 20 x 5 3.30 3.07 2.77 2.70 2.91 2.56 2.71 2.16 3.12 3.04 2.63 2.60 
2 20 x 10 4.60 5.02 4.55 4.08 4.10 3.90 3.68 3.68 4.09 4.02 4.07 4.75 
3 20 x 20 3.73 3.66 3.60 3.82 3.69 3.24 2.91 3.06 3.11 3.42 3.11 3.47 
4 50 x 5 0.73 0.76 0.88 0.89 1.04 1.03 0.88 0.64 1.07 1.00 0.86 0.84 
5 50 x 10 5.07 4.53 4.72 4.90 4.61 4.31 4.48 4.25 4.23 5.20 4.52 4.29 
6 50 x 20 6.65 6.05 5.43 6.12 6.05 5.50 6.42 6.15 5.55 5.72 5.89 6.04 
7 100 x 5 0.53 0.52 0.40 0.41 0.42 0.51 0.54 0.36 0.33 0.50 0.47 0.34 
8 100 x 10 2.21 2.20 2.36 2.16 2.07 2.40 2.24 1.72 2.17 2.08 2.10 2.34 
9 100 x 20 5.34 4.43 4.46 5.65 4.43 4.42 4.99 4.81 4.36 4.17 4.61 4.84 
10 200 x 10 1.26 1.24 1.10 1.24 1.16 1.29 1.24 0.89 1.25 1.26 1.47 1.21 
11 200 x 20 4.41 3.31 3.41 4.57 3.22 3.33 4.14 3.65 3.29 3.12 3.35 3.20 
12 500 x20 2.07 1.76 1.90 2.13 1.73 1.68 2.12 1.62 1.78 1.71 1.70 1.65 

  
Overall 
AVG 

3.32 3.05 2.97 3.22 2.95 2.85 3.06 2.75 2.86 2.94 2.90 2.96 
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Abstract  
 Encapsulating endofullerene in a carbon nanotube results in the development of 
innovative nanomaterials with distinct characteristics and applications. Encapsulating 
an iron atom in the middle of a C20 fullerene, forming Fe@C20, within a carbon nanotube 
provides benefits such as increased stability, higher electrical conductivity, and 
adjustable magnetic characteristics. Additionally, the Fe@C20 encapsulated within the 
carbon nanotube shows promise for several applications including biomedical imaging, 
medication administration, and energy storage. This study employs a continuum 
approach to examine the encapsulation behavior of the van der Waals interaction 
between an endofullerene Fe@C20 and a single-walled carbon nanotube. The Lennard-
Jones potential is used to calculate the acceptance energy and suction energy. The results 
indicate that the force of interaction between endofullerene enclosed in the carbon 
nanotube becomes apparent at nanotube radii of 4.728 Å, 4.977 Å, and 5.250 Å. When 
the radius of the tube is greater than or equal to 4.728 Å, the endofullerene will be 
accepted into the carbon nanotube because of the non-negative acceptance energy. The 
endofullerene will reach its peak suction energy when moving through a nanotube with 
a radius of 5.250 Å. This paper demonstrates a method to determine the encapsulation 
procedure for endofullerene Fe@C20 within a carbon nanotube, enabling the creation of 
a more intricate system for investigating its further features. 
 

Keywords: carbon nanotube, encapsulation, Lennard-Jones potential, endofullerene. 

2020 MSC: Primary 00A71. 

1 Introduction 
Iijima made the discovery of carbon nanotubes (CNTs) in 1991 [1]. CNTs, with their 

unique properties of high electrical conductivity and thermal, chemical, and mechanical 
stability [2], find application in various fields such as nanoelectronics [3], biosensors [4], 
chemical sensors [5], chemical and biological separation [6], purification, and catalysis [7]. 
Also, the discovery of C60 fullerene in 2000 [8] got a lot of attention because of its unique 
mechanical properties caused by the van der Waals force and its electronic properties because 
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it has a high surface-to-volume ratio [9, 10]. There is much research on the mechanism of C60 
fullerene inside the carbon nanotube called “nanopeapods” acting as superconducting 
nanowires [11]. Many scientists tried to formulate and create many possible members of 
fullerenes like C28 and C36 to further investigate their properties. However, in 2000, scientists 
successfully synthesized C20 fullerene, the smallest member of the fullerenes, as predicted [12]. 
Because it has so many unique qualities, C20 fullerene creates magnetization discontinuities 
when an external magnetic field is applied [13]. It also shows that its shape stays mostly the 
same, with no obvious distortion, even at temperatures as high as 1,500 Kelvin [14]. These 
astonishing properties have a possible application in nanotechnology, material science, or drug 
transportation. However, many scientists tried to create fullerene, or the closed-cage carbon 
molecules containing additional atoms or a molecule inside the cage, which is called 
“endohedral fullerenes” or “endofullerenes” [15] because of the discovery of lanthanum (La) 
atoms trapped inside a C60 fullerene in 1985 [16]. Endofullerenes, which encapsulate individual 
atoms of different elements, have been the subject of extensive research and experimentation, 
with potential applications in molecular chemistry, physics, biomedicine, electronics, optics, 
and nanotechnology. A lot of people are interested in endofullerenes that are surrounded by 
ferromagnetic material, like an iron atom [17, 18]. This is because they have special structural 
and physicochemical properties [19] that could be used in molecular electronics [20], magnetic 
resonance imaging [21], and nuclear magnetic resonance (NMR) analysis [22, 23]. Poklonski 
et al. used a semi-empirical approach to study the activated nanorelay caused by the bending 
of nanotubes by a magnetic force [24]. They looked at the properties of an (8,8) carbon 
nanotube with a single Fe@C20 inside it. 

The point of this study is to use the continuum approach to look into how the van 
der Waals forces act on single-walled carbon nanotubes and the endofullerene Fe@C20. We 
also studied the acceptance and suction energies using the potential energy of the Lennard-
Jones potential function. Another goal is to determine the minimum radius of the nanotube 
that accepts the endofullerene Fe@C20 and the optimal radius that provides the maximum 
suction energy. We can organize this research in the following ways: Section 2 shows the 
concept of mathematical modeling of the system consisting of sub-two systems: the interaction 
of the C20 fullerene and the tube, and the interaction of an iron atom and the tube. Then we 
formulate the mathematical relation to calculate the interaction energies, acceptance energies, 
and suction energies for each subsystem. Section 3 is the numerical results of total interaction 
energies, acceptance energies, and suction energies from all sub-two systems. Section 4 
summarizes the conclusions. 
 
2  Mathematical Modelling  

In this mathematical mode, the following assumptions are required: The model 
considers only the van der Waals interaction; the electrostatic effect is neglected; and the 
fullerene molecule is a perfect sphere [25]. Due to nonbonded interaction, the Lennard-Jones 
potential function is used to calculate the potential energy, which is given by  
 

                                           𝛷𝛷(𝜌𝜌) = −
𝐴𝐴
𝜌𝜌6

+
𝐵𝐵
𝜌𝜌12

= 4𝜖𝜖 �− �
𝜎𝜎
𝜌𝜌
�
6

+ �
𝜎𝜎
𝜌𝜌
�
12
� ,                                               (1) 

where 𝛷𝛷(𝜌𝜌) is the potential function such that 𝜌𝜌 is a distance between two atoms, 𝐴𝐴 and 𝐵𝐵 
are the attractive and repulsive constants, respectively, 𝜖𝜖 is the energy well depth, and 𝜎𝜎 is 
the van der Waals diameter. 
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Based on a continuous approach [26], there is a uniform distribution of atoms over 
the surface of each molecule. We can calculate the molecular interatomic energy by using 
the integrals over the surface or the volume of each molecule, as indicated by the following 
equation: 

                                                    𝐸𝐸 = 𝜂𝜂1𝜂𝜂2 � ��−
𝐴𝐴
𝜌𝜌6

+
𝐵𝐵
𝜌𝜌12

�
𝑆𝑆2𝑆𝑆1

𝑑𝑑𝑆𝑆2𝑑𝑑𝑆𝑆1,                                                  (2) 

where 𝜂𝜂1 and 𝜂𝜂2 are the mean surface densities or the mean volume densities of atoms on 
each molecule, whereas 𝑑𝑑S1 and 𝑑𝑑S2 are typical surface elements on each molecule. However, 
the equation (2) can be reduced to 
 
                                                                    𝐸𝐸 = 𝜂𝜂1𝜂𝜂2(−𝐴𝐴𝐼𝐼3 + 𝐵𝐵𝐼𝐼6),                                                             (3) 

where the integrals 𝐼𝐼𝑛𝑛 (𝑛𝑛 = 3,6) can be defined by 
  

                                                                  𝐼𝐼𝑛𝑛 = � �𝜌𝜌−2𝑛𝑛

𝑆𝑆2𝑆𝑆1

𝑑𝑑𝑆𝑆2𝑑𝑑𝑆𝑆1.                                                             (4) 

In this research, we construct a mathematical model that explains the mechanism of 
the encapsulation between an endofullerene Fe@C20 and the carbon nanotube with any radius 
to calculate the interaction force, the acceptance energy, and the suction energy. In this case, 
the Cartesian coordinate system (𝑥𝑥,𝑦𝑦, 𝑧𝑧) will be used as a reference to construct the system 
in which the carbon nanotube is assumed to be a perfect and well-defined cylinder, and the 
endofullerene is spherical. An endofullerene Fe@C20 consists of a C20  fullerene in which an 
iron atom (Fe) is located at the center of the fullerene. Each carbon atom (C) of the fullerene 
is located at 0.205 nm from its center of the sphere. In the ferrocene C10H10Fe, an iron atom 
is at the same distance from the carbon atoms [27], thus it may be placed within the C20 
fullerene to symmetrically place it at the center. 

The interaction energy between the endofullerene Fe@C20 and the carbon nanotube 
is the sum of an iron atom and a C20 fullerene’s interactions with the carbon nanotube. The 
total interaction energy between the endofullerene and the carbon nanotube 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 is given by 
 
                                                                           𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸1 + 𝐸𝐸2,                                                                     (5) 
 
where 𝐸𝐸1 and 𝐸𝐸2 are interaction energies between the carbon nanotube and the C20 fullerene 
and the iron atom, respectively. 
 The van der Waals force (𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣) means the attractive and repulsive forces between 
molecules, also known as the intermolecular force. The van der Waals interaction force 
between two typical atoms on two nonbonded molecules is given by [28], 
 
                                                                                 𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣 = −𝛻𝛻𝐸𝐸,                                                                   (6) 
 
where 𝐸𝐸 is the interaction energy between the atoms and the operator 𝛻𝛻 is the vector gradient. 
 The gradient in Cartesian coordinates is given by  
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                                                                 𝛻𝛻𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
𝜕𝜕𝐸𝐸
𝜕𝜕𝑥𝑥

�̂�𝕚 +
𝜕𝜕𝐸𝐸
𝜕𝜕𝑦𝑦

�̂�𝕛 +
𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

𝕜𝕜�.                                             (7) 

 
 The resulting axial force along the 𝑍𝑍-axis can be derived from the differentiation of 
the integrated interaction energy with respect to 𝑍𝑍, which represents the distance between 
the centers of two molecules. The van der Waal force can be expressed in the form of the 
resulting axial force as [28], 
      

                                                                                      𝐹𝐹𝑍𝑍 = −
𝜕𝜕𝐸𝐸
𝜕𝜕𝑍𝑍

.                                                                  (8) 
 
 Acceptance energy and suction energy are the two main characteristics that were first 
introduced by Cox et al. [29]. These energies are useful to study the suction and acceptance 
behaviors of the encapsulation mechanism for some applications like drug transportation [29]. 
  The acceptance energy (𝑊𝑊𝑎𝑎) can be defined as the total work performed by the van 
der Waals interactions on the particle entering the nanotube, up until the point 𝑍𝑍0 that the 
van der Waals force becomes attractive [29]. The total acceptance energy along the 𝑍𝑍-axis 
can determine whether the molecule will be sucked into the carbon nanotube or not, which 
can be expressed as    
 

                                                                                     𝑊𝑊𝑎𝑎 = � 𝐹𝐹𝑍𝑍𝑑𝑑𝑍𝑍

𝑍𝑍0

−∞

.                                                          (9) 

 
Meanwhile, the suction energy (𝑊𝑊𝑠𝑠) is a criterion for the total increase in the kinetic 

energy experienced by the inner tube [30], which can be expressed as the total work done by 
the van der Waals interaction force to move the molecule from 𝑍𝑍 = −∞ to 𝑍𝑍 = ∞.               It 
can be written as 

 

                                                                                     𝑊𝑊𝑠𝑠 = � 𝐹𝐹𝑍𝑍𝑑𝑑𝑍𝑍
∞

−∞

.                                                        (10) 

  
 The suction energy is also an indicator of the total increase in the kinetic energy 
experienced by the inner carbon nanotube [30].  
 
2.1 Interaction Between 𝐂𝐂𝟐𝟐𝟐𝟐 Fullerene and Carbon Nanotube 

According to Figure 1, the system consists of a C20 fullerene with a radius of 𝑏𝑏 and a 
carbon nanotube with a radius of 𝑎𝑎. Based on the continuum approach and Lennard-Jones 
potential, the carbon nanotube is assumed to be a perfect cylinder. An atom on the tube has 
a coordinate of (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎,𝑍𝑍), where −𝜋𝜋 ≤ 𝑎𝑎 ≤ 𝜋𝜋 and −∞ < 𝑍𝑍 < ∞. The coordinate of a 
point on the fullerene is (0,0,𝑍𝑍∗), which is far 𝑍𝑍∗ units from the open-end carbon nanotube 
in the direction of the 𝑍𝑍-axis. The distance between the center of the fullerene and an atom 
on the nanotube can be denoted by 𝜌𝜌, which is given by   𝜌𝜌2 = 𝑎𝑎2 + (𝑍𝑍∗ − 𝑍𝑍)2. The interaction 
force between the spherical fullerene and the cylindrical carbon nanotube is determined by 
using the potential energy. According to Cox et al. [29], the potential energy 𝐸𝐸1(𝜌𝜌) for all 
atoms of the fullerene of radius 𝑏𝑏 interacting with an atom on the carbon nanotube of radius 
𝑎𝑎 can be expressed as 
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                                                                     𝐸𝐸1(𝜌𝜌) = −𝐶𝐶6(𝜌𝜌) + 𝐶𝐶12(𝜌𝜌),                                                    (11) 
where 𝐶𝐶𝑛𝑛(𝜌𝜌) is defined by 
 

                                                              𝐶𝐶𝑛𝑛(𝜌𝜌) = 𝐹𝐹𝑛𝑛𝜂𝜂C20 � �
𝑏𝑏2sin𝜙𝜙
𝑟𝑟𝑛𝑛

𝑑𝑑𝜙𝜙𝑑𝑑𝑎𝑎
𝜋𝜋

0

,
2𝜋𝜋

0

                                         (12) 

 𝑟𝑟 denotes the distance between atoms at the points on the fullerene and the carbon 
nanotube, respectively, 

𝜂𝜂𝐶𝐶20 means the atomic surface density of the C20 fullerene, 
𝜙𝜙 denotes for the polar angle of the fullerene, and 

 𝑎𝑎 denotes for the azimuth angle of the fullerene. 
 
 

 

Figure 1: A system consists of a C20 fullerene and an open-end carbon nanotube 

 
Since                               𝑟𝑟2 = 𝜌𝜌2 + 𝑏𝑏2 − 2𝑏𝑏𝜌𝜌cos𝜙𝜙,                                                (13) 
we have   
   

                                                   𝐶𝐶𝑛𝑛(𝜌𝜌) = 𝐹𝐹𝑛𝑛𝜂𝜂C20 � �
𝑏𝑏2sin𝜙𝜙

(𝜌𝜌2 + 𝑏𝑏2 − 2𝑏𝑏𝜌𝜌cos𝜙𝜙)
𝑛𝑛
2
𝑑𝑑𝜙𝜙𝑑𝑑𝑎𝑎

𝜋𝜋

0

,
2𝜋𝜋

0

                  (14) 

                                                    𝐶𝐶𝑛𝑛(𝜌𝜌) =
2𝐹𝐹𝑛𝑛𝜂𝜂C20𝜋𝜋𝑏𝑏
𝜌𝜌(2 − 𝑛𝑛) �(𝜌𝜌 + 𝑏𝑏)(2−𝑛𝑛) − (𝜌𝜌 − 𝑏𝑏)(2−𝑛𝑛)�.                        (15) 

Thus 

                                                    𝐶𝐶6(𝜌𝜌) =
𝐹𝐹6𝜂𝜂C20𝜋𝜋𝑏𝑏
𝜌𝜌(−2)

[(𝜌𝜌 + 𝑏𝑏)−4 − (𝜌𝜌 − 𝑏𝑏)−4].                                     (16) 

and 

                                                  𝐶𝐶12(𝜌𝜌) =
𝐹𝐹12𝜂𝜂C20𝜋𝜋𝑏𝑏
𝜌𝜌(−5)

[(𝜌𝜌 + 𝑏𝑏)−10 − (𝜌𝜌 − 𝑏𝑏)−10].                               (17) 

If we let 𝐹𝐹6 = 𝐴𝐴 and 𝐹𝐹12 = 𝐵𝐵, then we obtain the following potential energy as 

               𝐸𝐸1(𝜌𝜌) =
𝐴𝐴𝜂𝜂C20𝜋𝜋𝑏𝑏

2𝜌𝜌
[(𝜌𝜌 + 𝑏𝑏)−4 − (𝜌𝜌 − 𝑏𝑏)−4]−

𝐵𝐵𝜂𝜂C20𝜋𝜋𝑏𝑏
5𝜌𝜌

[(𝜌𝜌 + 𝑏𝑏)−10 − (𝜌𝜌 − 𝑏𝑏)−10].  (18) 
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The resulting axial force can be expressed as 

     𝐹𝐹𝑍𝑍1 = −2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎�
(𝑍𝑍∗ − 𝑍𝑍)

𝜌𝜌
𝑑𝑑𝐸𝐸1(𝜌𝜌)
𝑑𝑑𝜌𝜌

∞

0

𝑑𝑑𝑍𝑍 = 2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 �
𝑑𝑑𝐸𝐸1(𝜌𝜌)
𝑑𝑑𝜌𝜌

∞

√𝑎𝑎2+𝑍𝑍2

𝑑𝑑𝜌𝜌,                                 (19) 

     𝐹𝐹𝑍𝑍1 = −2𝜋𝜋2𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝜂𝜂C20𝑎𝑎𝑏𝑏 �
𝐴𝐴

2𝜌𝜌
[(𝜌𝜌 + 𝑏𝑏)−4 − (𝜌𝜌 − 𝑏𝑏)−4]−

𝐵𝐵
5𝜌𝜌

[(𝜌𝜌 + 𝑏𝑏)−10 − (𝜌𝜌 − 𝑏𝑏)−10]� . (20) 

We can transform the following terms into simplified terms; 

                           
𝐴𝐴

2𝜌𝜌
[(𝜌𝜌 + 𝑏𝑏)−4 − (𝜌𝜌 − 𝑏𝑏)−4] = (−4𝐴𝐴) �1 +

2𝑏𝑏2

(𝜌𝜌2 − 𝑏𝑏2)4� ,                                       (21) 

and 

  
𝐵𝐵
5𝜌𝜌

[(𝜌𝜌 + 𝑏𝑏)−10 − (𝜌𝜌 − 𝑏𝑏)−10] =
5

(𝜌𝜌2 − 𝑏𝑏2)6 +
80𝑏𝑏2

(𝜌𝜌2 − 𝑏𝑏2)7 +
336𝑏𝑏4

(𝜌𝜌2 − 𝑏𝑏2)8 

                                                                                     +
512𝑏𝑏6

(𝜌𝜌2 − 𝑏𝑏2)9 +
256𝑏𝑏8

(𝜌𝜌2 − 𝑏𝑏2)10 .                                (22) 

Substitute (21) and (22) into (20), then we get 

     𝐹𝐹𝑍𝑍1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎

𝜏𝜏3𝑏𝑏4 �𝐴𝐴𝑔𝑔−𝐶𝐶20 �1 +
2
𝜏𝜏
� −

𝐵𝐵𝑔𝑔−𝐶𝐶20
5𝜏𝜏3𝑏𝑏6

�5 +
80
𝜏𝜏

+
336
𝜏𝜏2

+
512
𝜏𝜏3

+
256
𝜏𝜏4

�� ,                 (23) 

where                                        𝜏𝜏 = (𝑎𝑎2 − 𝑏𝑏2 + 𝑍𝑍2)/𝑏𝑏2.                                                              

To calculate the Lennard-Jones potential constants 𝐴𝐴 and 𝐵𝐵 where 𝐴𝐴 = 4𝜖𝜖𝜎𝜎6  and 
𝐵𝐵 = 4𝜖𝜖𝜎𝜎12, we need to use other parameters which are the well depth energy 𝜖𝜖  and the van 
der Waals diameter 𝜎𝜎. The related parameters in this research are given by 𝜖𝜖C20 =
4.2038 ×  10−3 eV, and   𝜎𝜎C20 = 0.337 nm [31]. Moreover, the parameters of non-bonded C20-
C20 and C20-graphene are obtained by using the Lorentz-Berthelot mixing rules 𝜎𝜎12 = (𝜎𝜎1+𝜎𝜎2)

2
 

and 𝜖𝜖12 = √𝜖𝜖1𝜖𝜖2. They are used to calculate the Lennard-Jones constants in a system with 
different atomic species [32]. The Lennard-Jones constants for each interaction can be 
calculated in accordance with Table 1, as well as other related constant parameters. 

Based on the assumption that the C20 fullerene is initially at rest, the acceptance 
energy is used to determine the condition in which the C20 fullerene will be accepted into the 
carbon nanotube. The mathematical expression of the acceptance energy 𝑊𝑊𝑎𝑎1, in case of 
interaction between the fullerene and the tube, can be obtained as 

 

                                                                           𝑊𝑊𝑎𝑎1 = �  𝐹𝐹𝑍𝑍1𝑑𝑑𝑍𝑍

𝑍𝑍0

−∞

,                                                             (24) 

    𝑊𝑊𝑎𝑎1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎

𝜏𝜏3𝑏𝑏4
� �𝐴𝐴𝑔𝑔−C20 �1 +

2
𝜏𝜏
� −

𝐵𝐵𝑔𝑔−C20
5𝜏𝜏3𝑏𝑏6

�5 +
80
𝜏𝜏

+
336
𝜏𝜏2

+
512
𝜏𝜏3

+
256
𝜏𝜏4

�� 𝑑𝑑𝑍𝑍

𝑍𝑍0

−∞

,   (25) 
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Table 1. Values of parameters used in the model. [31, 32] 
 

   Radius of C20 𝑏𝑏 = 2.040 Å 

    C – C bond length 𝜎𝜎 = 1.421 Å 

   Mean Surface density for C20 𝜂𝜂C20 = 0.3824 Å−2 

   Mean Surface density for Carbon Nanotube (CNT) 𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶 = 0.3812 Å−2 

   Mass of a single C atom 𝑚𝑚C = 19.92 × 10−27 kg 

   Mass of a single fullerene C20 𝑀𝑀C20 = 398.4 × 10−27 kg 

   Attractive constant for C – C interaction 𝐴𝐴C−C = 15.41 eV Å6 

   Repulsive constant for C – C interaction 𝐵𝐵C−C = 22534.75 eV Å12 

   Attractive constant for graphene - graphene 𝐴𝐴𝑔𝑔−𝑔𝑔 = 15.2 eV Å6  

   Repulsive constant for graphene - graphene 𝐵𝐵𝑔𝑔−𝑔𝑔 = 24.1 × 103 eV Å12 

   Attractive constant for C20 – C20 𝐴𝐴C20−C20 = 24.63 eV Å6 

   Repulsive constant for C20 – C20 𝐵𝐵C20−C20 = 36.1 × 103 eV Å12 

   Attractive constant for graphene – C20 𝐴𝐴𝑔𝑔−C20 = 19.35 eV Å6 

   Repulsive constant for graphene – C20 𝐵𝐵𝑔𝑔−C20 = 29.49 × 103 eV Å12 

 

Let 𝑍𝑍 = √𝑎𝑎2 − 𝑏𝑏2tan∅  such that 𝑑𝑑𝑍𝑍 = √𝑎𝑎2 − 𝑏𝑏2sec2∅𝑑𝑑∅. We have 

𝑊𝑊𝑎𝑎1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎

𝜏𝜏3𝑏𝑏4
� �𝐴𝐴𝑔𝑔−C20 �1 +

2
𝜏𝜏
� −

𝐵𝐵
5𝜆𝜆3𝑏𝑏6

𝐴𝐴𝑔𝑔−C20 �1 +
2
𝜏𝜏
�

 ∅0

−𝜋𝜋2

                                               

                  −
𝐵𝐵𝑔𝑔−C20
5𝜏𝜏3𝑏𝑏6

�5 +
80
𝜏𝜏

+
336
𝜏𝜏2

+
512
𝜏𝜏3

+
256
𝜏𝜏4

���𝑎𝑎2 − 𝑏𝑏2sec2∅𝑑𝑑∅,                                         (26) 

where                                               ∅0 = tan−1 � 𝑍𝑍0
√𝑎𝑎2−𝑏𝑏2

�, 

and 𝑍𝑍0 is the real roots of the equation (23). 

By using the relationship 

𝜏𝜏𝑛𝑛 =
(𝑎𝑎2 − 𝑏𝑏2)𝑛𝑛sec2𝑛𝑛∅

𝑏𝑏2𝑛𝑛
, 
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we can rearrange the acceptance energy 𝑊𝑊𝑎𝑎1 into the following; 

 𝑊𝑊𝑎𝑎1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎
𝑏𝑏4√𝑎𝑎2 − 𝑏𝑏2

� �
𝐴𝐴𝑔𝑔−C20𝑏𝑏

6

(𝑎𝑎2 − 𝑏𝑏2)2sec4∅
+

2𝐴𝐴𝑔𝑔−C20𝑏𝑏
8

(𝑎𝑎2 − 𝑏𝑏2)3sec6∅

 ∅0

−𝜋𝜋2

 

 −
𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6 �
5𝑏𝑏12

(𝑎𝑎2 − 𝑏𝑏2)5sec10∅
+

80𝑏𝑏14

(𝑎𝑎2 − 𝑏𝑏2)6sec12∅
+

336𝑏𝑏16

(𝑎𝑎2 − 𝑏𝑏2)7sec14∅
                     

              +
512𝑏𝑏18

(𝑎𝑎2 − 𝑏𝑏2)8sec16∅
+

256𝑏𝑏20

(𝑎𝑎2 − 𝑏𝑏2)9sec18∅�
� 𝑑𝑑∅,                                                                    (27) 

 𝑊𝑊𝑎𝑎1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎
𝑏𝑏2√𝑎𝑎2 − 𝑏𝑏2

� �𝐴𝐴𝑔𝑔−C20𝑏𝑏
4(𝑎𝑎2 − 𝑏𝑏2)−2cos4∅+ 2𝐴𝐴𝑔𝑔−C20𝑏𝑏

6(𝑎𝑎2 − 𝑏𝑏2)−3cos6∅

 ∅0

−𝜋𝜋2

                  

−
𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
(5𝑏𝑏10(𝑎𝑎2 − 𝑏𝑏2)−5cos10∅+ 80𝑏𝑏12(𝑎𝑎2 − 𝑏𝑏2)−6cos12∅                                 

 +336𝑏𝑏14(𝑎𝑎2 − 𝑏𝑏2)−7cos14∅+ 512𝑏𝑏16(𝑎𝑎2 − 𝑏𝑏2)−8cos16∅                                          

               +256𝑏𝑏18(𝑎𝑎2 − 𝑏𝑏2)−9cos18∅)]𝑑𝑑∅,                                                                                            (28) 

𝑊𝑊𝑎𝑎1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎
𝑏𝑏2√𝑎𝑎2 − 𝑏𝑏2

��𝐴𝐴𝑔𝑔−C20 � 𝑏𝑏4(𝑎𝑎2 − 𝑏𝑏2)−2cos4∅𝑑𝑑∅

 ∅0

−𝜋𝜋2

                                                                  

+𝐴𝐴𝑔𝑔−C20 � 𝑏𝑏6(𝑎𝑎2 − 𝑏𝑏2)−3cos6∅𝑑𝑑∅

 ∅0

−𝜋𝜋2

� −
𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6 �5 � 𝑏𝑏10(𝑎𝑎2 − 𝑏𝑏2)−5cos10∅𝑑𝑑∅

 ∅0

−𝜋𝜋2

 

+80 � 𝑏𝑏12(𝑎𝑎2 − 𝑏𝑏2)−6cos12∅𝑑𝑑∅

 ∅0

−𝜋𝜋2

+ 336 � 𝑏𝑏14(𝑎𝑎2 − 𝑏𝑏2)−7cos14∅𝑑𝑑∅

 ∅0

−𝜋𝜋2

                    

            +512 � 𝑏𝑏16(𝑎𝑎2 − 𝑏𝑏2)−8cos16∅𝑑𝑑∅

 ∅0

−𝜋𝜋2

+ 256 � 𝑏𝑏18(𝑎𝑎2 − 𝑏𝑏2)−9cos18∅𝑑𝑑∅

 ∅0

−𝜋𝜋2

�� .                (29) 

Thus we can rearrange (29) into the following simplified expressions 

𝑊𝑊𝑎𝑎1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎
𝑏𝑏2√𝑎𝑎2 − 𝑏𝑏2

�𝐴𝐴𝑔𝑔−C20(𝐼𝐼2 + 2𝐼𝐼3) −
𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
(5𝐼𝐼5 + 80𝐼𝐼6 + 336𝐼𝐼7 + 512𝐼𝐼8 + 256𝐼𝐼9)� , (30) 

where 
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                                                  𝐼𝐼𝑛𝑛 = � 𝑏𝑏2𝑛𝑛(𝑎𝑎2 − 𝑏𝑏2)−𝑛𝑛cos2𝑛𝑛
∅0

−𝜋𝜋2

∅𝑑𝑑∅.                                                     (14) 

The suction energy is defined as the total work done by the van der Waals interaction 
between a C20 fullerene molecule moving inside a carbon nanotube [29]. It can be obtained as 

 

                                                                                  𝑊𝑊𝑠𝑠1 = �  𝐹𝐹𝑍𝑍1𝑑𝑑𝑍𝑍
∞

−∞

,                                                       (31) 

Substitute (23) and into (31), then we get 

𝑊𝑊𝑠𝑠1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎

𝜏𝜏3𝑏𝑏4
� �𝐴𝐴𝑔𝑔−C20 �1 +

2
𝜏𝜏
� −

𝐵𝐵𝑔𝑔−C20
5𝜏𝜏3𝑏𝑏6

�5 +
80
𝜏𝜏

+
336
𝜏𝜏2

+
512
𝜏𝜏3

+
256
𝜏𝜏4

�� 𝑑𝑑𝑍𝑍
∞

−∞

.       (32) 

Let 𝑍𝑍 = √𝑎𝑎2 − 𝑏𝑏2tan∅   such that   𝑑𝑑𝑍𝑍 = √𝑎𝑎2 − 𝑏𝑏2sec2∅𝑑𝑑∅. Thus we will get the following 
relation 

 𝑊𝑊𝑠𝑠1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎

𝜏𝜏3𝑏𝑏4
� �𝐴𝐴𝑔𝑔−C20 �1 +

2
𝜆𝜆
�                                                                   

 𝜋𝜋2

−𝜋𝜋2

                                    

             −
𝐵𝐵𝑔𝑔−C20
5𝜏𝜏3𝑏𝑏6

�5 +
80
𝜏𝜏

+
336
𝜏𝜏2

+
512
𝜏𝜏3

+
256
𝜏𝜏4

���𝑎𝑎2 − 𝑏𝑏2sec2∅𝑑𝑑∅,                                              (33) 

𝑊𝑊𝑠𝑠1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎
𝑏𝑏2√𝑎𝑎2 − 𝑏𝑏2

⎣
⎢
⎢
⎡

⎝

⎛𝐴𝐴𝑔𝑔−C20 � 𝑏𝑏4(𝑎𝑎2 − 𝑏𝑏2)−2cos4∅𝑑𝑑∅

 𝜋𝜋2

−𝜋𝜋2

                                                                     

             +2𝐴𝐴𝑔𝑔−C20 � 𝑏𝑏6(𝑎𝑎2 − 𝑏𝑏2)−3cos6∅𝑑𝑑∅

 𝜋𝜋2

−𝜋𝜋2 ⎠

⎞−
𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
⎝

⎛5 �𝑏𝑏10(𝑎𝑎2 − 𝑏𝑏2)−5cos10∅𝑑𝑑∅

𝜋𝜋
2

−𝜋𝜋2

              

  +80 �𝑏𝑏12(𝑎𝑎2 − 𝑏𝑏2)−6cos12∅𝑑𝑑∅

𝜋𝜋
2

−𝜋𝜋2

+ 336 �𝑏𝑏14(𝑎𝑎2 − 𝑏𝑏2)−7cos14∅𝑑𝑑∅

𝜋𝜋
2

−𝜋𝜋2

                         

             +512 � 𝑏𝑏16(𝑎𝑎2 − 𝑏𝑏2)−8cos16∅𝑑𝑑∅

 𝜋𝜋2

−𝜋𝜋2

+ 256 � 𝑏𝑏18(𝑎𝑎2 − 𝑏𝑏2)−9cos18∅𝑑𝑑∅

 𝜋𝜋2

−𝜋𝜋2 ⎠

⎞

⎦
⎥
⎥
⎤
.                 (34) 

Because 
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� cos2𝑛𝑛

𝜋𝜋
2

−𝜋𝜋2

∅𝑑𝑑∅ =
(2𝑛𝑛 − 1)‼

(2𝑛𝑛)‼
𝜋𝜋, 

thus 
 

𝑊𝑊𝑠𝑠1 =
8𝜋𝜋2𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎
𝑏𝑏2√𝑎𝑎2 − 𝑏𝑏2

�𝐴𝐴𝑔𝑔−C20𝑏𝑏
4(𝑎𝑎2 − 𝑏𝑏2)−2 �

3𝜋𝜋
8
�+ 2𝐴𝐴𝑔𝑔−C20𝑏𝑏

6(𝑎𝑎2 − 𝑏𝑏2)−3 �
15𝜋𝜋
48

�                         

        −
5𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
𝑏𝑏10(𝑎𝑎2 − 𝑏𝑏2)−5 �

945𝜋𝜋
3840

� −
80𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
𝑏𝑏12(𝑎𝑎2 − 𝑏𝑏2)−6 �

10395𝜋𝜋
46080

�                        

         −
336𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
𝑏𝑏14(𝑎𝑎2 − 𝑏𝑏2)−7 �

135135𝜋𝜋
645120

� −
512𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
𝑏𝑏16(𝑎𝑎2 − 𝑏𝑏2)−8 �

2027025𝜋𝜋
10321920

�     

            −
256𝐵𝐵𝑔𝑔−C20

5𝑏𝑏6
𝑏𝑏18(𝑎𝑎2 − 𝑏𝑏2)−9 �

34459425𝜋𝜋
195794560

�� .                                                                        (35) 

We can rearrange the suction energy 𝑊𝑊𝑠𝑠1 into the following; 

𝑊𝑊𝑠𝑠1 =
𝜋𝜋3𝜂𝜂C20𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑏𝑏

2

(𝑎𝑎2 − 𝑏𝑏2)
5
2

× 

          �3𝐴𝐴𝑔𝑔−C20 + 5𝐴𝐴𝑔𝑔−C20𝜅𝜅 −
𝐵𝐵𝑔𝑔−C20(315 + 4620𝜅𝜅 + 18018𝜅𝜅2 + 25740𝜅𝜅3 + 12155𝜅𝜅4)

160(𝑎𝑎2 − 𝑏𝑏2)3 � , (36) 

where                                                                 𝜅𝜅 = 𝑏𝑏2

(𝑎𝑎2−𝑏𝑏2).                                                          (18) 

 
 
2.2 Interaction between Iron Atom (𝐅𝐅𝐅𝐅) and Carbon Nanotube 
 

  

Figure 2: A system consists of an iron atom and an open-end carbon nanotube 

According to Figure 2, the system consists of an iron atom (Fe) and a carbon nanotube 
with radius 𝑎𝑎. The Fe atom is placed along the 𝑍𝑍-axis and its coordinate is (0,0,𝑍𝑍∗), which 
is far 𝑍𝑍∗ units from a semi-infinite carbon nanotube that has a coordinate of (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎,𝑍𝑍), 
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where −𝜋𝜋 ≤ 𝑎𝑎 ≤ 𝜋𝜋 and −∞ < 𝑍𝑍 < ∞. The distance between the iron atom and an atom on 
the nanotube can be denoted by 𝜌𝜌, which is given by 𝜌𝜌2 = 𝑎𝑎2 + (𝑍𝑍∗ − 𝑍𝑍)2. The potential 
energy 𝐸𝐸2(𝜌𝜌) for an iron atom (Fe) interacting with an atom on the carbon nanotube of 
radius 𝑎𝑎 can be expressed as  

                                                                  𝐸𝐸2(𝜌𝜌) = 𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎� �  𝛷𝛷(𝜌𝜌)
∞

0

2𝜋𝜋

0

𝑑𝑑𝑍𝑍𝑑𝑑𝑎𝑎,                                          (37) 

where 

             𝛷𝛷(𝜌𝜌) = −
𝐴𝐴c−Fe
𝜌𝜌6

+
𝐵𝐵c−Fe
𝜌𝜌12

. 

The interaction force between the iron atom and the carbon nanotube is obtained by 
[29]  

                         𝐹𝐹𝑍𝑍2 = −2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎�
𝑑𝑑Φ
𝑑𝑑𝜌𝜌

∞

0

(𝑍𝑍∗ − 𝑍𝑍)
𝜌𝜌

𝑑𝑑𝑍𝑍 = 2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 �
𝑑𝑑𝛷𝛷(𝜌𝜌)
𝑑𝑑𝜌𝜌

∞

√𝑎𝑎2+𝑍𝑍2

𝑑𝑑𝜌𝜌,                      (38) 

Thus 

                         𝐹𝐹𝑍𝑍2 = 2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 �
𝑑𝑑
𝑑𝑑𝜌𝜌

�−
𝐴𝐴c−Fe
𝜌𝜌6

+
𝐵𝐵c−Fe
𝜌𝜌12

�
∞

√𝑎𝑎2+𝑍𝑍2

𝑑𝑑𝜌𝜌,                                                      (39) 

                         𝐹𝐹𝑍𝑍2 = 2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 �
𝐴𝐴c−Fe

�𝑎𝑎2 + 𝑍𝑍∗2�
3 −

𝐵𝐵c−Fe
�𝑎𝑎2 + 𝑍𝑍∗2�

6� .                                                           (40) 

The values of van der Waals diameter 𝜎𝜎 and well-depths 𝜖𝜖 for the Fe atom and other 
related parameters are from Rappe et al. [33] to calculate the attractive and repulsive constants 
as appeared in Table 2.  
 

Table 2. Values of parameters used in the model. [31 - 34] 
 

    C – C bond length 𝜎𝜎 = 1.421 Å 

   Mass of a single C atom 𝑚𝑚C = 19.92 × 10−27 kg 

   Mass of a single Fe atom 𝑚𝑚Fe = 19.92 × 10−27 kg 

   Attractive constant for C – Fe interaction 𝐴𝐴C−Fe = 10.005 eV Å6 

   Repulsive constant for C – Fe interaction 𝐵𝐵C−Fe = 15,620.156 eV Å12  

 
From Figure 2, when the Fe atom appeared as a point, located in front of the carbon 

nanotube, and it is assumed initially to be at rest, we can determine the acceptance energy 

𝑊𝑊𝑎𝑎2 between Fe and the nanotube as  
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                                                                               𝑊𝑊𝑎𝑎2 = �  𝐹𝐹𝑍𝑍2𝑑𝑑𝑍𝑍

𝑍𝑍0

−∞

,                                                         (41) 

                                            𝑊𝑊𝑎𝑎2 = � �2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 �
𝐴𝐴c−Fe

�𝑎𝑎2 + 𝑍𝑍∗2�
3 −

𝐵𝐵c−Fe
�𝑎𝑎2 + 𝑍𝑍∗2�

6��

𝑍𝑍0

−∞

𝑑𝑑𝑍𝑍,                      (42) 

                                            𝑊𝑊𝑎𝑎2 = 2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎2 � �
𝐴𝐴c−Fe

�𝑎𝑎2 + 𝑍𝑍∗2�
3 −

𝐵𝐵c−Fe
�𝑎𝑎2 + 𝑍𝑍∗2�

6�

𝑍𝑍0

−𝜋𝜋2

sec2∅𝑑𝑑∅.            (43) 

Let 𝑍𝑍 = 𝑎𝑎tan∅  such that  𝑑𝑑𝑍𝑍 = 𝑎𝑎sec2∅𝑑𝑑∅, 

                                               𝑊𝑊𝑎𝑎2 =
2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶
𝑎𝑎4

� �𝐴𝐴c−Fecos4∅ −
𝐵𝐵c−Fe
𝑎𝑎6

cos10∅�

∅0

−𝜋𝜋2

𝑑𝑑∅,                        (44) 

where 

∅0 = tan−1 �
𝑍𝑍0
𝑎𝑎
�, 

and 𝑍𝑍0 is the real roots of the equation (40). 

By using the relationship 

                𝐼𝐼 = � cos𝑚𝑚𝑥𝑥𝑑𝑑𝑥𝑥 =
sin𝑥𝑥cos𝑚𝑚−1𝑥𝑥𝑑𝑑𝑥𝑥

𝑚𝑚
+
𝑚𝑚 − 1
𝑚𝑚

� cos𝑚𝑚−2𝑥𝑥𝑑𝑑𝑥𝑥, 

 

we can find the following 

             � 𝐴𝐴c−Fecos4∅

∅0

−𝜋𝜋2

𝑑𝑑∅ =
𝐴𝐴c−Fe

8 �sin∅0(2cos3∅0 + 3cos∅0) + 3 �∅0 +
𝜋𝜋
2
�� ,                        (45) 

and 

            �
𝐵𝐵c−Fe
𝑎𝑎6

cos10∅

∅0

−𝜋𝜋2

𝑑𝑑∅ =
𝐵𝐵c−Fe
𝑎𝑎6 �

1
5

sin∅0 �
1
2

cos9∅0 +
9

16
cos7∅0 +

63
96

cos5∅0                   (45) 

                                                       +
630
768

cos3∅0 +
945
768

cos∅0�+
945

3840
�∅0 +

𝜋𝜋
2
�� .                          (46) 

 

Substitute (45) and (46) into (44), we can rearrange the acceptance energy 𝑊𝑊𝑎𝑎2 as 
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  � �𝐴𝐴c−Fecos4∅ −
𝐵𝐵c−Fe
𝑎𝑎6

cos10∅�

∅0

−𝜋𝜋2

𝑑𝑑∅ = �
32𝐴𝐴c−Fe

256
� �sin∅0(2cos3∅0 + 3cos∅0) + 3 �∅0 +

𝜋𝜋
2
�� 

                                                                               −�
𝐵𝐵c−Fe
256𝑎𝑎6

� �
1
5

sin∅0(128cos9∅0 + 144cos7∅0 

 

                                                                              +168cos5∅0 + 210cos3∅0+315cos∅0) 

 

                                                                               +63 �∅0 + 𝜋𝜋
2
�� .                                                                (47) 

 
Thus 
 

                𝑊𝑊𝑎𝑎2 =
𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶
128𝑎𝑎4 �

(32𝐴𝐴c−Fe) �sin𝜔𝜔0(2cos3𝜔𝜔0 + 3cos𝜔𝜔0) +  3 �𝜔𝜔0 +
𝜋𝜋
2
��                    

 

                                     −�
𝐵𝐵c−Fe
𝑎𝑎6

� �
1
5

sin𝜔𝜔0(128cos9𝜔𝜔0 + 144cos7𝜔𝜔0 +  168cos5𝜔𝜔0 + 210cos3𝜔𝜔0 

 

                                    +315cos𝜔𝜔0) +63 �𝜔𝜔0 +
𝜋𝜋
2
��� ,                                                                             (48) 

where 

   𝜔𝜔0 = tan−1 �� 𝐵𝐵c−Fe
(𝐴𝐴c−Fe𝑎𝑎6)�

1
3 − 1�

1
2

.                                            (21) 

Consider the suction energy that is acquired by the Fe atom and the carbon nanotube. 
In this scenario, we can calculate the energy as 

 

                                                                         𝑊𝑊𝑠𝑠2 = �  𝐹𝐹𝑍𝑍2𝑑𝑑𝑍𝑍
∞

−∞

,                                                                (49) 

                                  𝑊𝑊𝑠𝑠2 = �  �2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 �
𝐴𝐴c−Fe

�𝑎𝑎2 + 𝑍𝑍∗2�
3 −

𝐵𝐵c−Fe
�𝑎𝑎2 + 𝑍𝑍∗2�

6��𝑑𝑑𝑍𝑍.
∞

−∞

                                (50) 

Let 𝑍𝑍 = 𝑎𝑎tan∅   such that  𝑑𝑑𝑍𝑍 = 𝑎𝑎sec2∅𝑑𝑑∅. Then 

                                   𝑊𝑊𝑠𝑠2 = 2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 � �
𝐴𝐴c−Fe

𝑎𝑎6(1 + tan2∅)3 −
𝐵𝐵c−Fe

𝑎𝑎12(1 + tan2∅)6�

𝜋𝜋
2

−𝜋𝜋2

(𝑎𝑎sec2∅𝑑𝑑∅),     (51) 

                                  𝑊𝑊𝑠𝑠2 = 2𝜋𝜋𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎

⎣
⎢
⎢
⎡ 1
𝑎𝑎5

� 𝐴𝐴𝑐𝑐−𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎4∅𝑑𝑑∅

𝜋𝜋
2

−𝜋𝜋2

−
1
𝑎𝑎11

�𝐵𝐵𝑐𝑐−𝐹𝐹𝐹𝐹

𝜋𝜋
2

−𝜋𝜋2

𝑎𝑎𝑎𝑎𝑎𝑎10∅𝑑𝑑∅

⎦
⎥
⎥
⎤
.            (52) 

We note that 
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1
𝑎𝑎5

�𝐴𝐴c−Fecos4∅𝑑𝑑∅

𝜋𝜋
2

−𝜋𝜋2

=
𝐴𝐴c−Fe
𝑎𝑎5 �

3𝜋𝜋
8 � ,                                         (53) 

and 

                                                            
1
𝑎𝑎11

�𝐵𝐵c−Fecos10∅𝑑𝑑∅

𝜋𝜋
2

−𝜋𝜋2

=
𝐵𝐵c−Fe
𝑎𝑎11 �

945𝜋𝜋
3840�

,                                   (54) 

              
1
𝑎𝑎5

� 𝐴𝐴c−Fecos4∅𝑑𝑑∅

𝜋𝜋
2

−𝜋𝜋2

−
1
𝑎𝑎11

�𝐵𝐵c−Fe

𝜋𝜋
2

−𝜋𝜋2

cos10∅𝑑𝑑∅ = 32𝐴𝐴c−Fe −
21𝐵𝐵c−Fe
𝑎𝑎6

.                        (55) 

Substitute (53) and (54) into (52), we can rearrange the suction energy 𝑊𝑊𝑠𝑠2 as 

                                    𝑊𝑊𝑠𝑠2 =
3𝜋𝜋2𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶

128 �32𝐴𝐴c−Fe −
21𝐵𝐵c−Fe
𝑎𝑎6 � .                                                               (56) 

 

3  Main Results 

 In this section, we sum up all sub-interactions: the interactions between the carbon 
nanotube and the C20 fullerene and the Fe atom, respectively, to calculate their interaction 
force, the acceptance energy, and the suction energy. First, we study the numerical results 
for the interaction forces between the endofullerene Fe@C20 and the carbon nanotube with 
different radii which are 4.728 Å, 4.977 Å, 5.250 Å and 5.500 Å, respectively. The graphs of 
the interaction forces versus the axial position, as shown in Figure 3, illustrate the results. 
These graphs are similar to those of Cox et al. (2007) [29]. When we consider a carbon 
nanotube with a radius less than 4.728 Å, the endofullerene will be rejected from the nanotube 
due to the negative acceptance energy. However, at the other radii of the nanotubes, which 
are 4.977 Å, 5.250 Å, and 5.500 Å, the nanotubes will accept the endofullerene. This result 
shows that the encapsulation process is strongly dependent on the size of the radius of the 
nanotube [28].   
 According to the acceptance energies, which are shown in Figure 4, the results show 
a relationship between the acceptance energies and the radii of the nanotubes, ranging from 
4.5 Å to 5.5 Å.  If the acceptance energies are positive, the endofullerene will be admitted into 
the carbon nanotube. Conversely, if the energies are negative, an extra energy is needed for 
the endofullerene to get inside the carbon nanotube. From the results, the acceptance energy 
is greater than zero when the radius is greater than 4.728 Å.  If the radius is below this critical 
value, the carbon nanotube will not accept the endofullerene, and an additional energy is 
required. We also note that the nanotube with a radius greater than 5.250 Å will accept the 
endofullerene. 
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Figure 3: Interaction forces between an endofullerene Fe@C20 and the carbon nanotubes 
with radii 4.728, 4.977, 5.250 and 5.500 Å 
 
 Figure 5 displays the suction energies for the endofullerene entering the carbon 
nanotubes at various radii. The radii of the nanotubes range from 4 Å to 10 Å. Based on the 
assumption that the endofullerene is initially at rest, the interaction energies are positive 
when the radius of the nanotube is greater than or equal to 4.75 Å. It provides the maximum 
kinetic energy when the nanotube radius is 5.25 Å. This result agrees with Zhou et al. [31]. 
 

 
Figure 4: Acceptance energies of carbon nanotubes with different radii interacting with the 
endofullerene Fe@C20 
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Figure 5: Suction energies of the carbon nanotubes with different radii interacting with the 
endofullerene Fe@C20 
 

 
 
Figure 6: Total Interaction Energies of the carbon nanotubes with different radii interacting 
with the endofullerene Fe@C20 
 According to Figure 6, the total interaction energies between the endofullerene and 
the carbon nanotubes with different radii, the endofullerene will be accepted into the 
nanotubes with radii greater than 4.977 Å  because the interaction energies inside the 
nanotubes are less than the energies outside. There is no appearance of the barrier energy in 
radii of 4.977 Å, 5.250 Å and 5.500 Å, respectively. This means that the endofullerene is 
accepted into the carbon nanotubes with radii of 4.977 Å, 5.250 Å and 5.500 Å, respectively. 
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4  Conclusion  

In this paper, we use the continuum approach with the van der Waals interaction and 
the Lennard-Jones potential function to determine the interaction energies between an 
endofullerene Fe@C20 interacting with semi-infinite length carbon nanotubes with different 
radii. According to the results, we can consider such a system in two parts: we first studied 
the interaction between the C20 fullerene and the carbon nanotubes to find the optimal radii 
of nanotubes that accept the fullerene. The second part is the study of the interaction between 
the iron atom and the carbon nanotubes based on the assumption that the atom is located 
at the center of the C20 fullerene. In this paper, we can calculate the total interaction energies, 
the acceptance energies, and the suction energies between the endofullerene and the carbon 
nanotubes. The results show that the endofullerene Fe@C20 is encapsulated into the carbon 
nanotubes with radii of 4.728 Å, 4.977 Å, 5.250 Å, and 5.500 Å. The encapsulation of the 
endofullerene into the carbon nanotubes depends strongly on the radii of the carbon 
nanotubes. In addition, the results of the acceptance energies show that when the radii of the 
carbon nanotubes are greater than or equal to 4.75 Å, the acceptance energies will be positive, 
meaning that the endofullerene will be accepted into the carbon nanotubes. The results are 
similar to those of Cox et al. (2007) [29], and the suction energy provides the maximum 
kinetic energy when the radius of the nanotube is 5.25 Å which is in accordance with Zhou et 
al. (2006) [31]. They state that a (8,8) single-walled carbon nanotube is the most stable 
configuration for the encapsulated C20 fullerene. However, this study only presents theoretical 
conclusions for the encapsulation of endofullerene inside carbon nanotubes of semi-infinite 
length. The outcomes of an experiment are also required in the future.  
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บทคัดยอ 

  งานวิจัยครั้งนี้มีวัตถุประสงคเพื่อ 1) เปรียบเทียบทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นท่ี

ผิวและปริมาตร กอนและหลังการจัดการเรียนรูโดยใชปญหาเปนฐาน 2) เปรียบเทียบทักษะการแกปญหาทาง

คณิตศาสตร เรื่อง พื้นที่ผิวและปริมาตร ที่ไดรับการจัดการเรียนรูโดยใชปญหาเปนฐานกับเกณฑรอยละ 70 3) 

ศึกษาการทำงานเปนทีมของนักเรียนระดับชั้นประกาศนียบัตรวิชาชีพชั้นปที่ 1 กลุมตัวอยางที่ใชในการวิจัยใน

ครั้งนี้ ไดแก นักเรียนระดับชั้นประกาศนียบัตรวิชาชีพชั้นปที่ 1 สาขาอาหารและโภชนาการ โรงเรียนจิตรลดา

วิชาชีพ ภาคเรียนที่ 2 ปการศึกษา 2566 จำนวน 29 คน ที่ไดมาจากการเลือกแบบเจาะจง เครื่องมือวิจัย

ประกอบดวย 1) แผนการจัดการเรียนรูโดยใชปญหาเปนฐาน เรื่อง พื้นที่ผิวและปริมาตร จำนวน 5 แผน 2) 

แบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตรกอนและหลังการจัดการเรียนรู จำนวน 5 ขอ 3) แบบ

ประเมินการทำงานเปนทีม 4) แบบประเมินทักษะการแกปญหาทางคณิตศาสตร ผลการวิจัยพบวา คะแนน

ทักษะการแกปญหาทางคณิตศาสตรหลังการจัดการเรียนรูโดยใชปญหาเปนฐานสูงกวากอนการจัดการเรียนรู

อยางมีนัยสำคัญทางสถิติท่ีระดับ .05 เมื่อเปรียบเทียบกับเกณฑรอยละ 70 พบวาสูงกวาเกณฑรอยละ 70 อยาง

มีนัยสำคัญทางสถิติที่ระดับ .05 และการทำงานเปนทีมพบวาในภาพรวมอยูในเกณฑดีถึงดีมาก และจาก

วิเคราะหแยกเปนรายดานในภาพรวม พบวา นักเรียนสามารถยอมรับความคิดเห็นซึ่งกันและกันได  

คำสำคัญ: การจัดการเรียนรูแบบปญหาเปนฐาน, การทำงานเปนทีม, ทักษะการแกปญหาทางคณิตศาสตร 

2020 MSC: 97D50  
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1 บทนำ 

สมรรถนะสำคัญของผูเรียนในศตวรรษที่ 21 ที่ทุกคนจะตองเรียนรูตลอดชีวิต คือ การเรียนรู 3R และ 7C ซึ่ง 

3R คือ อานออก เขียนได คิดเลขเปน และ 7C ไดแก ทักษะดานการคิดอยางมีวิจารณญาณและทักษะในการแกปญหา 

ทักษะดานการสรางสรรคและนวัตกรรม ทักษะดานความเขาใจความตางวัฒนธรรมตางกระบวนทัศน ทักษะดานความ

รวมมือ การทำงานเปนทีม และภาวะผูนำ ทักษะดานการสื่อสารสารสนเทศ และรูเทาทันสื่อ ทักษะดานคอมพิวเตอร 

และเทคโนโลยีสารสนเทศและการสื่อสาร ทักษะอาชีพและทักษะการเรียนรู กลาวคือใหผูเรียนมีความสามารถในการ

คิดวิเคราะห การคิดสังเคราะห การคิดอยางสรางสรรค การคิดอยางมีวิจารณญาณ และการคิดอยางเปนกระบวนการ 

เพื่อนำไปสูการสรางองคความรูของตนเองและสังคมไดอยางเหมาะสมสงเสริมความสามารถในการแกปญหาไดอยาง

ถูกตอง (สํานักบริหารงานการมัธยมศึกษาตอนปลาย ส ําน ักงานคณะกรรมการการศึกษาขั ้นพื ้นฐาน และ

กระทรวงศึกษาธิการ, 2558)  

ทักษะเพื่อการดำรงชีวิตในศตวรรษที่ 21 วา สาระวิชาหลัก จะนำมาสูการกำหนดเปนกรอบแนวคิดและ

ยุทธศาสตรสำคัญตอการจัดการเรียนรูในเนื้อหาเชิงสหวิทยาการ หรือหัวขอสำหรับศตวรรษที่ 21 โดยการสงเสริม

ความเขาใจในเนื้อหา วิชาแกนหลัก และสอดแทรกทักษะแหงศตวรรษที่ 21 เขาไปในทุกวิชาแกนหลัก (วิจารณ พานิช, 

2555) ทักษะศตวรรษที่ 21 มีความสําคัญและจําเปนอยางยิ่งตอการดํารงชีวิตในศตวรรษใหมจะชวยเตรียมความ

พรอมใหคนรูจักคิด เรียนรู ทํางาน แกปญหา สื่อสารและรวมมือทํางานไดอยางมีประสิทธิผลไปตลอดชีวิต (บันเย็น 

เพ็งกระจาง, 2561)  

สภาครูคณิตศาสตรแหงสหรัฐอเมริกา ซึ่งเปนสภาที่มีบทบาทในการกำหนดทิศทางในการจัดการเรียนการ

สอนคณิตศาสตรในสหรัฐอเมริกาในปจจุบัน จุดประสงคของการเรียนการสอนคณิตศาสตรในศตวรรษที่ 21 ที่

สหรัฐอเมริกามุงเนนและกำหนดเปนจุดประสงคกวาง ๆ ไดแก เพื่อใหผูเรียนไดตระหนักถึงคุณคาของคณิตศาสตร 

เพื่อใหผูเรียนเปนหนักแกปญหา สื่อสารคณิตศาสตรได ใหเหตุผลทางคณิตศาสตรได (NCTM, 1989) ซึ่งสอดคลองกับ

กระทรวงศึกษาธิการ กลาววาการจัดการศึกษาตามแนวทางหลักสูตรแกนกลางการศึกษาขั้นพื้นฐาน ซึ่งไดกำหนด

ทักษะและกระบวนการทางคณิตศาสตร (สถาบันสงเสริมวิทยาศาสตรและเทคโนโลยี กระทรวงศึกษาธิการ, 2551) 

สถาบันทดสอบทางการศึกษาแหงชาติ (องคการมหาชน, 2566) การทดสอบทางการศึกษาระดับชาติดาน

อาชีวศึกษา (V- NET) ดวยระบบดิจิทัล มีวัตถุประสงคเพื่อทดสอบความรูและประเมินความพรอมในการเขาสูโลก

อาชีพทักษะในศตวรรษที่ 21 และการพัฒนาตนเองอยางตอเนื่อง และจากรายงานผลการทดสอบทางการศึกษา

ระดับชาติดานอาชีวศึกษา (V-NET) ในปการศึกษา 2565 พบวาคะแนนเฉลี่ยสมรรถนะที่จำเปนในการเขาสูอาชีพ

ระดับประเทศของสาขาอาหารและโภชนาการ เทากับ 52.11 คะแนน โรงเรียนจิตรลดาวิชาชีพไดคะแนนเฉลี่ยของ

สาขาอาหารและโภชนาการ เทากับ 56.98 คะแนน  

ปญหาการจัดการเรียนรูวิชาคณิตศาสตรของผูวิจัยในชั้นเรียนของนักเรียนชั้นระดับประกาศนียบัตรวิชาชีพ

ชั้นปที่ 1 สถาบันเทคโนโลยีจิตรลดา สังกัดโรงเรียนจิตรลดาวิชาชีพ ภาคเรียนที่ 1 ปการศึกษา 2566 พบวา นักเรียน
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สามารถคิดคำนวณหาคาจากสูตรพื้นฐานไดอยางถูกตอง ตามหลักการทางคณิตศาสตร แตนักเรียนไมสามารถนำ

ความรูและกระบวนการตาง ๆ ทางคณิตศาสตรที่เรียนรูมาแลวมาวางแผนการแกปญหาเพื่อจะนำไปสูการดำเนินการ

แกโจทยปญหาไดถูกตอง และจากการแบงใหนักเรียนทำงานเปนทีมพบวา นักเรียนไมแบงหนาที่กันในการทำงาน ทุก

คนในทีมไมชวยกันทำงาน มีการปรึกษาหารือกันที่ไมมากพอ เมื่อเกิดปญหาไมชวยกันแกปญหาที่เกิดข้ึน และขาดการ

วางแผนในการทำงาน ทางผูวิจัยจึงหาแนวทางในการจัดกิจกรรมการเรียนรู โดยสนใจที่จะนำการจัดกิจกรรมการ

เรียนรูโดยใชปญหาเปนฐานมาใชเพราะเห็นวาเปนกระบวนการเรียนรูที่เหมาะสมกับนักเรียนในการสรางองคความรู

ดวยตนเองจากปญหาหรือสถานการณที่ครูกำหนดเพื่อกระตุนใหนักเรียนเกิดความสนใจ   

การจัดการเรียนรูโดยใชปญหาเปนฐาน (Problem-Based Learning) เปนกระบวนการเรียนรูโดยใชปญหา

เปนตัวกระตุนใหผูเรียนตั้งสมมติฐาน หาเหตุและกลไกของการเกิดปญหานั้น รวมถึงการคนควาความรูพื้นฐานที่

เกี่ยวของกับปญหา เพื่อนำไปสูการแกปญหาตอไป นอกจากนี้ยังมุงใหผูเรียนใฝหาความรูเพื่อแกไขปญหา ไดคิดเปน 

ทำเปน มีการตัดสินใจที่ดี และสามารถเรียนรูการทำงานเปนทีม โดยเนนใหผูเรียนไดเกิดการเรียนรูดวยตนเอง และ

สามารถนำทักษะจากการเรียนมาชวยแกปญหาในชีวิต (สำนักงานคณะกรรมการการศึกษาข้ันพื้นฐาน, 2551) 

การทำงานเปนทีมเปนการที่สมาชิกเสียสละความเปนสวนตัวในการทำงานรวมกันเพื่อใหบรรลุวัตถุประสงค 

(Nolan, 1989) และเปนพฤติกรรมของสมาชิกในกลุมที่แบงปนขอมูลและรวมมือกันทำงาน (Dickinson & McIntyre, 

1997) อีกทั้งยังมีการทำงานรวมกับผูอื่น มีการชวยเหลือสนับสนุน และใหกำลังใจกันและกัน รวมกันแกปญหาความ

ขัดแยง อีกทั้งใหคำแนะนำผูอ่ืนดวย (Wang, et al., 2009) ซึ่งองคประกอบของการทำงานเปนทีมใหประสบผลสำเร็จ 

ไดแก การพึ่งพาซึ่งกันและกัน มีความรับผิดชอบตอคนอื่น ๆ ความสัมพันธระหวางบุคคล ยอมรับความแตกตางของ

สมาชิกในทีม มีการสื่อสารกัน มีบทบาทหนาที่ สมาชิกในทีมมีความรวมมือ (Tarricone & Luca, 2002) 

  จากที ่มาและความสำคัญทั ้งหมดจึงทำใหเกิดการวิจ ัยในหัวขอ การพัฒนาทักษะการแกปญหาทาง

คณิตศาสตรและการทำงานเปนทีมของนักเรียนประกาศนียบัตรวิชาชีพชั้นปที่ 1 เร่ือง พื้นที่ผิวและปริมาตร โดยใชการ

จัดการเรียนรูแบบปญหาเปนฐาน โดยผูวิจัยไดกำหนดกรอบแนวคิดในการวิจัยคร้ังนี้ ดังแสดงในภาพที่ 1 

 

 

 

 

 

 

 

 

ภาพที่ 1 กรอบแนวคิดในการวิจัย 

1. ทักษะการแกปญหาทางคณติศาสตร 

2. การทำงานเปนทีม 

การจัดการเรียนรูแบบปญหาเปนฐาน 

ข้ันที่ 1 กำหนดปญหา  

ข้ันที่ 2 ทำความเขาใจปญหา  

ข้ันที่ 3 ดำเนินการศึกษาคนควา  

ข้ันที่ 4 สังเคราะหความรู  

ข้ันที่ 5 สรุปและประเมินคาของคําตอบ  

ข้ันที่ 6 นำเสนอและประเมินผลงาน  
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2  วัตถุประสงคของการวิจัย 
1. เพื่อเปรียบเทียบทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นที่ผิวและปริมาตร ของนักเรียนระดับ

ประกาศนียบัตรวิชาชีพชั้นปที่ 1 กอนและหลังการจัดการเรียนรูโดยใชปญหาเปนฐาน 

2. เพื่อเปรียบเทียบทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นที่ผิวและปริมาตร ของนักเรียนระดับ

ประกาศนียบัตรวิชาชีพชั้นปที่ 1 ที่ไดรับการจัดการเรียนรูโดยใชปญหาเปนฐานกับเกณฑรอยละ 70 

3. เพื่อศึกษาการทำงานเปนทีมของนักเรียนระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 โดยการจัดการเรียนรูโดย

ใชปญหาเปนฐาน 

 

3 สมมติฐานของการวิจัย 

1. นักเรียนระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 ที่ไดรับการจัดการเรียนรูโดยใชปญหาเปนฐานมีทักษะการ

แกปญหาทางคณิตศาสตร เร่ือง พื้นที่ผิวและปริมาตร หลังเรียนสูงกวากอนเรียน 

2. นักเรียนระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 ที่ไดรับการจัดการเรียนรูโดยใชปญหาเปนฐานมีทักษะการ

แกปญหาทางคณิตศาสตร เร่ือง พื้นที่ผิวและปริมาตร สูงกวาเกณฑรอยละ 70 

3. นักเรียนระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 โดยการจัดการเรียนรูโดยใชปญหาเปนฐานมีการทำงาน

เปนทีมในระดับที่ดีถึงดีมาก 

 

4 นิยามและศัพทเฉพาะ 
4.1 ประชากรกลุมตัวอยาง  

           1. ประชากร คือ นักเรียนระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 โรงเรียนจิตรลดาวิชาชีพ เขตดุสิต จังหวัด

กรุงเทพมหานคร ภาคเรียนที ่2 ปการศึกษา 2566 ในสังกัดกระทรวงอุดมศึกษา วิทยาศาสตร วิจัยและนวัตกรรม ซึ่งมี

การจัดหองเรียนแบบแยกระดับความสามารถของนักเรียนโดยแบงเปนสาขาวิชาตาง ๆ  จำนวน 11 หอง ซึ่งมีจำนวน 

142 คน  

2. กลุมตัวอยาง คือ นักเรียนระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 สาขาอาหารและโภชนาการ โรงเรียน

จิตรลดาวิชาชีพ เขตดุสิต จังหวัดกรุงเทพมหานคร ภาคเรียนที่ 2 ปการศึกษา 2566 จํานวน 29 คน ในสังกัดกระทรวง

อุดมศึกษา วิทยาศาสตร วิจัยและนวัตกรรม ที่ไดมาจากการเลือกแบบเจาะจง 

4.2 การจัดการเรียนรูโดยใชปญหาเปนฐาน หมายถึง กระบวนการเรียนรูที่มีการจัดกิจกรรมการเรียนที่จัดให

นักเรียนเปนทีมโดยคละความสามารถ โดยใชเกณฑจากผลสัมฤทธิ์ทางการเรียนวิชาคณิตศาสตรในภาคเรียนที่ 1 ป

การศึกษา 2566 มีนักเรียนกลุมเกงจำนวน 10 คน นักเรียนกลุมกลางจำนวน 10 คน นักเรียนกลุมออนจำนวน 9      

คน โดยภาพรวมจะมีทีมละ 3 คน โดยแบงเปนนักเรียนเกง นักเรียนกลาง และนักเรียนออนทีมละ 1 คน โดยใช
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ประเด็นปญหาเหตุการณกระตุนใหนักเรียนวิเคราะห คนหา สืบคน สำรวจ คนควาหาแนวทางแกไขปญหา เพื่อนำไปสู

การอภิปรายและสรุปองคความรูที่เปนคำตอบของปญหานั้นรวมกัน ซึ่งประกอบดวย 6 ข้ันตอน ดังนี้ 

ข้ันที่ 1 กำหนดปญหา เปนข้ันทีค่รูจัดสถานการณตาง ๆ กระตุนใหผูเรียนเกิดความสนใจ และมองเห็นปญหา 

สามารถกำหนดสิ่งที่เปนปญหาที่นักเรียนอยากรูอยากเรียนไดและเกิดความสนใจที่จะคนหาคำตอบ 

          ข้ันที่ 2 ทำความเขาใจปญหา นักเรียนจะตองทําความเขาใจปญหาที่ตองการเรียนรู ซึ่งนักเรียนจะตองอธิบาย

ถึงสิ่งตาง ๆ ที่เก่ียวของกับปญหาได 

          ขั ้นที่ 3 ดำเนินการศึกษาคนควา นักเรียนกำหนดสิ่งที ่ตองเรียนและดำเนินการศึกษาคนควา ดวยวิธีที่

หลากหลาย  

          ข้ันที่ 4 สังเคราะหความรู เปนข้ันที่นักเรียนนำความรูที่ไดคนความาแลกเปลี่ยนเรียนรู รวมมือกัน อภิปรายผล 

และสังเคราะหความรูที่ไดมาวามีความเหมาะสมหรือไมเพียงใด เพียงพอกับการตรวจสอบสมมติฐานที่ตั้งไวหรือไม 

แลวนำขอมูลที่ไดไปตรวจสอบสมมติฐานและแกปญหา ถาไมเพียงพอ สมาชิกภายในทีมจะตองกำหนดสิ่งที่ตองเรียน

เพิ่มเติม แผนการเรียนรู และแหลงขอมูลแลวดำเนินการศึกษาอีกคร้ังหนึ่งเพื่อใหไดขอมูลที่สมบูรณกอน  

          ขั้นที่ 5 สรุปและประเมินคาของคําตอบ นักเรียนแตและทีมสรุปผลงานของทีมตนเองและประเมินผลงานวา

ขอมูลที่ศึกษาคนความีความเหมาะสมหรือไมเพียงใด โดยพยายามตรวจสอบแนวคิดภายในทีมของตนเองอยางอิสระ 

ทุกทีมชวยกันสรุปองคความรูในภาพรวมของปญหาอีกคร้ัง  

          ขั้นที่ 6 นำเสนอและประเมินผลงาน นักเรียนนำขอมูลที่ไดมาจัดระบบองคความรูนำเสนอเปนผลงานใน

รูปแบบที่หลากหลาย นักเรียนทุกทีมรวมทั้งนักเรียนที่เก่ียวของกับปญหารวมกันประเมินผล 

4.3 ทักษะการแกปญหาทางคณิตศาสตร หมายถึง ความสามารถในการแกโจทยปญหาทางคณิตศาสตรของ

นักเรียน โดยใชกระบวนการแกปญหาของโพลยา (Polya, 1985) ซึ่งประกอบดวย 4 ข้ันตอน ดังนี้   

          ขั้นการทําความเขาใจปญหา เปนขั้นที่นักเรียนวิเคราะหปญหา โดยจะตองระบุถึงสิ่งที่ปญหากําหนดและสิ่งที่

ปญหาตองการทราบ  

          ข้ันการเลือกกลยุทธวิธีในการแกปญหา เปนข้ันที่นักเรียนตองพิจารณาหลักการหรือวิธีการทางคณิตศาสตรมา

กําหนดเปนแนวทางในการแกปญหา  

          ขั ้นการใชวิธีการแกปญหา เปนขั้นที่นักเรียนดําเนินการตามแนวทางที่วางไว โดยใชการดําเนินการทาง

คณิตศาสตรอยางเปนระบบ เพื่อหาคําตอบของปญหา  

          ขั้นการสรุปคําตอบ เปนขั้นที่นักเรียนสรุปผลที่ไดจากการดําเนินการแกปญหา ใหสอดคลองกับสิ่งที่ปญหา

ตองการทราบ 

   ซึ่งวัดไดจากเกณฑการประเมินทักษะการแกปญหาทางคณิตศาสตรดังแสดงในตารางที่ 1 

4.4       การทำงานเปนทีม หมายถึง การที่นักเรียน 2 - 3 คน มารวมตัวกันเพื่อปฏิบัติหนาที่ที่ไดรับมอบหมาย แตละ

คนมีบทบาทหนาที่ในการทำงานของทีม มีสวนรวมในวางแผนและการดำเนินการทำงาน การยอมรับฟงความคิดเห็น
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ของผูอื่นและการแสดงความคิดเห็น มีสวนรวมกัน มีการติดตอสื่อสารกันกับสมาชิกภายในทีม ซึ่งวัดไดจากแบบ

ประเมินการทำงานเปนทีมที่ผูวิจัยสรางขึ้นมาซึ่งประกอบดวย 5 องคประกอบ คือ ความรับผิดชอบ การติดตอสื่อสาร 

การวางแผนการทำงานรวมกัน ความรวมมือ และการยอมรับความคิดเห็นซึ่งกันและกัน ซึ่งมีเกณฑการประเมินดัง

แสดงในตารางที่ 2 

4.5 เกณฑ หมายถึง คะแนนเฉลี่ยข้ันต่ำที่จะยอมรับไดวานักเรียนมีทักษะการแกปญหาทางคณิตศาสตร ซึ่งผูวิจัย

ใชเกณฑรอยละ 70 ของคะแนนรวม ซึ่งอยูในระดับดี ตามกระทรวงศึกษาธิการ (สำนักงานคณะกรรมการการศึกษาข้ัน

พิ้นฐาน, 2551) 

 

5 เคร่ืองมือที่ใชในการวิจัย 
5.1 เคร่ืองมือที่ใชในงานวิจัย 

1. แผนการจัดการเรียนรูโดยใชปญหาเปนฐาน จำนวน 5 แผน ประกอบดวย 

       พื้นที่ผิวและปริมาตรของปริซึม  จำนวน 2 ชั่วโมง 

              พื้นที่ผิวและปริมาตรของพีระมิด  จำนวน 2 ชั่วโมง 

              พื้นที่ผิวและปริมาตรของทรงกระบอก จำนวน 2 ชั่วโมง 

              พื้นที่ผิวและปริมาตรของกรวย  จำนวน 2 ชั่วโมง 

              พื้นที่ผิวและปริมาตรของทรงกลม  จำนวน 2 ชั่วโมง 

  ในแตละแผนจะมีขั้น 6 ขั้นตอน ประกอบดวย ขั้นกำหนดปญหา ขั้นทำความเขาใจปญหา ขั้นดำเนินการ

ศึกษา ข้ันสังเคราะหความรู ข้ันสรุปและประเมินคาของคําตอบ และข้ันนำเสนอและประเมินผลงาน  

2. แบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตรกอนและหลังการจัดการเรียนรูแบบปญหาเปนฐาน 

จำนวน 5 ขอ 

3. แบบประเมินการทำงานเปนทีมที่ผูวิจัยสรางข้ึนดังตารางที่ 2 

4. แบบประเมินทักษะการแกปญหาทางคณิตศาสตร ซึ่งใชเกณฑการใหคะแนนการแกปญหาทางคณิตศาสตร

ของสถาบันสงเสริมการสอนวิทยาศาสตรและเทคโนโลยี แสดงในตารางที่ 1 

5. แบบบันทึกหลังสอน 

5.2 วิธีการสรางเคร่ืองมือวิจัย 

 1. ศึกษาเอกสารและงานวิจัยที่เกี่ยวของเกี่ยวกับปญหาเปนฐาน ทักษะการแกปญหาทางคณิตศาสตร และ

การทำงานเปนทีม  

 2. สรางแผนการจัดการเรียนรูแบบปญหาเปนฐาน เรื่อง พิ้นที่ผิวและปริมาตร จำนวน 5 แผน ซึ่งมีขั้นตอน

การสรางแผนการจัดการเรียนรู ดังนี ้

    2.1 ศึกษาหลักสูตรระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 วิชาคณิตศาสตรเพื่อการออกแบบ พุทธศักราช 

2556 สำนักงานคณะกรรมการอาชีวศึกษา กระทรวงศึกษาธิการ 

   2.2 สำรวจเกี่ยวกับการนำเรื่องพื้นที่ผิวและปริมาตรไปใชในวิชาอื่น ๆ ที่เรียนในสาขากับนักเรียนระดับ
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ประกาศนียบัตรวิชาชีพชั้นปที่ 3 ที่เคยเรียนเร่ืองพื้นที่ผิวและปริมาตรมากอน เพื่อนำไปใชในการกำหนดปญหาในข้ันที่ 

1 ของปญหาเปนฐาน 

   2.3 กำหนดเนื้อหาและจุดประสงคการเรียนรูวิชาคณิตศาสตรเพื่อการออกแบบ ตลอดจนเขียนแผนการ

จัดการเรียนรู โดยประกอบดวย สาระการเรียนรู ผลการเรียนรู จุดประสงคการเรียนรู สาระสำคัญ กิจกรรมการเรียนรู 

สื่อและแหลงการเรียนรู การวัดประเมินผลการเรียนรู  

              2.4 นำแผนการจัดการเรียนรูที่สรางขึ้นเรียบรอยแลว เสนอตอผูเชี่ยวชาญจำนวน 5 คน เพื่อหาคาดัชนี

ความเที่ยงตรงเชิงเนื้อหา (CVI) ความสอดคลองระหวางจุดประสงคการเรียนรูกับกิจกรรมการเรียนรู และความถูกตอง

ของภาษาที่ใช จากนั้นนำแผนการเรียนรูมาปรับปรุงแกไขตามขอเสนอแนะของผูเชี่ยวชาญ และนำเสนอตออาจารยที่

ปรึกษาอีกคร้ัง เพื่อตรวจสอบความถูกตอง กอนนำไปใชเปนเคร่ืองมือในการจัดกิจกรรมการเรียนรูของการวิจัยตอไป   

คาดัชนีความตรงเชิงเนื้อหา (Index of content validity (CVI)) หมายถึง สัดสวนของขอความที่ผูเชี่ยวชาญ

ใหคะแนน 3 หรือ 4 ซึ่งมีสูตรในการคำนวณและมีเกณฑการใหคะแนนความคิดเห็น ดังนี้  

𝐶𝐶𝐶𝐶𝐶𝐶 =
∑𝑛𝑛3 𝑜𝑜𝑜𝑜 𝑛𝑛4

𝑁𝑁
 

           เมื่อ ∑𝑛𝑛3 𝑜𝑜𝑜𝑜 𝑛𝑛4 ผลรวมของความคิดเห็นของผูเชี่ยวชาญที่ใหคะแนน 3 หรือ 4  

      โดยมีความคิดเห็นเปน 4 ระดับ ดังนี้ 

                1 หมายถึง ไมเก่ียวของ  

                2 หมายถึง เก่ียวของบาง 

                3 หมายถึง คอนขางเก่ียวของ  

                4 หมายถึง เก่ียวของมาก 

                ∑𝑛𝑛3 คือ จำนวนผูเชี่ยวชาญที่เห็นวาขอคำถามคอนขางเก่ียวของกับสิ่งที่ตองการวัด 

                ∑𝑛𝑛4 คือ จำนวนผูเชี่ยวชาญที่เห็นวาขอคำถามเก่ียวของมากกับสิ่งที่ตองการวัด 

                𝑁𝑁 คือ จำนวนผูเชี่ยวชาญทั้งหมด  

 คา Item-CVI คำนวณจากสัดสวนของผูเชี่ยวชาญที่มีความเห็นตรงกันวาขอความนั้น ๆ เกี่ยวของกับสิ่งที่วัด ถาคา 

Item-CVI ท่ีมีคามากกวา .80 สามารถนำไปใชได (วีระยุทธ, 2565)          

 3. สรางแบบบันทึกหลังสอนสำหรับครูผูสอน เพื่อบันทึกทุกคร้ังหลังการเรียนการสอนที่เนนปญหาเปนฐาน 

           4. สรางแบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นที่ผิวและปริมาตร จำนวน 15 ขอ ซึ่ง

แบงเปนเรื ่องพื้นที่ผิวและปริมาตรปริซึม พีระมิด ทรงกระบอก กรวย และทรงกลมอยางละ 3 ขอ แลวเสนอตอ

ผูเชี่ยวชาญจำนวน 5 คน เพื่อหาคาดัชนคีวามเที่ยงตรงเชิงเนื้อหา (CVI) ความสอดคลองระหวางจุดประสงคการเรียนรู

กับขอคำถามของแบบทดสอบ และความถูกตองของภาษาที่ใช ซึ่งพบวาคา Item-CVI ตั้งแต 0.80 ข้ึนไป มีจำนวน 13 

ขอ จากนั้นนำแบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตร ดำเนินทดสอบกับนักเรียนระดับประกาศนียบัตร

วิชาชีพชั ้นปที ่ 2 สาขาอาหารและโภชนาการ จำนวน 13 คน เพื ่อหาคาความยากและคาอำนาจจำแนกของ

แบบทดสอบ ซึ่งพบวาแบบทดสอบจำนวน 13 ขอ สามารถนำมาใชวัดทักษะการแกปญหาทางคณิตศาสตรได ผูวิจัยได
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เลือกแบบทดสอบเรื ่องพื้นที่ผิวและปริมาตรปริซึม พีระมิด ทรงกระบอก กรวย และทรงกลมอยางละ 1 ขอ แลว

นำมาใชเปนแบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตรกอนเรียนและหลังเรียน เรื่อง พื้นที่ผิวและปริมาตร 

จำนวน 5 ขอ ซึ่งแบบทดสอบกอนเรียนและหลังเรียนเปนแบบสอบชุดเดียวกัน โดยมีเกณฑการใหคะแนนสำหรับวัด

ทักษะการแกปญหาทางคณิตศาสตรในแตละขอ (สถาบันสงเสริมวิทยาศาสตรและเทคโนโลยี, 2551) ดังแสดงในตาราง

ที่ 1 และจะใชผลรวมในทุกรายการประเมิน สรุปเปนระดับทักษะการแกปญหาทางคณิตศาสตร โดยมีเกณฑประเมิน

คุณภาพ ดังตอไปนี้ 

1 - 4 คะแนน หมายถึง อยูในระดับตองปรับปรุง 

5 - 8 คะแนน หมายถึง อยูในระดับพอใช 

9 - 12 คะแนน หมายถึง อยูในระดับด ี

ตารางที่ 1 เกณฑการประเมินใหคะแนนสำหรับแบบทดสอบวดัทักษะการแกปญหาทางคณิตศาสตร  

รายการประเมิน ระดับคุณภาพ เกณฑการประเมิน 

1. ความเขาใจ

ปญหา 

3 (ดี) 

2 (พอใช) 

1 (ตองปรับปรุง) 

เขาใจปญหาไดอยางถูกตอง 

เขาใจปญหาบางสวนไมถูกตอง 

เขาใจปญหานอยมากหรือไมเขาใจปญหา 

2. การเลือกกล

ยุทธวิธใีนการ

แกปญหา 

3 (ดี) 

 

2 (พอใช) 

 

1 (ตองปรับปรุง) 

เลือกวิธีการแกปญหาไดเหมาะสมและเขียนประโยคสัญลักษณคณิตศาสตร

ไดถูกตอง 

เลือกวิธีการแกปญหา ซึ่งอาจจะนำไปสูคำตอบที่ถูก แตยังมีสวนผิดโดยอาจ

เขียนประโยคสัญลักษณคณิตศาสตรไมถูกตอง  

เลือกวิธีการแกปญหาสวนใหญไมถูกตอง 

3. การใชวิธีการ

แกปญหา 

3 (ดี) 

2 (พอใช) 

1 (ตองปรับปรุง) 

นำวิธีการแกปญหาไปใชไดอยางถูกตอง 

นำวิธีการแกปญหาไปใชไดอยางถูกตองเปนบางสวน 

นำวิธีการแกปญหาไปใชไดไมถูกตอง 

4. การสรุป

คำตอบ 

3 (ดี) 

2 (พอใช) 

1 (ตองปรับปรุง) 

สรุปคำตอบไดอยางถูกตอง สมบูรณ 

สรุปคำตอบที่ไมสมบูรณหรือใชสัญลักษณไมถูกตอง 

ไมมีการสรุปคำตอบ 

 5. สรางแบบประเมินการทำงานเปนทีม โดยดำเนินการศึกษาเอกสารและงานวิจัยที่เกี่ยวของเกี่ยวกับการ

ทำงานเปนทีม จากนั้นสรุปเปนองคประกอบของการทำงานเปนทีมได 5 องคประกอบ คือ ความรับผิดชอบ การ

ติดตอสื่อสาร การวางแผนการทำงานรวมกัน ความรวมมือ การยอมรับความคิดเห็นซึ่งกันและกัน จากนั้นกำหนด

เกณฑการใหคะแนนเปนระดับคะแนน 3 (ดีมาก), 2 (ดี), 1 (พอใช) และ 0 (ปรับปรุง) เสนอตอผูเชี่ยวชาญจำนวน 5 

คน เพื่อหาคาดัชนีความเที่ยงตรงเชิงเนื้อหา (CVI) ความสอดคลองระหวางจุดประสงคการเรียนรูกับเกณฑการประเมิน
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การทำงานเปนทีม และความถูกตองของภาษาที่ใช แลวนำมาปรับปรุงตามขอเสนอแนะของผูเชี่ยวชาญ โดยมีเกณฑ

การใหคะแนนสำหรับแบบการทำงานเปนทีม ดังแสดงในตารางที่ 2 และจะใชผลรวมในทุกรายการประเมิน สรุปเปน

ระดับการทำงานเปนทีม โดยมีเกณฑประเมินคุณภาพ ดังตอไปนี้ 

0 - 3 คะแนน หมายถึง อยูในระดับปรับปรุง 

4 - 7 คะแนน หมายถึง อยูในระดับพอใช 

8 - 11 คะแนน หมายถึง อยูในระดับด ี

12 – 15 คะแนน หมายถึง อยูในระดับดีมาก 

ตารางที่ 2 เกณฑการประเมินใหคะแนนการทำงานเปนทีม 

 

รายการประเมิน 

เกณฑการประเมิน 

ดีมาก ดี พอใช ปรับปรุง 

3 2 1 0 

ความรับผิดชอบ ทุกคนมีหนาที่และ 

ความรับผิดชอบตอ 

หนาที่ของตนเอง 

มีอยางนอยรอยละ 30 

ไมมีหนาที่และไม 

รับผิดชอบ 

มีอยางนอยรอยละ 60 

ไมมีหนาที่และไม 

รับผิดชอบ 

ไมมีการแบงหนาที่

รับผิดชอบกัน

ภายในทีม 

การติดตอสื่อสาร ทุกคนมีการติด

ติดตอสื่อสารกัน 

มีอยางนอยรอยละ 30 ที่

ไมมีการติดตอสื่อสารกัน 

มีอยางนอยรอยละ 60 

ที่ไมมีการติดตอสื่อสาร

กัน 

ไมมีการ

ติดตอสื่อสารกัน

ภายในทีม 

การวางแผนการ

ทำงานรวมกัน 

1. ปรึกษาหารือ  

2. เตรียมขอมูลได 

เหมาะสม  

3. วางแผนการทำงาน  

4. ปฏิบัติตามแผน  

และพัฒนาผลงาน 

ขาด 1 ข้ันตอน จาก 4 

ข้ันตอน 

ขาด 2 - 3 ข้ันตอน 

จาก 4 ข้ันตอน 

ไมมีการวางแผนกัน

ภายในทีม 

ความรวมมือ ทุกคนมีสวนรวมให

ความรวมมืออยางเต็มที่ 

มีผูไมใหความรวมมือ 

อยางนอยรอยละ 30 

มีผูไมใหความรวมมือ 

อยางนอยรอยละ 60 

ไมมีผูใหความ 

รวมมือเลย 

การยอมรับความ

คิดเห็นซึ่งกันและ

กัน 

ทุกคนยอมรับฟง ความ

คิดเห็นของผูอ่ืนและมี

การแสดงความคิดเห็น 

อยางนอยรอยละ 60 

ของทีม ยอมรับฟงความ

คิดเห็นของผูอ่ืน และ

แสดงความ คิดเห็น 

อยางนอยรอยละ 30 

ของทีม ยอมรับฟงความ

คิดเห็นของผูอ่ืน และ

แสดงความคิดเห็น 

ไมยอมรับฟงความ

คิดเห็นของผูอ่ืนและ

ไมแสดงความ

คิดเห็นกันภายในทีม 
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6 การเก็บรวบรวมขอมลูและการวิเคราะหขอมูล 

6.1 การเก็บรวบรวมขอมูล 

1. การเก็บรวบรวมขอมูลกอนเรียน ผูวิจัยไดเก็บรวบรวมขอมูลจากนักเรียนกลุมตัวอยางโดยใชแบบวัดทักษะ

ทักษะการแกปญหาทางคณิตศาสตรกอนเรียน จำนวน 5 ขอ ที่ผูวิจัยไดสรางข้ึนเพื่อตรวจสอบทักษะการแกปญหาทาง

คณิตศาสตรของนักเรียนกอนการจัดการเรียนรู  

2. การเก็บรวบรวมขอมูลหลังเรียน ผูวิจัยไดเก็บรวบรวมขอมูลจากนักเรียนกลุมตัวอยาง เปนการวัดทักษะ

การแกปญหาทางคณิตศาสตรหลังเรียน โดยใชแบบทดสอบวัดทักษะทางคณิตศาสตรหลังเรียน จำนวน 5 ขอ โดย

แบบทดสอบเปนชุดเดียวกันกับแบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตรกอนเรียน  

 

6.2 การวิเคราะหขอมูล 

1. การวิเคราะหขอมูลเชิงปริมาณ พิจารณาจากแบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตร เรื่อง 

พื้นที่ผิวและปริมาตร แบบประเมินการทำงานเปนทีม โดยใชสถิติวิเคราะห ไดแก รอยละ คาเฉลี่ย สวนเบี่ยงเบน

มาตรฐาน และการทดสอบที (t-test) 

2. เกณฑการประเมินทักษะการแกปญหาทางคณิตศาสตร โดยคิดเปนรอยละจากคะแนนรวมที่ไดใน

แบบทดสอบวัดทักษะการแกปญหาทางคณิตศาสตร ซึ่งมีคะแนนเต็ม 60 คะแนน โดยใชเกณฑในการประเมินดังนี้ 

               รอยละ 70 ข้ึนไป  อยูในระดับดี 

               รอยละ 50 - 69  อยูในระดับพอใช 

               ต่ำกวารอยละ 50  อยูในระดับปรับปรุง 

3. เกณฑการประเมินการทำงานเปนทีม โดยคิดเปนรอยละจากคะแนนรวมที่ไดจากแบบประเมินการทำงาน

เปนทีมทั้งหมด 5 สัปดาห ซึ่งมีคะแนนเต็ม 75 คะแนน โดยใชเกณฑในการประเมินดังนี้ 

               รอยละ 80 ข้ึนไป  อยูในระดับดีมาก 

               รอยละ 60 - 79  อยูในระดับดี 

               รอยละ 41 – 59  อยูในระดับพอใช 

               ต่ำกวารอยละ 40  อยูในระดับปรับปรุง 

6.3 ตัวอยางแผนการจัดการเรียนรู 

ในงานวิจัยจะขอนำเสนอแผนการจัดการเรียนรู เรื่อง พื้นที่ผิวและปริมาตรของปริซึม ซึ่งมีขั้นตอนดังหัวขอ 

5.1 ซึ่งมีกิจกรรมการเรียนรู ดังนี้ 

ขั ้นที่ 1 กำหนดปญหา ครูจัดสถานการณ กระตุนใหนักเรียนเรียนเกิดความสนใจ และมองเห็นปญหา 

สามารถกำหนดสิ่งที่เปนปญหาที่ผูเรียนอยากรูอยากเรียนไดและเกิดความสนใจที่จะคนหาคำตอบ ดังนี้ 
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สถานการณ 

นักเรียนตองการออกแบบบรรจุภัณฑรูปทรงปริซึมเพื่อนำไปบรรจุช็อกโกแลตจำนวน 6 ชิ้น โดยรูปทรงของช็อกโกแลต

จะประกอบไปดวย ปริซึมฐานสามเหลี่ยมดานเทา 2 ชิ้น ปริซึมฐานสี่เหลี่ยมจัตุรัส 2 ชิ้น และปริซึมฐานหกเหลี่ยมดาน

เทา 2 ชิ้น โดยแตละดานจะมีความยาวดานเทากับ 2 เซนติเมตร จากนั้นตองนำบรรจุภัณฑที่ไดมาหอกระดาษของขวญั 

นักเรียนจะตองไดกระดาษของขวัญอยางนอยก่ีตารางเซนติเมตรจึงจะเพียงพอตอการหอของขวัญ 

          ขั้นที่ 2 ทำความเขาใจปญหา นักเรียนภายในทีมชวยวิเคราะหวาโจทยกำหนดอะไรมาใหบาง และสิ่งที่โจทย

ตองการสิ่งใด และตองใชอุปกรณใดบางในการทำ 

          ขั้นที่ 3 ดำเนินการศึกษาคนควา นักเรียนสืบคนขอมูลจากใบความรูและจากแหลงอื่น ๆ เพื่อนำมาใชในการ

แกปญหาที่กำหนด 

          ข้ันที่ 4 สังเคราะหความรู นักเรียนภายในทีมนำขอมูลที่ไดมาแลกเปลี่ยนกันวาขอมูลที่หามาไดเพียงพอตอการ

แกปญหาในสถานการณดังกลาวหรือไม หากไมเพียงพอใหดำเนินการสืบคนเพิ่มเติม และดำเนินการออกแบบบรรจุ

ภัณฑที่กำหนด 

          ขั ้นที่ 5 สรุปและประเมินคาของคําตอบ นักเรียนชวยกันประเมินผลงานภายในทีมของตนเองวามีความ

เหมาะสมหรือไม และตรงกับสถานการณที่กำหนดใหหรือไม จากนั้นสรุปในใบกิจกรรมการเรียนรู 

          ขั้นที่ 6 นำเสนอและประเมินผลงาน นักเรียนแตละทีมนำเสนอผลงานที่ทีมตนเองสรางขึ้นมาจากนั้นเพื่อนใน

ชั้นเรียนชวยกันประเมินผลงานของทีมที่ออกมานำเสนอ 

 

7 ผลการวิจัย 
7.1 ผลการวิเคราะหทักษะการแกปญหาทางคณิตศาสตร เร่ือง พ้ืนที่ผิวและปริมาตร โดยใชการจัดการเรียนรู

แบบปญหาเปนฐาน 

ผลการวิเคราะหทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นที่ผิวและปริมาตร จากแบบทดสอบวัดทักษะ

การแกปญหาทางคณิตศาสตรกอนและหลังการจัดการเรียนรูแบบปญหาเปนฐาน พบวา ไดคะแนนเฉลี่ยทักษะการ

แกปญหาทางคณิตศาสตรกอนการจัดการเรียนรู เทากับ 27.96 คะแนน และหลังการจัดการเรียนรู เทากับ 42.13 

คะแนน ซึ่งจากการทดสอบสมมติฐานพบวาหลังการจัดการเรียนรูสูงกวากอนการจัดการเรียนรูโดยใชการจัดการเรียนรู

แบบปญหาเปนฐานอยางมีนัยสำคัญทางสถิติที่ระดับ .05 

ผลการวิเคราะหแบบวัดทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นที่ผิวและปริมาตร หลังการจัดการ

เรียนรูแบบปญหาเปนฐานเปรียบเทียบกับเกณฑรอยละ 70 เมื่อเปรียบเทียบกับเกณฑรอยละ 70 พบวาคะแนนเฉลี่ย

ทักษะการแกปญหาทางคณิตศาสตรหลังการจัดการเรียนรูสูงกวาเกณฑรอยละ 70 อยางมีนัยสำคัญทางสถิติที่ระดับ 

.05 และผานเกณฑรอยละ 70 จํานวน 15 คน คิดเปนรอยละ 51.72 และจากวิเคราะหเปนรายดานของรอยละคะแนน

ทักษะการแกปญหาทางคณิตศาสตรหลังการจัดการเรียนรูโดยใชปญหาเปนฐานแสดงดังภาพที่ 2 
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ภาพที่ 2 วิเคราะหเปนรายดานของทกัษะการแกปญหาทางคณติศาสตรหลังการจัดการเรียนรูโดยใชปญหาเปนฐาน 

จากภาพที่ 2 พบวา ในแตละขอนักเรียนสามารถทำความเขาใจปญหาได จากภาพจะพบวานักเรียนสวนใหญ

ยังไมสามารถเลือกกลยุทธวิธีในการแกปญหาและใชวิธีการแกปญหาไดอยางครบถวนจึงทำใหไมสามารถสรุปคำตอบได

อยางถูกตอง 

 
ภาพที่ 3 ตัวอยางนักเรียนที่ไดคะแนนจากแบบวดัทักษะการแกปญหาทางคณติศาสตรหลังเรียน 

เร่ือง พื้นที่ผิวและปริมาตร อยูในระดับด ี

จากภาพที่ 3 ตัวอยางนักเรียนที่ไดคะแนนจากแบบวัดทักษะการแกปญหาทางคณิตศาสตรหลังเรียน เรื่อง 

พื้นที่ผิวและปริมาตร อยูในระดับคุณภาพดีทุกรายการประเมิน 

7.2 ผลการวิเคราะหการทำงานเปนทีม 

ผลการวิเคราะหเพื่อศึกษาการทำงานเปนทีมของนักเรียนระดับประกาศนียบัตรวิชาชีพชั้นปที่ 1 โดยใชการ

จัดการเรียนรูแบบปญหาเปนฐาน ผลการวิจัยพบวา การจัดการเรียนรูโดยใชปญหาเปนฐานสามารถทำใหนักเรียน

ทำงานเปนทีมอยูในเกณฑที่ดีและดีมาก ซึ่งแสดงในภาพที่ 4 
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ภาพที่ 4 ผลการวิเคราะหการทำงานเปนทีมเปนรายสัปดาห 

 ผลจากการวิเคราะหเปนรายองคประกอบทั ้งหมด 5 องคประกอบ คือ ดานความรับผิดชอบ ดานการ

ติดตอสื่อสาร ดานการวางแผนการทำงานรวมกัน ดานความรวมมือ และดานการยอมรับความคิดเห็นซึ่งกันและกัน 

พบวา นักเรียนสวนใหญมีการยอมรับยอมรับความคิดเห็นซึ่งกันและกันมากที่สุด ดังแสดงในภาพที่ 5 

 
ภาพที่ 5 รอยละของคะแนนรายองคประกอบและคะแนนเฉลี่ยในการทำงานเปนทีมของแตละสัปดาห 

จากภาพที่ 5 จะเห็นวาคะแนนเฉลี่ยการทำงานเปนทีมในสัปดาหที่ 1 ถึง สัปดาหที่ 5 อยูในเกณฑดีมาก แต

ในสัปดาหที่ 2 และสัปดาหที่ 3 พบวาคะแนนเฉลี่ยการทำงานเปนทีมไดคะแนนลดลง เนื่องจากโจทยปญหาในสัปดาห

ที่ 2 คือ “ใหนักเรียนสรางพีระมิดที่มีปริมาตรอยางนอย 50 ถึง 70 ลูกบาศกเซนติเมตร และมีพื้นที่ผิวทั้งหมดอยาง

นอย 120 ถึง 150 ตารางเซนติเมตร” ซึ ่งสวนใหญสรางไดไมตรงกับโจทยที ่กำหนดและโจทยขอนี้มีขั ้นตอนการ

แกปญหาที่คอนขางซับซอนจึงสงผลใหนักเรียนมีสวนรวมในการทำงานเปนทีมนอย จึงทำใหมีคะแนนเฉลี่ยของการ

ทำงานเปนทีมนอยที่สุด จากตัวอยางโจทยปญหาดังกลาวขางตนการที่นักเรียนในหลายทีมไมสามารถแกปญหาจาก

ปญหาเปนฐานในเรื่อง พื้นที่ผิวและปริมาตรของพีระมิด ได เชน นักเรียนไมเขาใจปญหาและไมสามารถสรางรูปทรง

พีระมิดที่มีปริมาตรและพื้นที่ผิวตามที่กำหนดได ดังภาพที่ 6 

 
ภาพที่ 6 ตัวอยางผลงานนักเรียนจากปญหาเปนฐานในเร่ือง พื้นที่ผิวและปริมาตรของพีระมิด 
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8 สรุปผลการวิจัย 
           จากการวิจัยเรื่อง การพัฒนาทักษะการแกปญหาทางคณิตศาสตรและการทำงานเปนทีมของนักเรียนระดับ

ประกาศนียบัตรวิชาชีพชั้นปที ่ 1 เรื ่อง พื้นที่ผิวและปริมาตร โดยใชการจัดการเรียนรูแบบปญหาเปนฐาน สรุป

ผลการวิจัยไดดังนี้ 

          1. นักเรียนที่ไดการจัดการเรียนรูโดยใชปญหาเปนฐานมีทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นที่ผิว

และปริมาตร หลังเรียนสูงกวากอนการจัดการเรียนรูอยางมีนัยสำคัญทางสถิติที่ระดับนัยสำคัญ .05 

          2. นักเรียนที่ไดการจัดการเรียนรูโดยใชปญหาเปนฐานมีทักษะการแกปญหาทางคณิตศาสตร เรื่อง พื้นที่ผิว

และปริมาตร สูงกวาเกณฑรอยละ 70 อยางมีนัยสำคัญทางสถิติที่ระดับ .05  

          3. นักเรียนที่ไดการจัดการเรียนรูโดยใชปญหาเปนฐานมีการทำงานเปนทีมในภาพรวมอยูในเกณฑดีถึงดีมาก 

 

9 อภิปรายผลการวิจัย 
จากผลการทดสอบกอนและหลังการจัดการเรียนรูโดยใชปญหาเปนฐาน พบวา มีทักษะการแกปญหาทาง

คณิตศาสตร เรื่อง พื้นที่ผิวและปริมาตร หลังการจัดจัดการเรียนรูโดยใชปญหาเปนฐานสูงกวากอนการจัดการเรียนรู

โดยใชปญหาเปนฐาน และผานเกณฑรอยละ 70 อยางมีนัยสำคัญทางสถิติที่ระดับ .05 เมื่อพิจารณาคะแนนนักเรียน

ที่มาจากในแตละข้ันตอนของการแกปญหา จะเห็นไดวานักเรียนทำคะแนนในข้ันทำความเขาใจปญหาไดมากที่สุด และ

ทำคะแนนในขั้นวางแผนการแกปญหาไดนอยที่สุด อาจเปนเพราะการวางแผนการแกปญหาวางแผนไมครบถวนและ

ถาในขั้นดำเนินการแกปญหานักเรียนคำนวณผิดพลาดซึ่งเกิดจากความเขาใจที่คลาดเคลื่อนของนักเรียน อาจสงผลให

ขั้นสรุปคำตอบผิดพลาดดวยเชนกัน และถึงแมนักเรียนจะมีคะแนนในขั้นวางแผนการแกปญหานอยที่สุด แตผลการ

ทดสอบก็ยังผานเกณฑรอยละ 70 อยางมีนัยสำคัญทางสถิติที่ระดับ .05 นั่นคือนักเรียนสวนใหญมีทักษะการแกปญหา

ทางคณิตศาสตรอยูในระดับดี แสดงวาการจัดการเรียนรูโดยใชปญหาเปนฐาน ในเร่ืองพื้นที่ผิวและปริมาตร สามารถทำ

ใหนักเรียนมีทักษะการแกปญหาทางคณิตศาสตรได ผูวิจัยคิดวาอาจเปนเพราะการจัดการเรียนรูโดยใชปญหาเปนฐาน

เปนรูปแบบการจัดการเรียนรูที่เปนขั้นตอนที่ทำใหนักเรียนไดรวมกันไดวิเคราะหปญหาจากสถานการณที่กำหนด 

ชวยกันวางแผนการแกปญหา ดำเนินการศึกษาคนควาเพิ่มเติมเพื่อที่จะนำไปใชในการแกปญหา อีกทั้งยังไดรวมกัน

สรุปคำตอบจากการแกปญหาอีกดวย นอกจากนี้การฝกใหนักเรียนมีทักษะในการแกปญหาอยางเปนระบบและเปด

โอกาสใหนักเรียนรูจักแกปญหาดวยตนเองใหมากที่สุด จะทำใหนักเรียนมีความเชื่อมั่นในการแกปญหา สอดคลองกับ

งานวิจัยของพรทิพา เมืองโคตร และคณะ (2559) ไดศึกษาความสามารถในการแกปญหาทางคณิตศาสตรโดยการ

จัดการเรียนรูและโดยใชปญหาเปนฐานของนักเรียนชั้นมัธยมศึกษาปที่ 3 เร่ือง พื้นที่ผิวและปริมาตร ผลการวิจัยพบวา 

1) รอยละ 83.33 ของนักเรียนที่เรียนโดยการจัดการเรียนรูโดยใชปญหาเปนฐาน มีความสามารถในการแกปญหาทาง

คณิตศาสตร ผานเกณฑรอยละ 75 ของคะแนนเต็ม 2) นักเรียนที่เรียนโดยการจัดการเรียนรูโดยใชปญหาเปนฐาน มี

ความสามารถในการแกปญหาทางคณิตศาสตร สูงกวานักเรียนที่เรียนโดยการจัดการเรียนรูแบบปกติ อยางมีนัยสำคัญ
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ทางสถิติที่ระดับ .05 และครองทรัพย เปงขวัญ (2560) ผลการวิจัยพบวา นักเรียนที่ไดรับการจัดกิจกรรมการเรียนรู

โดยใชปญหาเปนฐานมีทักษะการแกปญหาทางคณิตศาสตรหลังเรียนสูงกวากอนเรียน และสูงกวานักเรียนที่ไดรับการ

จัดการเรียนรูแบบปกติ อยางมีนัยสำคัญทางสถิติที่ระดับ .05 และจากการศึกษาคะแนนพัฒนาการการทำงานเปนทีม 

พบวา ดานความรับผิดชอบ ดานการติดตอสื่อสาร ดานการวางแผนการทำงานรวมกัน ดานความรวมมือและ ดานการ

ยอมรับความคิดเห็นซึ่งกันและกัน พบวานักเรียนมีการทำงานเปนทีมอยูในระดับดีถึงดีมาก แสดงวาการจัดจัดการ

เรียนรูโดยใชปญหาเปนฐาน ในเร่ืองพื้นที่ผิวและปริมาตร สามารถทำใหนักเรียนมีการทำงานเปนทีมอยูในระดับดีถึงดี

มากได 

 

กิตติกรรมประกาศ งานวิจัยคร้ังนี้สำเร็จลุลวงไดดวยดี เพราะผูวิจัยไดรับความชวยเหลือที่ดีและไดรับความรูอันมีคายิ่ง

จาก ผศ. ดร.ธีระพล สลีวงศ อาจารยที่ปรึกษา ผูวิจัยขอกราบขอบพระคุณ ผศ. ดร.วราภรณ  จาตนิล, ผศ. ดร.อังกูร 

หวังวงศชัย, นายณัฐกฤษ จันทรตะ, นางถาวร ลักษณะ และนายอาคม นาคนอย ซึ่งเปนผูเชี่ยวชาญ ที่กรุณาเสียสละ

เวลาในการตรวจสอบเคร่ืองมือและพิจารณาใหขอเสนอแนะตาง ๆ ในการปรับปรุงเคร่ืองมือใหมีความถูกตองสมบูรณ

มากยิ่งข้ึน  
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Abstract 
 

 In this paper, we prove an algorithm for the divisibility of even numbers. Moreover, 
we expanded this divisibility test and extended the rule to more digit numbers. There 
will be another set of appropriate values that can be used for 
the same characteristics as even divisors. This work will show a new perspective on 
divisibility by even numbers. 

 
Keywords: divisibility, even integer. 
2020 MSC: 11B41 

1 Introduction 

Divisibility by 2 or 5 is straightforward: if a number ends in an even digit, it's divisible by 2. 
If it ends in 0 or 5, it's divisible by 5. Divisibility by 3 depends on the sum of its digits. 
However, all these rules have their roots in modulo arithmetic.  

In 2019, Alp and Sarikaya [1] established a division process by cutting the rightmost 
digit. There will be an appropriate value multiplied by a number cut from the dividend's 
rightmost digit, and then the result is added to the set of numbers remaining after cutting 
the rightmost digit. If the new result is a multiple of the divisor, then the original dividend 
will also be a multiple of the divisor. Throughout the years, researchers such as Khosravi et 
al. [2] gave an algorithm for the divisibility of numbers. They supposed that …

 1 2 1–n na a a a  is 
an integer dividend and 

−
…

 1 1m mb b b  is a prime divisor. If the difference between 

( ) ( )−
…

 1 2 1m mb b b a  and …
 1 2 1–n na a a a  can be divided by the original divisor, then the original 

dividend is divisible as well. In 2021, Tiebekabe and Diouïf [3] demonstrated the divisibility 
test of 7 proposed by Chika, a rule for solving number divisibility, especially 7. Chika realized 
this rule but did not know the analytical proof of it. Throughout this paper, we prove a rule 
for the divisibility of even integers. 
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2  Main Results 

Theorem 2.1. Let = 5 4 3 2 1a a a a a x  and p  be even natural numbers with = ⋅ 12p p , ≠ 2p  
and 10 p . Then, there is a rational number 1n  so that 

( )≡ 0 modx p  if and only if ( )+ ≡⋅ 5 4 3 2 1 1 10 moda a a a n a p . 

Proof: Let ( )≡ 0 modx p  be true. There is an integer k  such that 

  5 4 3 2 1a a a a a  =  ( ) +⋅  5 4 3 2 110 a a a a a  =  ⋅p k . 

Thus   5 4 3 2a a a a  =  
−⋅ 1

10
p k a

. 

On the other hand, there is a rational number = 0
1 2

n
n  where ∈ 0n  such that 

   + ∈⋅ 5 4 3 2 1 1a a a a n a . 

Thus   + ⋅ 5 4 3 2 1 1a a a a n a  =  
−

+
⋅

⋅1
1 110

k a
n a

p
 

   =  
−

+
⋅ ⋅ ⋅

⋅ ⋅1 0
1 0

2 2
2

10
p k a

n a   

  =  
− +⋅ ⋅ ⋅1 0 1 010

5
p k a n a

 

  =  
( )+ −⋅ ⋅ ⋅1 1 010 1

5
p k n a

,  

where = ⋅1 02 ,a a  ∈ 0a . 

At least one rational number 
+

=
⋅1

1

1
10

p t
n  for some ∈ t . Since, 1p  is a natural number 

with = ⋅ 12p p , ≠ 2p  and 10 p  that is 15 p . 

 If ( )≡ 2 mod10p  and = 9t , then 
+

=
⋅ 1

1

9 1
10
p

n . 

 If ( )≡ 4 mod10p  and = 7t , then 
+

=
⋅ 1

1

7 1
10
p

n . 

 If ( )≡ 6 mod10p  and = 3t , then 
+

=
⋅ 1

1

3 1
10
p

n . 

 If ( )≡ 8 mod10p  and = 1t , then 
+

=
⋅ 1

1

1 1
10
p

n . 

Therefore, =t  1, 3, 7 or 9 and 1
1

1
10

p t
n

+
=

⋅
 is a rational number. 

Thus   + ⋅ 5 4 3 2 1 1a a a a n a  =  
( )+ −⋅ ⋅ ⋅1 1 010 1

5
p k n a

 

  =  
+⋅ ⋅ ⋅1 1 0

5
p k p t a

 

  =  
 +

∈  
 

⋅
⋅ 

0
1 5

k t a
p . 
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Hence, 
 +

∈  
 

⋅


0

5
k t a

 since 15 p . Therefore, ( )… + ≡⋅5 4 3 2 1 1 10 moda a a a n a p . 

 Conversely, there is a rational number = 0
1 2

n
n  for some 0n ∈  , such that

( )… + ≡⋅5 4 3 2 1 1 10 moda a a a n a p . 

That is  ( )+⋅ ⋅ 5 4 3 2 1 110 a a a a n a  ≡  ( )0 mod p  

so ( )+ −⋅ ⋅ 5 4 3 2 1 1 110 1a a a a a n a  ≡  ( )0 mod p . 

Choosing 
+

=
⋅1

1

1
10

p t
n  for some t ∈  , we have  

 ( )+ ⋅ ⋅ ⋅ 5 4 3 2 1 1 02a a a a a p t a  ≡  ( )0 mod p  

 5 4 3 2 1 0a a a a a p t a+ ⋅ ⋅  ≡  ( )0 mod p . 

Thus   5 4 3 2 1a a a a a  ≡  ( )0 mod p . 

The proof is completed. 

For all even natural number p  in Theorem 2.1, = 5 4 3 2 1a a a a a x  is an even number. 

If = ⋅ 12p p , ≠ 2p , 10 p  and 
+

=
⋅1

1

1
10

p t
n , then 

Table 1: The relationship between p , 1p , t and 1n  

p  1p  t  1n  ( )≡ 0 modx p  ⇔  ( )+ ≡⋅ 5 4 3 2 1 10 modia a a a n a p  

4 2 7 3
2  ( )≡ 0 mod 4x  ⇔  ( )+ ≡⋅ 3 2 1

3 0 mod 22a a a  

6 3 3 1  ( )≡ 0 mod 6x  ⇔  ( )+ ≡⋅ 3 2 11 0 mod 3a a a  

8 4 1 1
2  ( )≡ 0 mod 8x  ⇔  ( )+ ≡⋅ 3 2 1

1 0 mod 42a a a  

12 6 9 11
2  ( )≡ 0 mod12x  ⇔  ( )+ ≡⋅ 3 2 1

11 0 mod 62a a a  

14 7 7 5 ( )≡ 0 mod14x  ⇔  ( )+ ≡⋅ 3 2 15 0 mod 7a a a  

16 8 3 5
2  ( )≡ 0 mod16x  ⇔  ( )+ ≡⋅ 3 2 1

5 0 mod 82a a a  

18 9 1 1 ( )≡ 0 mod18x  ⇔  ( )+ ≡⋅ 3 2 11 0 mod 9a a a  

22 11 9 10 ( )≡ 0 mod 22x  ⇔  ( )+ ≡⋅ 3 2 110 0 mod11a a a  

24 12 7 17
2  ( )≡ 0 mod 24x  ⇔  ( )+ ≡⋅ 3 2 1

17 0 mod122a a a  

26 13 3 4 ( )≡ 0 mod 26x  ⇔  ( )+ ≡⋅ 3 2 14 0 mod13a a a  

28 14 1 3
2  ( )≡ 0 mod 28x  ⇔  ( )+ ≡⋅ 3 2 1

3 0 mod142a a a  

32 16 9 29
2  ( )≡ 0 mod 32x  ⇔  ( )+ ≡⋅ 3 2 1

29 0 mod162a a a  

34 17 7 12 ( )≡ 0 mod 34x  ⇔  ( )+ ≡⋅ 3 2 112 0 mod17a a a  

The 28th Annual Meeting in Mathematics (AMM2024)

369



 
 

p  1p  t  1n  ( )≡ 0 modx p  ⇔  ( )+ ≡⋅ 5 4 3 2 1 10 modia a a a n a p  

36 18 3 11
2  ( )≡ 0 mod 36x  ⇔  ( )+ ≡⋅ 3 2 1

11 0 mod182a a a  

38 19 1 2 ( )≡ 0 mod 38x  ⇔  ( )+ ≡⋅ 3 2 12 0 mod19a a a  

42 21 9 19 ( )≡ 0 mod 42x  ⇔  ( )+ ≡⋅ 3 2 119 0 mod 21a a a  

44 22 7 31
2  ( )≡ 0 mod 44x  ⇔  ( )+ ≡⋅ 3 2 1

31 0 mod 222a a a  

46 23 3 7 ( )≡ 0 mod 46x  ⇔  ( )+ ≡⋅ 3 2 17 0 mod 23a a a  

48 24 1 5
2  ( )≡ 0 mod 48x  ⇔  ( )+ ≡⋅ 3 2 1

5 0 mod 242a a a  

52 26 9 47
2  ( )≡ 0 mod 52x  ⇔  ( )+ ≡⋅ 3 2 1

47 0 mod 262a a a  

              

Example 2.2. We show that ( )≡75624 0 mod 24 . 

If 24 2 12p = = ⋅ , then 1 12p = , = 7t  and 1
7 12 1 85 17

10 10 2
n ⋅ +

= = = . 

By Theorem 2.1, we have that  

( )≡75624 0 mod 24  if and only if ( )177562 4 7596 0 mod12
2

 
+ ≡ ≡ 
 

⋅ . (1) 

If 12 2 6p = = ⋅ , then 1 6p = , 9t =  and 1
9 6 1 55 11

10 10 2
n ⋅ +

= = = . 

Thus ( )7596 0 mod12≡  if and only if ( )11759 6 792 0 mod 6
2

 
+ ≡ ≡ 
 

⋅ . (2) 

Using (1), (2) and the fact that 6 792  we conclude that ( )≡75624 0 mod 24 . 

Corollary 2.3.  Let = 5 4 3 2 1a a a a a x  and p  be even natural numbers with ≠ 2p , 10 p ,

= ⋅ 12p p  and ( )1gcd 2, 1p = . There is ∈ 1n  so that  

( )≡ 0 modx p  if and only if ( )+ ≡⋅ 5 4 3 2 1 1 10 moda a a a n a p . 

Proof: By Theorem 2.1, there is a rational number 
+

=
⋅1

1

1
10

p t
n  for some t ∈   such that 

( )≡ 0 modx p  if and only if ( )+ ≡⋅ 5 4 3 2 1 1 10 moda a a a n a p . It remains to show that ∈ 1n . 

Since, = ⋅ 12p p , 10 p  and ( )1gcd 2, 1p = , we have ( )1gcd ,10 1p = . Then, there exists 

an integer t  such that ( )1 1 mod10p t ≡ −⋅  so that 1
1

1
10

p t
n

+
= ∈

⋅
  as desired. 

Example 2.4. We show that ( )≡292448 0 mod 74 . 

If 74 2 37p = = ⋅ , then 1 37p = , = 7t  and 1
7 37 1 260 26

10 10
n ⋅ +

= = = . 

By Corollary 2.3, we have that  
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( )≡292448 0 mod 74  if and only if ( ) ( )29244 26 8 29452 0 mod 37+ ⋅ ≡ ≡ . 

We can check 37 is a factor of 29452 from Theorem 3 in [1], 

( ) ( )294 10 52 814 0 mod 3729452 ≡ + ⋅ ≡ ≡ . 

Theorem 2.5.  Let = 5 4 3 2 1a a a a a x  and p  be even natural numbers with ≠ 2p , 10 p ,

= ⋅ 12p p  and ( )1gcd 2, 1p = . There are integer numbers 1n  and 2n  with ( )≡ 2
2 1 1modn n p  

and 2 1n p<  so that  

 ( )≡ 0 modx p  if and only if  ( )+ ≡⋅ 5 4 3 2 2 1 10 moda a a n a a p . 

Proof: From Corollary 2.3, there is an integer 
+

=
⋅1

1

1
10

p t
n  for some t ∈   such that 

( )≡ 0 modx p  if and only if ( )+ ≡⋅ 5 4 3 2 1 1 10 moda a a a n a p . 

Assume that ( )≡ 0 modx p . So, there is an integer k  such that 

  5 4 3 2 1a a a a a  =  ( )⋅ + 5 4 3 2 1100 a a a a a  =  ⋅p k .  

Thus   5 4 3a a a  =  
⋅ − 2 1

100
p k a a

. 

On the other hand, there is an integer = + ⋅2
2 1 1 1,n n p k  ∈ 1k  such that 

+ ⋅ ∈ 5 4 3 2 2 1a a a n a a . 
Let = ⋅2 1 02 ,a a a  ∈ 0a  and we have = ⋅ +1 110 1n p t . 

Since    5 4 3a a a  =  
⋅ − 2 1

100
p k a a

, 

  + ⋅ 5 4 3 2 2 1a a a n a a  =  
−

+ ⋅ ⋅
⋅ ⋅ ⋅1 0

2 0

2 2
2

100
p k a

n a  

  =  
⋅ − + ⋅ ⋅1 0 2 0100

50
p k a n a

 

  =  
( )+ −⋅ ⋅ ⋅1 2 0100 1

50
p k n a

 

  =  
( ) ⋅ + ⋅ + ⋅ − ⋅ 

2
1 1 1 1 0100 1

50

p k n p k a
 

  =  
( ) ( )⋅ + ⋅ ⋅ + ⋅ − ⋅2

1 1 0 1 0100 100 1
50

p k k a n a
 

  =  
( ) ( ) ( )⋅ + ⋅ ⋅ + ⋅ − ⋅ + ⋅1 1 0 1 1 0100 10 1 10 1

50
p k k a n n a

 

  =  
( ) ( ) ( )⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅1 1 0 1 1 0100 10 1

50
p k k a p t n a

 

  =  
( )  + + + ⋅  ⋅

 
 

⋅ ⋅ ⋅1 1 0
1

100 10 1

50

k k t n a
p ∈  . 
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Hence, 
( )  + + + ⋅   ∈

 
 

⋅ ⋅ ⋅


1 1 0100 10 1

50

k k t n a
 since 15 p  and ( )1gcd 2, 1p = . 

Therefore,  
( )+ ≡⋅ 5 4 3 2 2 1 10 moda a a n a a p . 

 Conversely, assume that 5 4 3 2 1 1a a a a n a… + ⋅ ( )10 mod p≡ . 

Thus,   1p  | + ⋅ 5 4 3 2 2 1a a a n a a  

 p  | ( )+⋅ ⋅ 5 4 3 2 2 1100 a a a n a a  

that is  ( )+⋅ ⋅ 5 4 3 2 2 1100 a a a n a a  ≡  ( )0 mod p  

 … + ⋅ ⋅5 4 3 2 2 100 100a a a n a a  ≡  ( )0 mod p  

 ( )+ −⋅ ⋅ 5 4 3 2 1 2 2 1100 1a a a a a n a a  ≡  ( )0 mod p . 

Choosing ( )≡ 2
2 1 1modn n p  and Theorem 2.1, we know that =⋅ − ⋅1 110 1n p t , ∈ t . 

So,  ( )+ −⋅ ⋅

2
5 4 3 2 1 1 2 1100 1a a a a a n a a  ≡  ( )0 mod p  

( ) ( )+ + −⋅ ⋅ ⋅ ⋅ 5 4 3 2 1 1 1 010 1 10 1 2a a a a a n n a  ≡  ( )0 mod p   

 ( ) ( )+ +⋅ ⋅ ⋅ ⋅ 5 4 3 2 1 1 1 010 1 2a a a a a n p t a  ≡  ( )0 mod p  

 ( ) ( )+ +⋅ ⋅ 5 4 3 2 1 1 010 1a a a a a p n t a  ≡  ( )0 mod p , where = ⋅2 1 02 ,a a a  ∈ 0a . 

Thus, 
( )≡ 0 modx p . 

The proof is completed. 

Example 2.6. We show that ( )61732 0 mod 46≡ . 

If 46 2 23p = = ⋅ , then 1 23p = , 3t =  and 1
3 23 1 70 7

10 10
n ⋅ +

= = = . 

By Corollary 2.3, we have that  
( )61732 0 mod 46≡  if and only if ( ) ( ) ( )6173 7 2 6187 618 7 7 667 0 mod 23+ ⋅ ≡ ≡ + ⋅ ≡ ≡  

and the fact that 6 792  we conclude that ( )61732 0 mod 46≡ . 

Theorem 2.7. Let = 5 4 3 2 1a a a a a x  and p  be even natural numbers with ≠ 2p , 10 p , 

= ⋅ 12p p  and ( )1gcd 2, 1p = . There are integer numbers in  with ( )≡ 1 1modi
in n p  and 

1in p< , so that 

( )≡ 0 modx p if and only if ( ) ( ) ( )+ + −
+ ≡⋅ 2 1 1 2 1 10 modi i i i ia a n a a a a p . 

Proof: From Corollary 2.3, there is an integer 
+

=
⋅1

1

1
10

p t
n  for some t ∈   such that 

( )≡ 0 modx p  if and only if ( )+ ≡⋅ 5 4 3 2 1 1 10 moda a a a n a p . 

Assume that ( )≡ 0 modx p . Then, there is an integer k  such that 
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+ +

 

2 1 3 2 1i i ia a a a a a  =  ( )+ +
+⋅  

2 1 3 2 110i
i i ia a a a a a  =  ⋅p k . 

Thus  
+ +



2 1i ia a  =  
( )− …⋅ 3 2 1

10
i

i

p k a a a a
. 

On the other hand, there is an integer = + ⋅1 1
i

in n p l , ∈ l  such that 

( ) ( )+ + −
+ ∈⋅  2 1 1 2 1i i i i ia a n a a a a . 

Thus  ( ) ( )+ + −
+ ⋅ 2 1 1 2 1i i i i ia a n a a a a  

 =  
( ) ( )−

−

−
+

⋅
⋅





1 2 1
1 2 110

i i
i i ii

p k a a a a
n a a a a   

 =  −
+

⋅ ⋅ ⋅
⋅ ⋅1 0

0

2 2
2

10 ii

p k a
n a  

 =  
( )+ −⋅ ⋅ ⋅ ⋅ ⋅1 02 2 10 1

10

i
i

i

p k n a
 

 =  
( ) + + ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅1 1 1 02 2 10 1

10

i i

i

p k n p l a
 

 =  
+ + ⋅ −⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1 1 0 1 0 02 2 10 2 10 2

10

i i i

i

p k n a p l a a
 

 =  
( ) ( ) 

 
  

+ ⋅ ⋅ + ⋅ −⋅ ⋅ ⋅ ⋅1 0 1 02 10 2 10 1

10

ii

i

p k l a n a
  

 =  
( ) ( ) ( ) ( )− − 

 
  

 ⋅ ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + + 
 

⋅ ⋅

1 2

1 0 1 1 1 02 10 10 1 10 10 1

10

i ii

i

p k l a n n n a
 , 

where = ⋅ 3 2 1 02 ,ia a a a a  ∈ 0a . Since =⋅ − ⋅1 110 1n p t , we have 

( ) ( )+ + −
+ ⋅ 2 1 1 2 1i i i i ia a n a a a a  

 =  
( ) ( ) ( ) ( )− − 

 
  

 ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ + + ⋅ 
 



1 2

1 0 1 1 1 02 10 10 10 1

10

i ii

i

p k l a p t n n a
 

 =  
( ) ( ){ }− − 
 
  

 ⋅ + ⋅ + ⋅ ⋅ + ⋅ + + ⋅ 
 ⋅



1 2

1 1 0

1

2 10 10 10 1

10

i ii

i

k l t n n a
p ∈  . 

Hence, 
( ) ( ){ }− − 
 
  

 ⋅ + ⋅ + ⋅ ⋅ + ⋅ + + ⋅ 
  ∈





1 2

1 1 02 10 10 10 1

10

i ii

i

k l t n n a
 since 15 p  and 

( )1gcd 2, 1p = . 

Therefore,  

( ) ( ) ( )+ + −
+ ≡⋅ 2 1 1 2 1 10 modi i i i ia a n a a a a p . 

 Conversely, assume that ( ) ( )2 1 1 2 1i i i i ia a n a a a a
+ + −

+ ⋅   ( )10 mod p≡ , 

where ( )≡ 1 1modi
in n p , and ≡ + ⋅1 1 ,i

in n p l  ∈ l . We have that − = ⋅1 110 1n p t  so that 
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 1p  | ( ) ( )+ + −
+ ⋅ 2 1 1 2 1i i i i ia a n a a a a  

 p  | ( ) ( )+ + −
 + ⋅ ⋅  2 1 1 2 110i

i i i i ia a n a a a a  

such that ( ) ( )+ + −
 + ⋅ ⋅  2 1 1 2 110i

i i i i ia a n a a a a  ≡  ( )0 mod p  

 ( ) ( )−
+ ⋅ − ⋅ 5 4 3 2 1 1 1 2 110 1i i

i ia a a a a n a a a a  ≡  ( )0 mod p  

 ( ) ( ) ( ) ( )− −

−

 
 
  

+ ⋅ − ⋅ + ⋅ + + ⋅  

1 2

5 4 3 2 1 1 1 1 1 2 110 1 10 10 1
i i

i ia a a a a n n n a a a a  ≡  ( )0 mod p  

 ( ) ( ) ( )− − 
 
  

… + ⋅ ⋅ + ⋅ +…+ ⋅ ⋅
1 2

5 4 3 2 1 1 1 1 010 10 1 2
i i

a a a a a p t n n a  ≡  ( )0 mod p  

 ( ) ( ) ( )− − 
 
  

+ ⋅ ⋅ + ⋅ + + ⋅ 

1 2

5 4 3 2 1 1 1 010 10 1
i i

a a a a a p t n n a  ≡  ( )0 mod p . 

Thus, ( )≡ 0 modx p . 

The proof is completed. 

Example 2.8. We show that ( )≡476209384194397806 0 mod102 . 

If 102 2 51p = = ⋅  then 1 51p = . By Theorem 2.1 and Theorem 2.7, we obtained the division 

rule as follows: 

( )≡ 1 1modi
in n p  in  ( ) ( ) ( )+ + −

 + ≡  ⋅ 2 1 1 2 1 10 modi i i i ia a n a a a a p  

⋅ +
= =1

9 51 1 46
10

n  46 ( ) ( ) ( ) + − ≡  ⋅ 3 2 146( 5) 0 mod 51a a or a  

( )≡ ≡10
10 46 43 mod 51n  43 ( ) ( ) ( )12 11 10 3 2 143( 8) 0 mod 51a a or a a a a + − ≡  ⋅   

  if and only if ( )≡ 0 mod102x . 

Thus ( ) ( )+ ⋅ ≡ ≡


10

47620938 43 4194397806 180406726596 0 mod 51
digit

. 

We can check 51 is a factor of 180406726596 from Theorem 3 in [1], 

( )
6

180406726596 1804067 19 265960 6857307
digit

≡ + ⋅ ≡


 

( )6857 28 307 15453≡ + ⋅ ≡  

( ) ( ) ( )154 25 53 1479 147 5 9 102 0 mod 51≡ + ⋅ ≡ ≡ + − ⋅ ≡ ≡ . 

3 Conclusion 

In conclusion, we assess the divisibility of even numbers based on their rightmost digits 
and find that for each decreasing number of rightmost digits, there always exists at least 
one suitable rational number. If we consider the divisor that satisfies = ⋅ 12p p  where 
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( )1gcd 2, 1p = , then there will be at least one suitable value that is an integer. This is true 

for every decreasing number of rightmost digits. 
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สมการไดโอแฟนไทน์ nx + py = z2

เมื่อ p เป็นจำนวนเฉพาะ และ n ≡ 2(mod 3p)
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บทคัดย่อ

วัตถุประสงค์ของงานวิจัยนี้ คือ ศึกษาหาผลเฉลย (n, x, y, z) ที่เป็นจำนวนเต็มที่ไม่เป็นลบของสมการ
ไดโอแฟนไทน์ nx + py = z2 โดยที่ p เป็นจำนวนเฉพาะ และ n เป็นจำนวนเต็มบวกซึ่ง n ≡ 2(mod 3p)

ในการพิสูจน์จะใช้ข้อคาดการณ์ของคาตาลานและทฤษฎีจำนวนเบื้องต้น จากการศึกษาพบว่า
(i) ถ้า p ≡ 19(mod 24) และ n ≡ 2(mod 3p) แล้วสมการไดโอแฟนไทน์ nx+py = z2 มีผลเฉลย

เพียงผลเฉลยเดียว คือ (n, x, y, z) = (2, 3, 0, 3)

(ii) ถ้า p ≡ 13(mod 24) และ n ≡ 2(mod 3p) แล้วสมการไดโอแฟนไทน์ nx + py = z2 มีผล
เฉลยอยู่ในรูปทั่วไป คือ (n, x, y, z) ∈ {(2, 3, 0, 3)}∪{(n, 1, 0,

√
n+ 1) : n+1 เป็นกำลังสองสมบูรณ}์

คำสำคัญ: จำนวนเฉพาะ, สมภาค, ส่วนตกค้างกำลังสอง, สมการไดโอแฟนไทน์
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1 บทนำ
สมการไดโอแฟนไทน์เป็นสมการที่มีหลายลักษณะ หลายเงื่อนไขที่แตกต่างกันไป รูปแบบหนึ่งที่มีผู้สนใจศึกษากัน
อย่างกว้างขวาง คือ สมการไดโอแฟนไทน์ที่อยู่ในรูป ax + by = z2 โดยที่ a และ b เป็นตัวแปรที่ทราบค่า เช่น

ในปี ค.ศ. 2011 Alongkot Suvarnamani [3] ได้ศึกษาสมการไดโอแฟนไทน์ 2x + py = z2 โดยที่ p เป็น
จำนวนเฉพาะ เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ พบว่ามีผลเฉลย คือ (x, y, z) = (3, 0, 3) แต่มีข้อ
บกพร่องในการพิสูจน์ ดังนั้นจึงมีนักวิจัยนำเสนอที่แก้ไขประเด็นที่ผิดพลาด ดังต่อไปนี้

ในปี ค.ศ. 2013 Banyat Sroysang [4] ได้ศึกษาสมการไดโอแฟนไทน์ 2x + 19y = z2 โดยที่ x, y และ z
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เป็นจำนวนเต็มที่ไม่เป็นลบ พบว่ามีผลเฉลยเพียงผลเฉลยเดียว คือ (x, y, z) = (3, 0, 3)

ในปี ค.ศ. 2018 Nechemia Burshtein [7] ได้ศึกษาสมการไดโอแฟนไทน์ 2x + py = z2 เมื่อ y = 1 และ
p = 7, 13, 29, 37 และ 257 พบว่ามีผลเฉลยที่เป็นจำนวนเต็มบวก ดังนี้ กรณีที่ p = 7 มีผลเฉลยเพียงผลเฉลย
เดียว คือ (x, y, z) = (1, 1, 3) กรณีที่ p = 13, 29, 37 ไม่มีผลเฉลย และกรณีที่ p = 257 มีผลเฉลยสองผลเฉลย
คือ (x, y, z) ∈ {(14, 1, 129), (5, 1, 17)}

ในปี ค.ศ. 2019 Gawkhare Mahesh และ Vikita Sinari [6] ได้ศึกษาสมการไดโอแฟนไทน์ 2x + py = z2

โดยที่ p เป็นจำนวนเฉพาะคี่ เมื่อ x และ y ไม่เป็นจำนวนเต็มบวกคี่พร้อมกัน พบว่ามีผลเฉลย คือ
(p, x, y, z) ∈ {(p, 3, 0, 3)} ∪ {(2m+1 + 1, 2m, 1, 2m + 1) ; m ∈ N และ 2m+1 + 1 เป็นจำนวนเฉพาะ} ∪
{(2q − 1, q + 2, 2, p+ 2) ; q และ 2q − 1 เป็นจำนวนเฉพาะ }

ในปี ค.ศ. 2022 Suton Tadee [11] ได้ศึกษาสมการไดโอแฟนไทน์ 2x + py = z2 โดยที่ p เป็นจำนวน
เฉพาะซึ่ง p ≡ 3(mod 4) และ x ̸= 1 เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ พบว่ามีผลเฉลยอยู่ในรูป
ทั่วไป คือ (p, x, y, z) ∈ {(p, 3, 0, 3)} ∪ {(3, 0, 1, 2)} ∪ {(p, 2+ log2(p+1), 2, p+2) : log2(p+1) ∈ Z}

ในปี ค.ศ. 2021 Nongluk Viriyapong และ Chokchai Viriyapong [8] ได้ศึกษาสมการไดโอแฟนไทน์
nx + 13y = z2 โดยที่ n เป็นจำนวนเต็มบวกซึ่ง n ≡ 2(mod 39) และ n + 1 ไม่เป็นกำลังสองสมบูรณ์ เมื่อ
x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ พบว่ามีผลเฉลยเพียงผลเฉลยเดียว คือ (n, x, y, z) = (2, 3, 0, 3)

ในปี ค.ศ. 2022 Nongluk Viriyapong และ Chokchai Viriyapong [9] ได้ศึกษาสมการไดโอแฟนไทน์
nx +19y = z2 โดยที่ n เป็นจำนวนเต็มบวกซึ่ง n ≡ 2(mod 57) เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ
พบว่ามีผลเฉลยเพียงผลเฉลยเดียว คือ (n, x, y, z) = (2, 3, 0, 3)

ดังนั้น ผู้วิจัยจึงสนใจศึกษาสมการไดโอแฟนไทน์ nx + py = z2 โดยที่ p เป็นจำนวนเฉพาะ และ n เป็น
จำนวนเต็มบวกซึ่ง n ≡ 2(mod 3p) เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ

2 ความรู้พื้นฐาน
ให้ N แทน เซตของจำนวนนับหรือจำนวนธรรมชาติ (set of all natural numbers)

Z แทน เซตของจำนวนเต็ม (set of all integer numbers)
นิยาม 2.1. [2] ให้ m เป็นจำนวนเต็มบวก a และ b เป็นจำนวนเต็ม แล้วจะเรียกว่า a สมภาค กับ b มอดุโล
m (a is congruent b modulo m) ซึ่งเขียนแทนด้วย a ≡ b (mod m) ถ้า a และ b มีเศษจากการหารด้วย
m เท่ากัน
ทฤษฎีบท 2.2. [2] ให้ a, b ∈ Z และ m ∈ N จะได้ว่า a ≡ b (modm) ก็ต่อเมื่อ m | (a− b)

ทฤษฎีบท 2.3. [2] ให้ a, b, c, d ∈ Z และ m,n ∈ N แล้ว
1. a ≡ a (modm)

2. ถ้า a ≡ b (modm) แล้ว b ≡ a (modm)

3. ถ้า a ≡ b (modm) และ b ≡ c (modm) แล้ว a ≡ c (modm)

4. ถ้า a ≡ b (modm) และ c ≡ d (modm) แล้ว a± c ≡ b± d (modm)

5. ถ้า a ≡ b (modm) และ c ≡ d (modm) แล้ว ac ≡ bd (modm)

6. ถ้า a ≡ b (modm) แล้ว an ≡ bn (modm)

7. ถ้า a ≡ b (modm) และ n | m แล้ว a ≡ b (mod n)

8. ถ้า a ≡ b (modm) และ c ̸= 0 แล้ว ac ≡ bc (mod |c|m)

9. ถ้า a ≡ b (modm) แล้ว gcd(a,m) = gcd(b,m) เมื่อ gcd(a,m) หมายถึง ห.ร.ม ของ a และ m
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นิยาม 2.4. [1] สมภาคในรูป x2 ≡ a(mod p) เมื่อ p เป็นจำนวนเฉพาะ และ a ∈ Z จะเรียกว่า สมภาค
กำลังสอง (quadratic congruence)
นิยาม 2.5. [1] ให้ p เป็นจำนวนเฉพาะคี่ และ a ∈ Z ซึ่ง gcd(a, p) = 1 ถ้า x2 ≡ a(mod p) มีผลเฉลย
แล้วจะเรียก a ว่า ส่วนตกค้างกำลังสอง (quadratic residues) ของ p และถ้าไม่มีผลเฉลย แล้วจะเรียก a
ว่า ส่วนไม่ตกค้างกำลังสอง (quadratic non-residue)
นิยาม 2.6. [1] ให้ p เป็นจำนวนเฉพาะคี่ และ a ∈ Z ซึ่ง gcd(a, p) = 1 สัญลักษณ์เลอช็องดร์

(
a
p

)
กำหนดโดย (

a
p

)
=
{

1 ถ้า a เป็นส่วนตกค้างกำลังสองของ p
−1 ถ้า a เป็นส่วนไม่ตกค้างกำลังสองของ p

ทฤษฎีบท 2.7. [1] ให้ p เป็นจำนวนเฉพาะคี่ และ a, b ∈ Z ซึ่ง gcd(ab, p) = 1

1. ถ้า a ≡ b(mod p) แล้ว
(
a
p

)
=

(
b
p

)
2.

(
ab
p

)
=

(
a
p

)(
b
p

)
3.

(
a2

p

)
= 1

ทฤษฎีบท 2.8. [1] ถ้า p เป็นจำนวนเฉพาะคี่ แล้ว(
2
p

)
=
{

1 ถ้า p ≡ ±1(mod 8)

−1 ถ้า p ≡ ±3(mod 8)

ทฤษฎีบท 2.9. [5] ถ้า p เป็นจำนวนเฉพาะคี่ ซึ่ง p ̸= 3 แล้ว(
3
p

)
=
{

1 ถ้า p ≡ ±1(mod 12)

−1 ถ้า p ≡ ±5(mod 12)

บทตั้ง 2.10. [8] ถ้า z เป็นจำนวนเต็ม แล้ว z2 ≡ 0, 1(mod 3)

ทฤษฎีบท 2.11. [10] ข้อคาดการณ์ของคาตาลาน (Catalan’s conjecture) สมการไดโอแฟนไทน์ ax −
by = 1 มีผลเฉลยเพียงผลเฉลยเดียว คือ (a, b, x, y) = (3, 2, 2, 3) เมื่อ a, b, x และ y เป็นจำนวนเต็มบวก
ซึ่ง min{a, b, x, y} > 1

บทตั้ง 2.12. ถ้า p เป็นจำนวนเฉพาะซึ่ง p ≡ 1(mod 3) แล้วสมการไดโอแฟนไทน์ 1 + py = z2 ไม่มีผลเฉลย
เมื่อ y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ
พิสูจน์. ให้ p เป็นจำนวนเฉพาะซึ่ง p ≡ 1(mod 3)

สมมติว่า (y, z) เป็นจำนวนเต็มที่ไม่เป็นลบที่สอดคล้องสมการ 1 + py = z2

กรณีที่ 1. y = 0 จะได้ว่า z2 = 2 ซึ่งเป็นไปไม่ได้
กรณีที่ 2. y = 1 จะได้ว่า z2 = 1 + p เนื่องจาก p ≡ 1(mod 3) นั่นคือ p+ 1 ≡ 2(mod 3)

เพราะฉะนั้น z2 ≡ 2(mod 3) ซึ่งเกิดข้อขัดแย้งกับบทตั้ง 2.10
กรณีที่ 3. y > 1 จะได้ว่า z2 > 1 + p เนื่องจาก p ≡ 1(mod 3) นั่นคือ p ≥ 7 จะได้ว่า z2 > 8

เพราะฉะนั้น z ≥ 3
พิจารณา z2 − py = 1

เนื่องจาก min{z, p, 2, y} > 1 โดยบทตั้ง 2.11 จะได้ว่า (z, p, 2, y) = (3, 2, 2, 3) ซึ่งเกิดข้อขัดแย้ง
ดังนั้น จากทั้ง 3 กรณี พบว่าไม่มีผลเฉลยเป็นจำนวนเต็มที่ไม่เป็นลบ
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บทตั้ง 2.13. สมการไดโอแฟนไทน์ nx + 1 = z2 โดยที่ n เป็นจำนวนเต็มบวก และ x, z เป็นจำนวนเต็มที่ไม่
เป็นลบ มีผลเฉลยอยู่ในรูปทั่วไป คือ

(n, x, z) ∈ {(2, 3, 3)} ∪ {(n, 1,
√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

พิสูจน์. ให้ n เป็นจำนวนเต็มบวก และ x, z เป็นจำนวนเต็มที่ไม่เป็นลบ
สมมติว่า (n, x, z) เป็นผลเฉลยของสมการ nx + 1 = z2

กรณีที่ 1. x = 0 จะได้ว่า z2 = 2 ซึ่งเป็นไปไม่ได้
กรณีที่ 2. x = 1 จะได้ว่า z2 = n+ 1

(i) กรณี n+ 1 ไม่เป็นกำลังสองสมบูรณ์ จะเกิดข้อขัดแย้ง
(ii) กรณี n+ 1 เป็นกำลังสองสมบูรณ์ จะได้ z =

√
n+ 1

กรณีที่ 3. x > 1 จะได้ว่า z2 > n+ 1

เนื่องจาก n ≥ 1 จะได้ว่า z2 > 2 เพราะฉะนั้น z ≥ 2
พิจารณา z2 − nx = 1

(i) กรณี n = 1 จะได้ z2 = 2 ซึ่งเป็นไปไม่ได้
(ii) กรณี n > 1 เนื่องจาก min{z, n, 2, x} > 1

โดยบทตั้ง 2.11 จะได้ว่า (z, n, 2, x) = (3, 2, 2, 3) เพราะฉะนั้น (n, x, z) = (2, 3, 3)

ดังนั้น สมการ nx + 1 = z2 มีผลเฉลยอยู่ในรูปทั่วไป คือ
(n, x, z) ∈ {(2, 3, 3)} ∪ {(n, 1,

√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

3 ผลการศึกษา
บทตั้ง 3.1. ให้ p เป็นจำนวนเฉพาะ และ n เป็นจำนวนเต็มบวก ถ้า p ≡ 19(mod 24) และ n ≡ 2(mod 3p)

แล้ว n+ 1 ไม่เป็นกำลังสองสมบูรณ์

พิสูจน์. ให้ p เป็นจำนวนเฉพาะซึ่ง p ≡ 19(mod 24) และ n เป็นจำนวนเต็มบวกซึ่ง n ≡ 2(mod 3p)

สมมติให้ n+ 1 เป็นกำลังสองสมบูรณ์ นั่นคือ จะมีจำนวนเต็ม t ที่ซึ่ง t2 = n+ 1

จาก n ≡ 2(mod 3p) จะได้ว่า n ≡ 2(mod p) เพราะฉะนั้น t2 ≡ 3(mod p) ดังนั้น
(
3
p

)
= 1

จาก p ≡ 19(mod 24) จะได้ว่า p ≡ 19(mod 12) เพราะฉะนั้น p ≡ −5(mod 12)

โดยทฤษฎีบท 2.9 จะได้ว่า
(
3
p

)
= −1 ซึ่งเกิดข้อขัดแย้ง ดังนั้น n+1 ไม่เป็นกำลังสองสมบูรณ์

บทตั้ง 3.2. ถ้า p เป็นจำนวนเฉพาะซึ่ง p ≡ 13, 19(mod 24) และ x เป็นจำนวนเต็มบวกคี่ แล้ว
(
2x

p

)
= −1

พิสูจน์. ให้ p เป็นจำนวนเฉพาะซึ่ง p ≡ 13, 19(mod 24)

และให้ x เป็นจำนวนเต็มบวกคี่ นั่นคือ จะมีจำนวนเต็มที่ไม่เป็นลบ m ซึ่ง x = 2m+ 1

พิจารณา
(
2x

p

)
=

(
22m+1

p

)
=

(
(2m)2·21

p

)
= 1

(
2
p

)
เนื่องจาก p ≡ 13, 19(mod 24) จะได้ว่า p ≡ 13, 19(mod 8)

เนื่องจาก 13 ≡ −3(mod 8) และ 19 ≡ 3(mod 8) จะได้ p ≡ ±3(mod 8)

โดยทฤษฎีบท 2.8 จะได้ว่า
(
2
p

)
= −1 ดังนั้น

(
2x

p

)
= −1

ทฤษฎีบท 3.3. ให้ n, x, y เป็นจำนวนเต็มบวก และ z เป็นจำนวนเต็มที่ไม่เป็นลบ ถ้า p เป็นจำนวนเฉพาะ
ซึ่ง p ≡ 13, 19(mod 24) แล้วสมการไดโอแฟนไทน์ nx + py = z2 โดยที่ n ≡ 2(mod 3p) ไม่มีผลเฉลย
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พิสูจน์. ให้ n, x, y เป็นจำนวนเต็มบวก และ z เป็นจำนวนเต็มที่ไม่เป็นลบ
ให้ p เป็นจำนวนเฉพาะซึ่ง p ≡ 13, 19(mod 24) และ nx + py = z2 เมื่อ n ≡ 2(mod 3p)

กรณีที่ 1. x เป็นจำนวนเต็มบวกคู่ นั่นคือ จะมีจำนวนเต็มบวก k ที่ซึ่ง x = 2k

จาก n ≡ 2(mod 3p) จะได้ว่า n ≡ 2(mod 3) ดังนั้น nx ≡ 1(mod 3)

เนื่องจาก p ≡ 13, 19(mod 24) จะได้ว่า p ≡ 13, 19(mod 3)

เนื่องจาก 13 ≡ 1(mod 3) และ 19 ≡ 1(mod 3) จะได้ว่า py ≡ 1(mod 3)

เพราะฉะนั้น z2 ≡ 2(mod 3) ซึ่งเกิดข้อขัดแย้งกับบทตั้ง 2.10
กรณีที่ 2. x เป็นจำนวนเต็มบวกคี่
เนื่องจาก n ≡ 2(mod 3p) จะได้ว่า n ≡ 2(mod p) เพราะฉะนั้น nx ≡ 2x(mod p)

เนื่องจาก p ≡ 0(mod p) จะได้ว่า py ≡ 0(mod p) ดังนั้น z2 ≡ 2x(mod p)

จะได้ว่า
(
2x

p

)
= 1 ซึ่งเกิดข้อขัดแย้งกับบทตั้ง 3.2

ดังนั้น จากทั้ง 2 กรณี พบว่า ถ้า p เป็นจำนวนเฉพาะซึ่ง p ≡ 13, 19(mod 24) แล้วสมการ
ไดโอแฟนไทน์ nx + py = z2 โดยที่ n ≡ 2(mod 3p) ไม่มีผลเฉลย เมื่อ n, x, y เป็นจำนวนเต็มบวก
และ z เป็นจำนวนเต็มที่ไม่เป็นลบ

ทฤษฎีบท 3.4. ให้ p เป็นจำนวนเฉพาะ และ n เป็นจำนวนเต็มบวก ถ้า p ≡ 13(mod 24) แล้วสมการไดโอ
แฟนไทน์ nx + py = z2 โดยที่ n ≡ 2(mod 3p) มีผลเฉลยอยู่ในรูปทั่วไป เมื่อ x, y และ z เป็นจำนวนเต็มที่
ไม่เป็นลบ คือ

(n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(n, 1, 0,
√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

พิสูจน์. ให้ p เป็นจำนวนเฉพาะ, n เป็นจำนวนเต็มบวก และ x, y, z เป็นจำนวนเต็มที่ไม่เป็นลบ
ซึ่ง p ≡ 13(mod 24), n ≡ 2(mod 3p) และ nx + py = z2

กรณีที่ 1. x = 0 จะได้ 1 + py = z2 โดยบทตั้ง 2.12 พบว่าไม่มีผลเฉลย
กรณีที่ 2. y = 0 จะได้ nx + 1 = z2 โดยบทตั้ง 2.13 พบว่า

(n, x, z) ∈ {(2, 3, 3)} ∪ {(n, 1,
√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

กรณีที่ 3. x ≥ 1, y ≥ 1 โดยทฤษฎีบท 3.3 พบว่าไม่มีผลเฉลย
ดังนั้น จากทั้ง 3 กรณี พบว่า ถ้า p ≡ 13(mod 24) แล้วสมการไดโอแฟนไทน์ nx + py = z2

โดยที่ n ≡ 2(mod 3p) มีผลเฉลยอยู่ในรูปทั่วไป คือ
(n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(n, 1, 0,

√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ

ต่อไปจะเป็นการนำทฤษฎีบท 3.4 ไปประยุกต์ใช้ เมื่อ p = 37, 61

บทแทรก 3.5. สมการไดโอแฟนไทนน์ nx + 37y = z2 โดยที่ n ≡ 2(mod 111) มีผลเฉลยอยู่ในรูปทั่วไป
เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ คือ

(n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(n, 1, 0,
√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

พิสูจน์. เนื่องจาก 37 เป็นจำนวนเฉพาะซึ่ง 37 ≡ 13(mod 24)

จาก n ≡ 2(mod 111) จะได้ว่า n ≡ 2(mod 3(37))

เพราะฉะนั้น โดยทฤษฎีบท 3.4 พบว่าสมการไดโอแฟนไทน์ nx + 37y = z2 มีผลเฉลยอยู่ในรูปทั่วไป
คือ (n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(n, 1, 0,

√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์
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ตัวอย่าง 3.6. พิจารณา n ≡ 2(mod 111) เมื่อ n+ 1 เป็นกำลังสองสมบูรณ์
สำหรับ 1 ≤ n ≤ 20, 000 พบว่า

(n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(224, 1, 0, 15), (9215, 1, 0, 96), (15875, 1, 0, 126)}

เป็นผลเฉลยของสมการไดโอแฟนไทน์ nx + 37y = z2 โดยที่ n ≡ 2(mod 111) เมื่อ 1 ≤ n ≤ 20, 000

บทแทรก 3.7. สมการไดโอแฟนไทน์ nx + 61y = z2 โดยที่ n ≡ 2(mod 183) มีผลเฉลยอยู่ในรูปทั่วไป
เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ คือ

(n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(n, 1, 0,
√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

พิสูจน์. เนื่องจาก 61 เป็นจำนวนเฉพาะซึ่ง 61 ≡ 13(mod 24)

จาก n ≡ 2(mod 183) จะได้ว่า n ≡ 2(mod 3(61))

เพราะฉะนั้น โดยทฤษฎีบท 3.4 พบว่าสมการไดโอแฟนไทน์ nx + 61y = z2 มีผลเฉลยอยู่ในรูปทั่วไป
คือ (n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(n, 1, 0,

√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ}์

ตัวอย่าง 3.8. พิจารณา n ≡ 2(mod 183) เมื่อ n+ 1 เป็นกำลังสองสมบูรณ์
สำหรับ 1 ≤ n ≤ 64, 000 พบว่า

(n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(4760, 1, 0, 69), (12995, 1, 0, 114), (63503, 1, 0, 252)}

เป็นผลเฉลยของสมการไดโอแฟนไทน์ nx + 61y = z2 โดยที่ n ≡ 2(mod 183) เมื่อ 1 ≤ n ≤ 64, 000

ทฤษฎีบท 3.9. ให้ p เป็นจำนวนเฉพาะ และ n เป็นจำนวนเต็มบวก ถ้า p ≡ 19(mod 24) แล้วสมการไดโอ
แฟนไทน์ nx + py = z2 โดยที่ n ≡ 2(mod 3p) เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ มีผลเฉลยเพียง
ผลเฉลยเดียว คือ (n, x, y, z) = (2, 3, 0, 3)

พิสูจน์. ให้ p เป็นจำนวนเฉพาะ, n เป็นจำนวนเต็มบวก และให้ x, y, z เป็นจำนวนเต็มที่ไม่เป็นลบ
ซึ่ง p ≡ 19(mod 24), n ≡ 2(mod 3p) และ nx + py = z2

กรณีที่ 1. x = 0 จะได้ 1 + py = z2 โดยบทตั้ง 2.12 พบว่าไม่มีผลเฉลย
กรณีที่ 2. y = 0 จะได้ว่า nx +1 = z2 โดยบทตั้ง 2.13 และบทตั้ง 3.1 จะได้ว่า (n, x, z) = (2, 3, 3)

กรณีที่ 3. x ≥ 1 และ y ≥ 1 โดยทฤษฎีบท 3.3 พบว่าไม่มีผลเฉลย
ดังนั้น จากทั้ง 3 กรณี พบว่า ถ้า p ≡ 19(mod 24) แล้วสมการไดโอแฟนไทน์ nx + py = z2

โดยที่ n ≡ 2(mod 3p) มีผลเฉลยเพียงผลเฉลยเดียว คือ (n, x, y, z) = (2, 3, 0, 3) เมื่อ x, y และ z

เป็นจำนวนเต็มที่ไม่เป็นลบ

ต่อไปจะเป็นการนำทฤษฎีบท 3.9 ไปประยุกต์ใช้ เมื่อ p = 43, 67

บทแทรก 3.10. สมการไดโอแฟนไทน์ nx + 43y = z2 โดยที่ n เป็นจำนวนเต็มบวกซึ่ง n ≡ 2(mod 129) มี
ผลเฉลยเพียงผลเฉลยเดียว เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ คือ (n, x, y, z) = (2, 3, 0, 3)

พิสูจน์. เนื่องจาก 43 เป็นจำนวนเฉพาะซึ่ง 43 ≡ 19(mod 24)

เนื่องจาก n ≡ 2(mod 129) จะได้ว่า n ≡ 2(mod 3(43))

เพราะฉะนั้น โดยทฤษฎีบท 3.9 พบว่าสมการไดโอแฟนไทน์ nx + 43y = z2 มีผลเฉลยเพียงผลเฉลย
เดียว คือ (n, x, y, z) = (2, 3, 0, 3)
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บทแทรก 3.11. สมการไดโอแฟนไทน์ nx + 67y = z2 โดยที่ n เป็นจำนวนเต็มบวกซึ่ง n ≡ 2(mod 201) มี
ผลเฉลยเพียงผลเฉลยเดียว เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ คือ (n, x, y, z) = (2, 3, 0, 3)

พิสูจน์. เนื่องจาก 67 เป็นจำนวนเฉพาะซึ่ง 67 ≡ 19(mod 24)

เนื่องจาก n ≡ 2(mod 201) จะได้ว่า n ≡ 2(mod 3(67))

เพราะฉะนั้น โดยทฤษฎีบท 3.9 พบว่าสมการไดโอแฟนไทน์ nx + 67y = z2 มีผลเฉลยเพียงผลเฉลย
เดียว คือ (n, x, y, z) = (2, 3, 0, 3)

บทแทรก 3.12. ถ้า p ≡ 13, 19(mod 24) แล้วสมการไดโอแฟนไทน์ 2x + py = z2 มีผลเฉลยเพียงผลเฉลย
เดียว คือ (x, y, z) = (3, 0, 3)

พิสูจน์. เนื่องจาก p ≡ 13, 19(mod 24) และ n = 2 จะได้ว่า n ≡ 2(mod 3p) ดังนั้น โดยทฤษฎีบท 3.4
และทฤษฎีบท 3.9 พบว่าสมการไดโอแฟนไทน์ 2x + py = z2 มีผลเฉลยเพียงผลเฉลยเดียว คือ
(x, y, z) = (3, 0, 3)

4 สรุปผลและข้อเสนอแนะ
4.1 สรุปผลการศึกษา
จากการศึกษาเพื่อหาผลเฉลย (n, x, y, z) ที่เป็นจำนวนเต็มที่ไม่เป็นลบของสมการไดโอแฟนไทน์ nx+py = z2

โดยที่ p เป็นจำนวนเฉพาะ และ n เป็นจำนวนเต็มบวกซึ่ง n ≡ 2(mod 3p) พบว่า
ถ้า p ≡ 13(mod 24) และ n ≡ 2(mod 3p) แล้วสมการไดโอแฟนไทน์ nx + py = z2 มีผลเฉลยอยู่ในรูป

ทั่วไป คือ (n, x, y, z) ∈ {(2, 3, 0, 3)} ∪ {(n, 1, 0,
√
n+ 1) : n+ 1 เป็นกำลังสองสมบูรณ์}

ถ้า p ≡ 19(mod 24) และ n ≡ 2(mod 3p) แล้วสมการไดโอแฟนไทน์ nx + py = z2 มีผลเฉลยเพียงผล
เฉลยเดียว คือ (n, x, y, z) = (2, 3, 0, 3)

4.2 ข้อเสนอแนะ
ศึกษาสมการไดโอแฟนไทน์ nx + py = z2 โดยที่ n ≡ 2(mod 3p) ว่า ถ้า p เป็นจำนวนเฉพาะใด ๆ
ซึ่ง p ̸≡ 13, 19(mod 24) มีผลเฉลยที่เป็นจำนวนเต็มที่ไม่เป็นลบหรือไม่
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Abstract

In 2023, Hashim investigated all positive solutions of the equation 2x + 2y = z2 in
the Fibonacci and Lucas numbers. More recently, Tadee conducted a similar study, ex-
amining all positive solutions of the equation 3x + 3y = z2 in the Fibonacci and Lucas
numbers. In this paper, we investigate all positive solutions of the equation px − py = zp

in the Fibonacci and Lucas numbers when p = 2 and p = 3. We prove that (x, y, z) ∈
{(F4, F3, F3), (F4, F3, L0), (F4, L0, F3), (F4, L0, L0), (F5, L3, L3), (L2, F3, F3), (L2, F3, L0),
(L2, L0, F3), (L2, L0, L0)} are the only nine positive solutions in the Fibonacci and Lucas
numbers to the equation 2x − 2y = z2. Finally, we prove that the equation 3x − 3y = z3 has
no positive solution in the Fibonacci and Lucas numbers.

Keywords: Diophantine equation, exponential Diophantine equation, Fibonacci number, Lucas
number.
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1 Introduction
The study of the solvability of the Diophantine equations has been one of the most popular
topics in mathematics. In 2007, Acu [1] investigated all nonnegative integer solutions of the
exponential Diophantine equation 2x + 5y = z2. He proved that such an equation has exactly
two solutions, namely (x, y, z) ∈ {(3, 0, 3), (2, 1, 3)}. Since then, there have been increasing
interests in studying the solutions of a general form, which is ax ± by = z2, where a and b
are fixed positive integers. Some of these studies can be found in [2–4, 8, 9]. Let p be prime
and x, y, z be positive integers. In 2019, Burshtein [2] proved that the Diophantine equation
px+py = z2 has no positive integer solution, except for the cases when p = 2 or p = 3. Burshtein
found that the Diophantine equation px − py = z2 has infinitely many solutions. In particular,
for the case p = 2, all positive integer solutions of the equation px − py = z2 are given by
(p, x, y, z) = (2, 2n+ 1, 2n, 2n), where n is a positive integer.
†Speaker. ‡Corresponding author.
Email: phitthayathon_p@kpru.ac.th (P. Phetnun)
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In another direction, Diophantine equations connected to linear recurrence sequences have
been widely studied by many mathematicians (see [6,7]). In 2023, Hashim [5] studied all positive
solutions of the equation px + py = z2 in the Fibonacci and Lucas numbers, when p = 2. In
2023, Tadee [10] studied all positive solutions of the equation px + py = z2 in the Fibonacci and
Lucas numbers, when p = 3.

Recently, Tadee [11] studied all nonnegative integer solutions of the Diophantine equations
px + py = zq and px − py = zq, where p and q are prime numbers. Tadee proved that all
nonnegative integer solutions of the equation px + py = zq are (p, q, x, y, z) = (2, q, qt + q −
1, qt+ q− 1, 2t+1), (2q − 1, q, qt+1, qt, 2(2q − 1)t), (2, 2, 2t+3, 2t, 3 · 2t), where t is a nonnegative
integer. All nonnegative integer solutions of the equation px − py = zq are (p, q, x, y, z) =
(p, q, t, t, 0), (2, q, qt + 1, qt, 2t), (4v2 + 1, 2, 2t + 1, 2t, 2v(4v2 + 1)t), (3, 3, 3t + 2, 3t, 2 · 3t), where
t is a nonnegative integer and v is a positive integer. We are interested in the equation of the
form px − py = zp, where p is prime. In this paper, we find all positive solutions of the equation
px − py = zp in the Fibonacci and Lucas numbers when p = 2 and p = 3.

2 Preliminaries

In this section, we first review the essential preliminaries as follows:

Theorem 2.1. [2] All positive integer solutions of the equation 2x − 2y = z2 are given by
(x, y, z) = (2n+ 1, 2n, 2n), where n is a positive integer.

Theorem 2.2. [11] All positive integer solutions of the equation 3x − 3y = z3 are given by
(x, y, z) = (3n+ 2, 3n, 2 · 3n), where n is a positive integer.

Proposition 2.3. [12] Let n be a positive integer. Then

(i) Fn+1 + Fn−1 = Ln,

(ii) Fn+2 − Fn−2 = Ln whenever n > 1.

Lemma 2.4. [10] If i is a positive integer with i ≥ 7, then Fi ≥ Lj +2 for all positive integers
j ≤ i− 2.

Lemma 2.5. If i is a positive integer with i ≥ 8, then Fi ≥ Lj + 3 for all positive integers
j ≤ i− 2.

Proof. We prove by induction on i. It is easy to verify that F8 ≥ Lj + 3 for all positive integers
j ≤ 6. Assume that Fi ≥ Lj + 3 for all positive integers j ≤ i − 2. Then Fi+1 ≥ Fi ≥ Lj + 3
for all positive integers j ≤ i− 2. If j = i− 1, then it follows from Proposition 2.3(ii) and i ≥ 8
that Lj + 3 = Li−1 + 3 = Fi+1 − Fi−3 + 3 ≤ Fi+1 − 2 < Fi+1.
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3 Main Results
In this section, we find all positive solutions of the equation px − py = zp in the Fibonacci and
Lucas numbers when p = 2 and p = 3. In other words, we first solve the following equations:

2Fi − 2Fj = F 2
k (3.1)

2Fi − 2Fj = L2
k (3.2)

2Fi − 2Lj = F 2
k (3.3)

2Fi − 2Lj = L2
k (3.4)

2Li − 2Fj = F 2
k (3.5)

2Li − 2Fj = L2
k (3.6)

2Li − 2Lj = F 2
k (3.7)

2Li − 2Lj = L2
k (3.8)

and then solve the following equations:

3Fi − 3Fj = F 3
k (3.9)

3Fi − 3Fj = L3
k (3.10)

3Fi − 3Lj = F 3
k (3.11)

3Fi − 3Lj = L3
k (3.12)

3Li − 3Fj = F 3
k (3.13)

3Li − 3Fj = L3
k (3.14)

3Li − 3Lj = F 3
k (3.15)

3Li − 3Lj = L3
k, (3.16)

where the indices i, j and k are nonnegative integers, and Fn and Ln represent the nth terms
of the Fibonacci and Lucas sequences, respectively, that are defined by the initial values F0 =
0, F1 = 1 and L0 = 2, L1 = 1 and the recurrence relations Fn = Fn−1 + Fn−2 and Ln =
Ln−1 +Ln−2, where n ≥ 2. For the convenience of the reader, we exhibit some values of Fn and
Ln for n ∈ {0, 1, 2, ..., 10}, as shown in the following table.

n 0 1 2 3 4 5 6 7 8 9 10

Fn 0 1 1 2 3 5 8 13 21 34 55

Ln 2 1 3 4 7 11 18 29 47 76 123

Now, we present our main results as the following theorems.

Theorem 3.1. The equation 2x − 2y = z2 has only nine positive solutions in the Fibonacci and
Lucas numbers which are (x, y, z) ∈ {(F4, F3, F3), (F4, F3, L0), (F4, L0, F3), (F4, L0, L0), (F5, L3, L3),
(L2, F3, F3), (L2, F3, L0), (L2, L0, F3), (L2, L0, L0)}.

Proof. We first consider (3.1) and (3.2). It follows from Theorem 2.1 that Fi = 2n+1, Fj = 2n,
and Fk = 2n = Lk for some positive integer n. Since Fi > Fj ≥ 2, and 2n + 1 and 2n are
consecutive integers in the Fibonacci sequence, n must be 1. Consequently, i = 4, j = 3, and
Fk = 2 = Lk. Note that Fk = 2 if and only if k = 3. Similarly, Lk = 2 if and only if k = 0.
Thus, we obtain that (F4, F3, F3) and (F4, F3, L0) are solutions of (3.1) and (3.2), respectively.

Next, we consider (3.3) and (3.4). By Theorem 2.1, we obtain that Fi = 2n + 1, Lj = 2n,
and Fk = 2n = Lk for some positive integer n. Then Fi = Lj + 1. This implies that j ≤ i − 1.
If i ≥ 7, then it follows from Lemma 2.4 that j = i − 1. Hence, we have Fi − 1 = Li−1. By
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Proposition 2.3(i), we obtain Fi−1 = Fi+Fi−2, which means Fi−2 = −1, a contradiction. Thus
i < 7. Since i > j, we get j ≤ 5. Since Lj = 2n and j ≤ 5, n must be 1 or 2. If n = 1, then we
obtain that (F4, L0, F3) and (F4, L0, L0) are solutions of (3.3) and (3.4), respectively. If n = 2,
then we obtain that (F5, L3, L3) is a solution of (3.4).

Now, we consider (3.5) and (3.6). By Theorem 2.1, we obtain that Li = 2n + 1, Fj = 2n,
and Fk = 2n = Lk for some positive integer n. Then Li = Fj + 1. By Proposition 2.3(i), we
obtain Fi+1+Fi−1 = Fj +1. Since Fi+1 = Fi+Fi−1, we consequently have 2Fi−1− 1 = Fj −Fi.
If i ≥ j, then 2Fi−1 − 1 = Fj − Fi ≤ 0. Thus i = 1 and so n = 0. This contradicts the fact
that n is a positive integer. Hence i < j. If j ≥ 7, then Lemma 2.4 implies that i = j − 1 and
so Lj−1 = Fj + 1. By Proposition 2.3(i), we get Fj + Fj−2 = Fj + 1, that is, Fj−2 = 1. This
is impossible because j ≥ 7. Hence j < 7. Since i < j, we get i ≤ 5. One can verify that it is
possible when i = 2, n = 1, and j = 3. Thus, we obtain that (L2, F3, F3) and (L2, F3, L0) are
solutions of (3.5) and (3.6), respectively.

Finally, we consider (3.7) and (3.8). By Theorem 2.1, we obtain that Li = 2n+ 1, Lj = 2n,
and Fk = 2n = Lk for some positive integer n. Then Li − Lj = 1. That is, i = 2, j = 0, and
n = 1. Hence Fk = 2 = Lk. Thus, we infer that (L2, L0, F3) and (L2, L0, L0) are solutions of
(3.7) and (3.8), respectively. This completes the proof.

Theorem 3.2. The equation 3x − 3y = z3 has no positive solution in the Fibonacci and Lucas
numbers.

Proof. We first consider (3.9) and (3.10). It follows from Theorem 2.2 that Fi = 3n+2, Fj = 3n,
and Fk = 2 · 3n = Lk for some positive integer n. Then Fi − Fj = 2. This implies that i = 5,
j = 4, and n = 1. This yields Fk = 6 = Lk, which is impossible. Hence, (3.9)-(3.10) have no
solution.

Next, we consider (3.11) and (3.12). By Theorem 2.2, we obtain that Fi = 3n+ 2, Lj = 3n,
and Fk = 2 · 3n = Lk for some positive integer n. Then Fi = Lj +2. This implies that j ≤ i− 2.
If i ≥ 8, then by Lemma 2.5, we have Fi ≥ Lj + 3 > Lj + 2. This contradicts the fact that
Fi = Lj + 2. If i = 7, then we obtain 3n+ 2 = Fi = 13, which is a contradiction. Hence i < 7.
Since i > j, we get j ≤ 5. For such a case, one can verify that (3.11)-(3.12) have no solution.

Now, we consider (3.13) and (3.14). By Theorem 2.2, we obtain that Li = 3n+ 2, Fj = 3n,
and Fk = 2 · 3n = Lk for some positive integer n. Then Li = Fj + 2. By Proposition 2.3(i), we
obtain Fi+1+Fi−1 = Fj +2. Since Fi+1 = Fi+Fi−1, we consequently have 2Fi−1− 2 = Fj −Fi.
If i ≥ j, then 2Fi−1 − 2 = Fj − Fi ≤ 0. Thus i ∈ {1, 2, 3} and so 3n+ 2 = Li ∈ {1, 3, 4}, which
is impossible. Thus i < j. Now, suppose that j ≥ 7. If i ≤ j − 2, then by Lemma 2.4, we
have Fj ≥ Li + 2 > Li. This contradicts the fact that Li = Fj + 2 > Fj . If i = j − 1, then
Lj−1 = Fj + 2. By Proposition 2.3(i), we get Fj + Fj−2 = Fj + 2, that is, Fj−2 = 2. This is
impossible because j ≥ 7. Hence j < 7. Since i < j, we get i ≤ 5. For such a case, one can
verify that (3.13)-(3.14) have no solution.

Finally, we consider (3.15) and (3.16). By Theorem 2.2, we obtain that Li = 3n+2, Lj = 3n,
and Fk = 2 · 3n = Lk for some positive integer n. Then Li ≥ 5 and Li − Lj = 2. It is obvious
that such a case is impossible. Hence, (3.15)-(3.16) have no solution.

4 Conclusion

To summarize, within the Fibonacci and Lucas numbers, we identified precisely nine positive
solutions to the equation 2x − 2y = z2, as described. Additionally, we confirmed the absence of
positive solutions to the equation 3x − 3y = z3 within such numbers. These results underscore
the valuable relationship between the Fibonacci and Lucas numbers and certain exponential
Diophantine equations.
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5 Suggestion
Let p and q be prime numbers. According to [11], it is known that the Diophantine equations
px ± py = zq have infinitely many solutions, as described before. Thus, to extend earlier results
in [5] and our own, the reader may study all positive solutions of the equations px ± py = zq in
the Fibonacci and Lucas numbers.

Acknowledgment. The author is grateful to the referees for their careful reading of the
manuscript and their useful comments.
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1 Introduction
Numerous researchers have dedicated their time and effort to the study of number sequences
due to their widespread utility. Many applications of integer sequences, including Fibonacci,
k−Fibonacci, Lucas, Jacobsthal, k−Jacobthals, Pell, and k−Pell have been utilized in various
scientific fields such as engineering and architecture.

In the 14th century, Narayana, an Indian mathematician, delved into the exploration of
Narayana numbers, as indicated in [8]. Comparable to Fibonacci’s rabbit problem, Narayana’s
cow problem involves the reproductive pattern of cows. In this scenario, cows commence calving
in the fourth year, each delivering one calf annually thereafter. The objective revolves around
determining the cumulative number of offspring produced within a span of 20 years. This
problem can be solved in a similar way to how Fibonacci addressed the rabbit problem. If n
is the year, the Narayana problem can be expressed in the form of a recursive relationship as
follows:

Nn = Nn−1 +Nn−3, n ≥ 3

where N0 = 0, N1 = 1, N2 = 1.
The first 11 Narayana terms are: 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28 …This sequence is called
the Narayana sequence, also known as the Fibonacci-Narayana sequence or the Narayana cow
∗This research was financially supported by The Royal Thai Government Scholarship under Thailand - Lao PDR
Bilateral Development Cooperation.
†Speaker. ‡Corresponding author.
Email: nousikhammountry@gmail.com (C. Sikhammountri), narawadee_n@hotmail.co.th (N. Phudolsitthiphat).
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sequence.
For any nonzero integer number k, Ramfrez and Sirvent [7] defined the k−Narayana number

as follows:
Nk,n = kNk,n−1 +Nk,n−3, n ≥ 3

where Nk,0 = 0, Nk,1 = 1, Nk,2 = k.

It is mentioned in [10] that Quaternions are four-dimensional hypercomplex numbers. They
was introduced by Sir William Rowan Hamilton and have found widespread use in high-tech
areas such as computer graphics, signal processing, and robotics, among others.

Quaternions form a four-dimensional non-commutative associative algebra over the real num-
bers and are defined as follows:

H = {q = q0 + q1e1 + q2e2 + q3e3|q0, q1, q2, q3 ∈ R}

where the imaginary units e1, e2 and e3 satisfy the following equalities:

e21 = e22 = e23 = e1e2e3 = −1, e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2,

e3e1 = e2 = −e1e3.

For more details on quaternions, one can refer to, for example, ([3], [9]).
Let p = p0 + p1e1 + p2e2 + p3e3 and q = q0 + q1e1 + q2e2 + q3e3 be two quaternions. The
addition and subtraction of two quaternions are defined as:

p± q = (p0 ± q0) + (p1 ± q1)e1 + (p2 ± q2)e2 + (p3 ± q3)e3.

The multiplication of quaternion by a real scalar λ is defined as:

λp = λp0 + λp1e1 + λp2e2 + λp3e3.

The multiplication of two quaternions is defined as:

pq = (p0q0 − p0q1 − p0q2 − p0q3) + (p0q1 + p1q0 + p2q3 − p3q2)e1

+ (p0q2 − p1q3 + p2q0 + p3q1)e2 + (p0q3 + p1q2 − p2q1 + p3q0)e3.

The conjugate of quaternion q is denoted by q and defined as:

q = q0 − q1e1 − q2e2 − q3e3.

Horadam [4] introduced the complex Fibonacci numbers and Fibonacci quaternions as fol-
lows:

QFn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3,

where Fn is the nth Fibonacci number.

In 2012 Halici [2] proved some theorems related to the Fibonacci quaternion. The Fibonacci
quaternion sequence has been extensively studied. Ipek [5] introduced the (p, q)−Fibonacci
quaternion as follows:

QFn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3,

where Fn is the nth (p, q)−Fibonacci number.
Flaut [1] introducted the Narayana quaternion, defined as follows:

Un = Nn +Nn+1e2 +Nn+2e3 +Nn+3e4,

where Nn are the nth Narayana number.
In this paper, we introduce k−Narayana quaternions and explore various properties, includ-

ing, but not limited to, Binet formulas, generating functions, and summation formulas. Our
results extend and generalize some well-known theorems in this area.
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2 Preliminaries
Ramírez and Sirvent [7] determined the Binet formula for the k−Narayana number as follows:

Nk,n =
αn+1
k

(αk − βk)(αk − γk)
+

βn+1
k

(βk − αk)(βk − γk)
+

γn+1
k

(γk − αk)(γk − βk)
, (2.1)

where αk, βk, and γk are the roots of the characteristic equation x3 − kx2 − 1 = 0.

Özkan, Kuloğlu, and Peters [6] obtained the formula for the sum of the first (n + 1) terms of
the k−Narayana sequence as follows:

n∑
m=0

Nk,m =
Nk,1 +Nk,n +Nk,n+1 +Nk,n+2

k
−Nk,n+1. (2.2)

3 Main Results
First, we will define the k−Narayana quaternions.
Definition 3.1. The k−Narayana quaternions are defined in the following manner:

QNk,n = Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3, n ≥ 0 (3.1)

where e1, e2, and e3 are the imaginary units satisfy the following equalities:

e21 = e22 = e23 = e1e2e3 = −1, e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2,

e3e1 = e2 = −e1e3.

The first few k-Narayana quaternions can be written as follows:

QNk,0 = Nk,0 +Nk,1e1 +Nk,2e2 +Nk,3e3

= e1 + ke2 + k2e3

QNk,1 = Nk,1 +Nk,2e1 +Nk,3e2 +Nk,4e3

= 1 + ke1 + k2e2 + (k3 + 1)e3

QNk,2 = Nk,2 +Nk,3e1 +Nk,4e2 +Nk,5e3

= k + k2e1 + (k3 + 1)e2 + (k4 + 2k)e3
...

For n,m ≥ 0, let QNk,n = Nk,n + Nk,n+1e1 + Nk,n+2e2 + Nk,n+3e3 and QNk,m = Nk,m +
Nk,m+1e1+Nk,m+2e2+Nk,m+3e3 be two k−Narayana quaternions. The addition and subtraction
of these two k−Narayana quaternions are defined as follows:

QNk,n ±QNk,m =(QNk,n ±QNk,m) + (QNk,n+1 ±QNk,m+1)e1

+ (QNk,n+2 ±QNk,m+2)e2 + (QNk,n+3 ±QNk,m+3)e3.

The multiplication of a k−Narayana quaternion by a real scalar λ is defined as:

λQNk,n = λQNk,n + λQNk,n+1e1 + λQNk,n+2e2 + λQNk,n+3e3.

We can see that the set of k-Narayana quaternions forms a vector space over the field R.
The multiplication of two k−Narayana quaternions is defined as:

QNk,nQNk,m =(QNk,nQNk,m −QNk,n+1QNk,m+1 −QNk,n+2QNk,m+2 −QNk,n+3QNk,m+3)

+ (QNk,nQNk,m+1 +QNk,n+1QNk,m +QNk,n+2QNk,m+3 −QNk,n+3QNk,m+2)e1

+ (QNk,nQNk,m+2 −QNk,n+1QNk,m+3 +QNk,n+2QNk,m +QNk,n+3QNk,m+1)e2

+ (QNk,nQNk,m+3 +QNk,n+1QNk,m+2 −QNk,n+2QNk,m+1 +QNk,n+3QNk,m)e3.
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The conjugate of a k−Narayana quaternion QNk,n is denoted by QNk,n and is defined as follows:

QNk,n = Nk,n −Nk,n+1e1 −Nk,n+2e2 −Nk,n+3e3.

The next theorem considers the addition and subtraction of k-Narayana quaternions and their
conjugates.

Theorem 3.2. Let n ≥ 0. Then

QNk,n +QNk,n = 2Nk,n (3.2)
QNk,n −QNk,n = 2Nk,n+1e1 + 2Nk,n+2e2 + 2Nk,n+3e3. (3.3)

Proof.

QNk,n +QNk,n =(Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3)

+ (Nk,n −Nk,n+1e1 −Nk,n+2e2 −Nk,n+3e3)

=Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3 +Nk,n

−Nk,n+1e1 −Nk,n+2e2 −Nk,n+3e3

=2Nk,n.

QNk,n −QNk,n =(Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3)

− (Nk,n −Nk,n+1e1 −Nk,n+2e2 −Nk,n+3e3)

=Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3 −Nk,n

+Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3

=2Nk,n+1e1 + 2Nk,n+2e2 + 2Nk,n+3e3.

The following theorem states the multiplication of a k-Narayana quaternion and its conjugate.

Theorem 3.3. Let n ≥ 0 be an integer. The character of the k−Narayana quaternion number
is given by

QNk,nQNk,n = N2
k,n +N2

k,n+1 +N2
k,n+2 +N2

k,n+3.

Proof. From Definition 3.1, we get

QNk,nQNk,n =(Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3)

(Nk,n −Nk,n+1e1 −Nk,n+2e2 −Nk,n+3e3)

=N2
k,n −Nk,nNk,n+1e1 −Nk,nNk,n+2e2 −Nk,nNk,n+3e3

+Nk,n+1e1Nk,n −N2
k,n+1e

2
1 −Nk,n+1e1Nk,n+2e2

−Nk,n+1e1Nk,n+3e3 +Nk,n+2e2Nk,n −Nk,n+2e2Nk,n+1e1

−N2
k,n+2e

2
2 −Nk,n+2e2Nk,n+3e3 +Nk,n+3e3Nk,n

−Nk,n+3e3Nk,n+1e1 −Nk,n+3e3Nk,n+2e2 −N2
k,n+3e

2
3

=N2
k,n +N2

k,n+1 −Nk,n+1Nk,n+2e3 +Nk,n+1Nk,n+3e2

+Nk,n+2Nk,n+1e3 +N2
k,n+2 −Nk,n+2Nk,n+3e1

−Nk,n+3Nk,n+1e2 +Nk,n+3Nk,n+2e1 +N2
k,n+3

=N2
k,n +N2

k,n+1 +N2
k,n+2 +N2

k,n+3.
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We can define the norm of k-Narayana quaternions as follows:

Corollary 3.4. The norm of the k−Narayana quaternion sequence is:

∥ QNk,n ∥=
√
N2

k,n +N2
k,n+1 +N2

k,n+2 +N2
k,n+3.

Proof. By Theorem 3.3, we have

∥ QNk,n ∥=
√
(QNk,nQNk,n) =

√
N2

k,n +N2
k,n+1 +N2

k,n+2 +N2
k,n+3.

Next, we present the Binet formula for the k−Narayana quaternion.

Theorem 3.5. Let n ≥ 0. Then

QNk,n =
αn+1
k (1 + αke1 + α2

ke2 + α3
ke3)

(αk − βk)(αk − γk)
+

βn+1
k (1 + βke1 + β2

ke2 + β3
ke3)

(βk − αk)(βk − γk)

+
γn+1
k (1 + γke1 + γ2ke2 + γ3ke3)

(γk − αk)(γk − βk)
.

Proof. From Binet’s formula for k−Narayana number (2.1), we get

QNk,n =Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3.

=(
αn+1
k

(αk − βk)(αk − γk)
+

βn+1
k

(βk − αk)(βk − γk)
+

γn+1
k

(γk − αk)(γk − βk)
)

+ (
αn+2
k

(αk − βk)(αk − γk)
+

βn+2
k

(βk − αk)(βk − γk)
+

γn+2
k

(γk − αk)(γk − βk)
)e1

+ (
αn+3
k

(αk − βk)(αk − γk)
+

βn+3
k

(βk − αk)(βk − γk)
+

γn+3
k

(γk − αk)(γk − βk)
)e2

+ (
αn+4
k

(αk − βk)(αk − γk)
+

βn+4
k

(βk − αk)(βk − γk)
+

γn+4
k

(γk − αk)(γk − βk)
)e3

=
αn+1
k

(αk − βk)(αk − γk)
(1 + αke1 + α2

ke2 + α3
ke3) +

βn+1
k

(βk − αk)(βk − γk)

(1 + βke1 + β2
ke2 + β3

ke3) +
γn+1
k

(γk − αk)(γk − βk)
(1 + γke1 + γ2ke2 + γ3ke3).

The following theorem states that the finite sum of k-Narayana quaternions is (2.2), we get.

Theorem 3.6. Let n ≥ 0. Then

n∑
m=0

QNk,m =
1 + e1 + e2 + e3 +QNk,n +QNk,n+1 +QNk,n+2 − kQNk,n+1

k

− e2 − e3(1 + k).

The 28th Annual Meeting in Mathematics (AMM2024)

393



Proof. By (2.2), we have

n∑
m=0

QNk,m =QNk,0 +QNk,1 +QNk,2 + . . .+QNk,n

=(Nk,0 +Nk,1e1 +Nk,2e2 +Nk,3e3)

+ (Nk,1 +Nk,2e1 +Nk,3e2 +Nk,4e3) + . . .

+ (Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3)

=(Nk,0 +Nk,1 +Nk,2 + . . .+Nk,n)

+ (Nk,1 +Nk,2 +Nk,3 + . . .+Nk,n+1)e1

+ (Nk,2 +Nk,3 +Nk,4 + . . .+Nk,n+2)e2

+ (Nk,3 +Nk,4 +Nk,5 + . . .+Nk,n+3)e3

=(

n∑
m=0

Nk,m) + e1(

n+1∑
m=0

Nk,m) + e2(

n+2∑
m=0

Nk,m − 1)

+ e3(

n+3∑
m=0

Nk,m − 1− k)

=

(
Nk,1 +Nk,n +Nk,n+1 +Nk,n+2

k
−Nk,n+1

)
+

(
Nk,1 +Nk,n+1 +Nk,n+2 +Nk,n+3

k
−Nk,n+2

)
e1

+

(
Nk,1 +Nk,n+2 +Nk,n+3 +Nk,n+4

k
−Nk,n+3

)
e2

+

(
Nk,1 +Nk,n+3 +Nk,n+4 +Nk,n+5

k
−Nk,n+4

)
e3

− e2 − (1 + k)e3

=
Nk,1 +Nk,1e1 +Nk,1e2 +Nk,1e3 +QNk,n +QNk,n+1

k

+
QNk,n+2 − kQNk,n+1

k
− e2 − e3(1 + k)

=
1 + e1 + e2 + e3 +QNk,n +QNk,n+1

k

+
QNk,n+2 − kQNk,n+1

k
− e2 − e3(1 + k).

Theorem 3.7. The recursive relationship of the k-Narayana quaternion sequence is defined as
follows:

QNk,n = kQNk,n−1 +QNk,n−3, n ≥ 3. (3.4)

Proof.

kQNk,n−1 +QNk,n−3 =k(Nk,n−1 +Nk,ne1 +Nk,n+1e2 +Nk,n+2e3)

+ (Nk,n−3 +Nk,n−2e1 +Nk,n−1e2 +Nk,ne3)

=(kNk,n−1 +Nk,n−3) + (kNk,n +Nk,n−2)e1

+ (kNk,n+1 +Nk,n−1)e2 + (kNk,n+2 +Nk,n)e3
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=Nk,n +Nk,n+1e1 +Nk,n+2e2 +Nk,n+3e3

=QNk,n.

Theorem 3.8. The generating function for k−Narayana quaternion is:

∞∑
m=0

QNk,mxm =
QNk,0 + (QNk,1 − kQNk,0)x+ (QNk,2 − kQNk,1)x

2

1− kx− x3
. (3.5)

Proof. Let

f(x) =

∞∑
m=0

QNk,nx
m = QNk,0 +QNk,1x+QNk,2x

2 +QNk,3x
3 + . . . (3.6)

Multiply Equation (3.6) by kx and x3, we have

kxf(x) = kQNk,0x+ kQNk,1x
2 + kQNk,2x

3 + kQNk,3x
4 + . . . (3.7)

x3f(x) = QNk,0x
3 +QNk,1x

4 +QNk,2x
5 +QNk,3x

6 + . . . (3.8)

Based on the Equation (3.6-3.8) and Theorem 3.7, we obtain

f(x)− kxf(x)− x3f(x) =QNk,0 + (QNk,1 − kQNk,0)x+ (QNk,2 − kQNk,1)x
2

+ (QNk,3 − kQNk,2 −QNk,0)x
3

+ (QNk,4 − kQNk,3 −QNk,1)x
4 + . . .

(1− kx− x3)f(x) =QNk,0 + (QNk,1 − kQNk,0)x+ (QNk,2 − kQNk,1)x
2

+ 0 + 0 + . . .

=QNk,0 + (QNk,1 − kQNk,0)x+ (QNk,2 − kQNk,1)x
2,

which is the desired result. Moreover, we can see that

(1− kx− x3)f(x) =Nk,0 +Nk,1e1 +Nk,2e2 +Nk,3e3

+ (Nk,1 +Nk,2e1 +Nk,3e2 +Nk,4e3 − k(Nk,0 +Nk,1e1 +Nk,2e2 +Nk,3e3))x

+ (Nk,2 +Nk,3e1 +Nk,4e2 +Nk,5e3 − k(Nk,1 +Nk,2e1 +Nk,3e2 +Nk,4e3))x
2

=(Nk,0 + (Nk,1 − kNk,0)x+ (Nk,2 − kNk,1)x
2)

+ (Nk,1 + (Nk,2 − kNk,1)x+ (Nk,3 − kNk,2)x
2)e1

+ (Nk,2 + (Nk,3 − kNk,2)x+ (Nk,4 − kNk,3)x
2)e2

+ (Nk,3 + (Nk,4 − kNk,3)x+ (Nk,5 − kNk,4)x
2)e3

=x+ e1 + (k + k2)x2e2 + (k2 + x+ kx2)e3.

4 Conclusion
In this study, our aim was to define the k−Narayana quaternion and prove some of its proper-
ties. These properties encompass the relationship between the k−Narayana quaternion and its
conjugate, its norm, the Binet formula, finite sum, and generating function.
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Abstract
This paper presents straightforward methods offering complete solutions to quartic Dio-

phantine equations of various forms expressed as x4 − 4x2y2 − y4 = ±1, x4 − 4x2y2 − y4 =
±5, x5 − 5y4 = ±1, and x4 − 5y4 = ±5. Additionally, we explore analogous quadratic Dio-
phantine equations to such equations. We discover that all solutions to these equations are
involving with Fibonacci and Lucas numbers.

Keywords: Fibonacci sequence, Lucas sequence, Diophantine equation, perfect power.
2020 MSC: Primary 11B39; Secondary 11D25.

1 Introduction
Among the vast of sequences, two stand out with distinct significance and hold their special
places: the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, . . ., formed by adding the two preceding
terms to generate the next and its closed related sequence sharing some counterparts, the Lucas
sequence 2, 1, 3, 4, 7, 11, 18, 29, . . ., which follows the same recursive pattern. For integers n ≥ 2,
the Fibonacci sequence Fn is precisely defined by the recurrence relation Fn = Fn−1 + Fn−2

with the initial conditions F0 = 0 and F1 = 1. Similarly, the Lucas sequence Ln also obeys
the recurrence relation Ln = Ln−1 + Ln−2 with the initial conditions L0 = 2 and L1 = 1. The
n-th terms of these sequences can be expressed using the Binet formulas: Fn = 1√

5
(αn − βn)

and Ln = αn + βn where α = 1+
√
5

2 and β = 1−
√
5

2 . It is clear that α + β = 1 and αβ = −1.
Moreover, α and β are roots of t2− t−1 = 0, we have α2 = α+1 and β2 = β+1. Consequently,
α3 = α · α2 = α (α+ 1) = α2 + α = (α+ 1) + α = 2α+ 1. Similarly, β3 = 2β + 1. In general, α
and β satisfy the following identities:

αn = αFn + Fn−1, (1.1)
βn = βFn + Fn−1. (1.2)

†Speaker. ‡corresponding author.
Email: shayathorn@mathstat.sci.tu.ac.th (S. Wanasawat), panida.kro@dome.tu.ac.th (P. Krongkeaw),
orrawan.pra@dome.tu.ac.th (O. Prathumwan), onanong.wim@dome.tu.ac.th (O. Winmorat).
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Binet’s formula has been the subject of study for decades, yielding numerous elegant and glam-
orous identities, including the Cassini’s identities (see in [4] and [5]):

F 2
n − Fn+1Fn−1 = (−1)n+1, (1.3)

L2
n − Ln+1Ln−1 = 5(−1)n. (1.4)

Manipulating these identities further by replacing the n+1-th term with the recursive formulas,
we obtain their variations as the differences of squares of Fibonacci and Lucas numbers as
follows:

F 2
n − FnFn−1 − F 2

n−1 = (−1)n+1, (1.5)
L2
n − LnLn−1 − L2

n−1 = 5(−1)n. (1.6)

Equations (1.5) and (1.6) served inspirations for the work of Keshin and Demirtürk [3] in 2013.
They investigated the quadratic Diophantine equation of the many forms such as x2−xy−y2 =
±1, x2 − xy − y2 = ±5, x2 − 3xy − y2 = ±1, x2 − 3xy − y2 = ±5 and more generalized
forms like x2 − kxy − y2 ± x = 0, x2 − kxy − y2 ± y = 0, x2 − kxy − y2 ± 5x = 0 and
x2 − kxy − y2 ± 5y = 0 where k ≥ 3, etc. Applying Cassini’s identities and certain properties
of units in the ring Z[α] = {aα + b : a, b ∈ Z}, they were successfully able to solve all of these
quadratic Diophantine equations. It is obvious to see that Fibonacci and Lucas numbers satisfy
the first few equations, and remarkably, the solutions to all of these equations are expressed in
term of Fibonacci and Lucas numbers. The complete positive integer solutions of some quadratic
Diophantine equations of these forms will be presented in the next section and later be used for
the rest of this paper. In our work, we extend their ideas to solve quartic Diophantine equations,
presenting the positive integer solutions to the following equations:

x4 − 4x2y2 − y4 = −1 (1.7)
x4 − 4x2y2 − y4 = 1 (1.8)
x4 − 4x2y2 − y4 = 5 (1.9)
x4 − 4x2y2 − y4 = −5 (1.10)

x4 − 5y4 = −1 (1.11)
x4 − 5y4 = 1 (1.12)
x4 − 5y4 = −5 (1.13)
x4 − 5y4 = 5 (1.14)

It can be shown that most of the above equations are solvable and we obtain their positive
integer solutions. Also, we study similar forms of quadratic Diophantine equations.

2 Preliminaries
In this section, a collection of positive integer solutions to some selected quadratic Diophan-
tine equations are presented. Moreover, we discuss the representation of Fibonacci and Lucas
numbers as specific forms, followed by the divisibility of Fibonacci and Lucas numbers.

Initially, we highlight some theorems presented in [3], which stand as an important concept
and motivation behind this paper. The next following theorem, stated without any proof in [3],
prompts us to prove it here for the sake of completeness.

Theorem 2.1. All positive integer solutions of the equation x2 − xy − y2 = −1 are given by
(x, y) = (F2n, F2n−1) for n ≥ 1.
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Proof. We first notice that F 2
2n − F2nF2n−1 − F 2

2n−1 = −1 holds from the equation (1.5). Next,
we solve for x and y in x2 − xy − y2 = −1. This is equivalent to solving −x2 + xy + y2 =
(αβ)x2+(α+β)xy+y2 = 1. By factorizing this quadratic equation, we find (αx+ y) (βx+ y) =
(αx+ y) ((1− α)x+ y) = (αx+ y) (−αx+ (x+ y)) = 1. It follows that αx+ y must be a unit
in Z[α]. Considering that all units in Z[α] are ±αn for any n ∈ Z and αx+ y > 0, we conclude
that αn = αx+ y. By equation (1.1), we obtain x = Fn and y = Fn−1. Back substitution leads
us to F 2

n − FnFn−1 − F 2
n−1 = (−1)n+1 = −1. This forces n to be even. We are done.

Following this, we now introduce other several key theorems from [3] without proofs:

Theorem 2.2. All positive integer solutions of the equation x2 − xy − y2 = 1 are given by
(x, y) = (F2n+1, F2n) for n ≥ 1.

Theorem 2.3. All positive integer solutions of the equation x2 − xy − y2 = −5 are given by
(x, y) = (L2n+1, L2n) for n ≥ 0.

Theorem 2.4. All positive integer solutions of the equation x2 − xy − y2 = 5 are given by
(x, y) = (L2n, L2n−1) for n ≥ 1.

Theorem 2.5. All positive integer solutions of the equation x2 − 3xy + y2 = −1 are given by
(x, y) = (F2n+1, F2n−1) for n ≥ 0.

Theorem 2.6. All positive integer solutions of the equation x2 − 3xy + y2 = 1 are given by
(x, y) = (F2n+2, F2n) for n ≥ 1.

Theorem 2.7. All positive integer solutions of the equation x2 − 3xy + y2 = −5 are given by
(x, y) = (L2n+2, L2n) for n ≥ 0.

Theorem 2.8. All positive integer solutions of the equation x2 − 3xy + y2 = 5 are given by
(x, y) = (L2n+1, L2n−1) for n ≥ 1.

Next, all Fibonacci and Lucas numbers that can be written in form of the product of specific
perfect power numbers are shown in the following theorem (see Theorems 2 and 3 in [1]).

Theorem 2.9. Let a, b, c ∈ Z with a ≥ 0, b ≥ 1 and c ≥ 2.

1. If Fn = 2abc, then n ∈ {1, 2, 3, 6, 12}.

2. If Ln = 2abc, then n ∈ {0, 1, 3, 6}.

We can see that there are a finite numbers of Fibonacci and Lucas numbers which possibly
fit into those forms. For further details, interested reader can refer to [1]. Other properties of
Fibonacci and Lucas numbers that play an important role in this paper are their divisibility.
Some of these properties are listed below.

Theorem 2.10. Let m,n ∈ Z+.

1. Fn | Fm if and only if m = kn for some k ∈ Z+.

2. Ln | Fm if and only if m = 2kn for some k ∈ Z+.

3. Ln | Lm if and only if m = (2k − 1)n for some k ∈ Z+.
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3 Main Results
Assume x > y going forward. We start this section by defining certain polynomials in two
variables x and y, through appropriate substitution.

Let P (x, y) = x2 − xy − y2. We compute

P
(
x2 + y2, x2 − y2

)
= (x2 + y2)2 − (x2 + y2)(x2 − y2)− (x2 − y2)2

= x4 + 2x2y2 + y4 − x4 + y4 − x4 + 2x2y2 − y4

= −x4 + 4x2y2 + y4,

P (x+ y, x− y) = (x+ y)2 − (x+ y)(x− y)− (x− y)2

= x2 + 2xy + y2 − x2 + y2 − x2 + 2xy − y2

= −x2 + 4xy + y2.

Therefore,

−P
(
x2 + y2, x2 − y2

)
= x4 − 4x2y2 − y4, (3.1)

−P (x+ y, x− y) = x2 − 4xy − y2. (3.2)

Let Q (x, y) = x2 − 3xy + y2. We have

Q
(
x2 + y2, x2 − y2

)
= (x2 + y2)2 − 3(x2 + y2)(x2 − y2) + (x2 − y2)2

= x4 + 2x2y2 + y4 − 3x4 + 3y4 + x4 − 2x2y2 + y4

= −x4 + 5y4,

Q (x+ y, x− y) = (x+ y)2 − 3(x+ y)(x− y) + (x− y)2

= x2 + 2xy + y2 − 3x2 + 3y2 + x2 − 2xy + y2

= −x2 + 5y2.

Hence,

−Q
(
x2 + y2, x2 − y2

)
= x4 − 5y4, (3.3)

−Q (x+ y, x− y) = x2 − 5y2. (3.4)

We are now ready to solve the equation (1.7) to (1.14).

3.1 The Equations x4 − 4x2y2 − y4 = ±1 and x4 − 4x2y2 − y4 = ±5

We first solve the quartic equations x4 − 4x2y2 − y4 = ±1. Their positive integer solutions are
associated with Fibonacci numbers.

Theorem 3.1. The only positive integer solution of the equation x4 − 4x2y2 − y4 = −1 is
(x, y) = (2, 1).

Proof. Clearly, (x, y) = (2, 1) satisfies the equation (1.7). Now, we directly solve the equation
(1.7), which can be written as −P

(
x2 + y2, x2 − y2

)
= −1. Then, we apply Theorem 2.2 to the

equation

(x2 + y2)2 − (x2 + y2)(x2 − y2)− (x2 − y2)2 = 1.

This implies that

x2 + y2 = F2n+1,

x2 − y2 = F2n.

By Theorem 2.9, we have n = 2, hence 2x2 = F2(2)+2 = F6 = 8 and 2y2 = F2(2)−1 = F3 = 2.
Therefore, x = 2 and y = 1.
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Theorem 3.2. The equation x4 − 4x2y2 − y4 = 1 has no positive integer solutions.

Proof. Equation (1.8) is equivalently to −P
(
x2 + y2, x2 − y2

)
= 1. Analogously to the previous

Theorem 3.1, we establish x2 + y2 = F2n and x2 − y2 = F2n−1 by Theorem 2.1. It follows that
2x2 = F2n+1 and 2y2 = F2n−2. Then, by Theorem 2.9, the subscripts are either 3 or 6. There
is no value of n satisfying these Fibonacci numbers simultaneously. Consequently, no positive
integer solution exists for equation (1.8).

We consider the quadratic equations of the similar form. Let us address these equations

x2 − 4xy − y2 = −1, (3.5)
x2 − 4xy − y2 = 1. (3.6)

Theorem 3.3. All positive integer solutions of the equation x2 − 4xy − y2 = −1 are given by
(x, y) =

(
F6k+6

2 ,
F6k+3

2

)
for k ≥ 0.

Proof. For sufficiency, we aim to solve the equation −P (x+ y, x− y) = −1 ,or simply,

(x+ y)2 − (x+ y) (x− y)− (x− y)2 = 1.

From this, we derive the following equations

x+ y = F2n+1,

x− y = F2n.

By adding and subtracting these equations, we obtain

2x = F2n+1 + F2n = F2n+2,

2y = F2n+1 − F2n = F2n−1.

Hence, F3 = 2 must divides both F2n+2 and F2n−1. According to Theorem 2.10, it follows that
3 | 2n+ 2 and 3 | 2n− 1, leading to n = 3k + 2 for k ≥ 0. Moreover, the Fibonacci numbers at
positions that are multiples of 3 are all even. Therefore, (x, y) =

(
F6k+6

2 ,
F6k+3

2

)
for k ≥ 0.

To establish the necessary condition, we substitute x =
F6k+6

2 and y =
F6k+3

2 for k ≥ 0 into
the equation (3.5). By employing Binet’s formula, we have

x2 − 4xy − y2 =
1

4

(
α6k+6 − β6k+6

√
5

)2

−
(
α6k+6 − β6k+6

√
5

)(
α6k+3 − β6k+3

√
5

)
− 1

4

(
α6k+3 − β6k+3

√
5

)2

=
1

20

(
α12k+12 − 2α6k+6β6k+6 + β12k+12

)
− 1

5

(
α12k+9 − α6k+6β6k+3 − α6k+3β6k+6 + β12k+9

)
− 1

20

(
α12k+6 − 2α6k+3β6k+3 + β12k+6

)
=

1

20

(
α12k+12 − 2(αβ)6k+6 + β12k+12

)
− 1

5

(
α12k+9 − α6k+6β6k+3 − α6k+3β6k+6 + β12k+9

)
− 1

20

(
α12k+6 − 2(αβ)6k+3 + β12k+6

)
.
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Notice that α6k+6β6k+3 + α6k+3β6k+6 =
(
α3 + β3

)
(αβ)6k+3 = −

(
α3 + β3

)
= − (2α+ 1

+2β + 1) = −2 (α+ β)− 2 = −4. Then the equation becomes

x2 − 4xy − y2 =
1

20

(
α12k+12 − 2 + β12k+12

)
− 1

5

(
α12k+9 + 4 + β12k+9

)
− 1

20

(
α12k+6 + 2 + β12k+6

)
=

1

20

(
α12k+12 − 2 +

(
− 1

α

)12k+12
)

− 1

5

(
α12k+9 + 4 +

(
− 1

α

)12k+9
)

− 1

20

(
α12k+6 + 2 +

(
− 1

α

)12k+6
)

=

(
− 2

20
− 4

5
− 2

20

)
+

(
α12k+12 + α−12k−12

20

)
+

(
−α12k+9 − α−12k−9

5

)
+

(
−α12k+6 + α−12k−6

20

)
= −1 +

(
α12k+12

20
− α12k+9

5
− α12k+6

20

)
+

(
α−12k−12

20
+

α−12k−9

5
− α−12k−6

20

)
= −1 +

(
α12

20
− α9

5
− α6

20

)
α12k +

(
α−12

20
+

α−9

5
− α−6

20

)
α−12k

= −1 +

(
α12

20
− 4α9

20
− α6

20

)
α12k +

(
α−12

20
+

4α−9

20
− α−6

20

)
α−12k

= −1 +
1

20

(
α6 − 4α3 − 1

)
α12k+6 +

1

20

(
−1− 4α3 + α6

)
α−12k−12.

By equation (1.1), we have α6− 4α3− 1 = 0, thus the above equation reduces to −1 as desired.
This confirms that (x, y) =

(
F6k+6

2 ,
F6k+3

2

)
for k ≥ 0 is a solution to the equation (3.5). Thus,

the theorem is proven.

Theorem 3.4. All positive integer solutions of the equation x2 − 4xy − y2 = 1 are given by
(x, y) =

(
F6k+3

2 , F6k
2

)
for k ≥ 1.

Proof. Following similar steps as in Theorem 3.3, it suffices to solve the equation −P (x+ y, x− y)
= 1. This means that

(x+ y)2 − (x+ y) (x− y)− (x− y)2 = −1.

Again by Theorem 2.1, we obtain the system

x+ y = F2n,

x− y = F2n−1.

This yields

2x = F2n + F2n−1 = F2n+1,

2y = F2n − F2n−1 = F2n−2.

Since F3 equals to 2, we deduce that 3 divides 2n+ 1 and 2n− 2. This leads us to n = 3k + 1
for k ≥ 1. Also, all Fibonacci numbers of indices divisible by 3 are even. Therefore, (x, y) =(
F6k+3

2 , F6k
2

)
for k ≥ 1.
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For necessity, we simplify and verify that the equation (3.6) hold true for k ≥ 1 by substi-
tuting x =

F6k+3

2 and y = F6k
2 using Binet’s formula as follows:

x2 − 4xy − y2 =
1

4

(
α6k+3 − β6k+3

√
5

)2

−
(
α6k+3 − β6k+3

√
5

)(
α6k − β6k

√
5

)
− 1

4

(
α6k − β6k

√
5

)2

=
1

20

(
α12k+6 − 2α6k+3β6k+3 + β12k+6

)
− 1

5

(
α12k+3 − α6k+3β6k − α6kβ6k+3 + β12k+3

)
− 1

20

(
α12k − 2α6kβ6k + β12k

)
=

1

20

(
α12k+6 − 2(αβ)6k+3 + β12k+6

)
− 1

5

(
α12k+3 − α6k+3β6k − α6kβ6k+3 + β12k+3

)
− 1

20

(
α12k − 2(αβ)6k + β12k

)
.

Similarly to the previous proof, we evaluate α6k+3β6k + α6kβ6k+3 = 4. It follows that

x2 − 4xy − y2 =
1

20

(
α12k+6 + 2 + β12k+6

)
− 1

5

(
α12k+3 − 4 + β12k+3

)
− 1

20

(
α12k − 2 + β12k

)
=

1

20

(
α12k+6 + 2 +

(
− 1

α

)12k+6
)

− 1

5

(
α12k+3 − 4 +

(
− 1

α

)12k+3
)

− 1

20

(
α12k − 2 +

(
− 1

α

)12k
)

=

(
2

20
+

4

5
+

2

20

)
+

1

20

(
α12k+6 + α−12k−6

)
− 1

5

(
α12k+3 − α−12k−3

)
− 1

20

(
α12k + α−12k

)
= 1 +

1

20

(
α12k+6 − 4α12k+3 − α12k

)
+

1

20

(
α−12k−6 + 4α−12k−3 − α−12k

)
= 1 +

1

20

(
α6 − 4α3 − 1

)
α12k +

1

20

(
−1− 4α3 + α6

) (
−α−12k−6

)
.

Since α6 − 4α3 − 1 = 0, we have x2 − 4xy − y2 = 1, confirming the validity of the solution
(x, y) =

(
F6k+3

2 , F6k
2

)
for k ≥ 1 to the equations (3.6).

For quartic equations (1.9) and (1.10), we are concerning with Lucas numbers instead of
Fibonacci numbers. Applying Theorem 2.3 and 2.4, we have the following theorems.

Theorem 3.5. The equation x4 − 4x2y2 − y4 = −5 has no positive integer solutions.

Theorem 3.6. The equation x4 − 4x2y2 − y4 = 5 has no positive integer solutions.

The quadratic versions of the equations (1.9) and (1.10) are given by

x2 − 4xy − y2 = −5, (3.7)
x2 − 4xy − y2 = 5. (3.8)

The positive integer solutions to the equations (3.7) and (3.8) are provided by the following
theorems.
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Theorem 3.7. All positive integer solutions of x2 − 4xy − y2 = −5 are given by (x, y) =(
L6k+3

2 , L6k
2

)
for k ≥ 0.

Theorem 3.8. All positive integer solutions of x2 − 4xy − y2 = 5 are given by (x, y) =(
L6k+6

2 ,
L6k+3

2

)
for k ≥ 0.

3.2 The Equations x4 − 5y4 = ±1 and x4 − 5y4 = ±5

We solve the quartic equations (1.11) to (1.14) and the quadratic equations:

x2 − 5y2 = −1, (3.9)
x2 − 5y2 = 1, (3.10)
x2 − 5y2 = −5, (3.11)
x2 − 5y2 = 5. (3.12)

Unlike in Section 3.1, we start by solving the equations (1.13) and (1.14). To solve such equations,
we apply Theorems 2.7 and 2.8 which are related to Lucas numbers.

Theorem 3.9. The equation x4 − 5y4 = −5 has no positive integer solutions.

Proof. Solving the equation (1.13) is equivalent to solve −Q
(
x2 + y2, x2 − y2

)
= −5. That is(

x2 + y2
)2 − 3

(
x2 + y2

) (
x2 − y2

)
+
(
x2 − y2

)2
= 5. By Theorem 2.8, we have x2 + y2 = L2n+1

and x2 − y2 = L2n−1 for n ≥ 1. Subtracting these equations yields 2y2 = L2n+1 −L2n−1 = L2n.
Applying Theorem 2.9, we find that the only possible value of n must be 3. However, this leads
to a contradiction, as 2x2 = L7 +L5 = 40, and thus x = 2

√
10, which is non-integer. Therefore,

the equation (1.13) has no positive integer solutions.

Theorem 3.10. The equation x4 − 5y4 = 5 has no positive integer solutions.

Proof. To find the solutions to equation (1.14), we must solve −Q
(
x2 + y2, x2 − y2

)
= 5, which

yields
(
x2 + y2

)2 − 3
(
x2 + y2

) (
x2 − y2

)
+
(
x2 − y2

)2
= −5. We then express x2 + y2 = L2n+2

and x2 − y2 = L2n for n ≥ 0 from the Theorem 2.7. The difference between these equations
results in 2y2 = L2n+2 − L2n = L2n+1. By Theorem 2.9, there are no integer values for n, since
the feasible options are either −1

2 or 5
2 . Consequently, there exist no positive integer solutions

for equation (1.14).

Next, we solve the equations (3.11) and (3.12) which are equivalently to solve −Q(x+ y, x−
y) = −5 and −Q(x+ y, x− y) = 5 , respectively.

Theorem 3.11. All positive integer solutions of the equation x2 − 5y2 = −5 are given by
(x, y) =

(
L6k+1+L6k−1

2 , L6k
2

)
for k ≥ 1.

Proof. Applying Theorem 2.8 to the following equation

(x+ y)2 − 3 (x+ y) (x− y) + (x− y)2 = 5.

This implies that

x+ y = L2n+1,

x− y = L2n−1.

Solving for y, we find y = L2n+1−L2n−1

2 = L2n
2 = L2n

F3
. By Theorem 2.10, 3 divides 2n, and hence

n = 3k for k ≥ 1. Now solving for x, we obtain x = L2n+1+L2n−1

2 =
L6k+1+L6k−1

2 . Since the 6k+1-
th term and the 6k− 1-th term of the Lucas sequence are always an odd integer. So x is indeed
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an integer. Consequently, the solutions to the equation (3.11) are (x, y) =
(
L6k+1+L6k−1

2 , L6k
2

)
for k ≥ 1.

Assume x =
L6k+1+L6k−1

2 and y = L6k
2 for k ≥ 1. This necessarily leaves us to verify that

such x and y satisfy the equation (3.11). Replace the Lucas numbers in x and y with Binet’s
formula, we have

x2 − 5y2 =
1

4

[(
α6k+1 + β6k+1

)2
+ 2

(
α6k+1 + β6k+1

)(
α6k−1 + β6k−1

)
+
(
α6k−1 + β6k−1

)2]
− 5

4

(
α6k + β6k

)2
=

1

4

[(
α12k+2 + 2α6k+1β6k+1 + β12k+2

)
+ 2

(
α12k + α6k+1β6k−1 + α6k−1β6k+1 + β12k

)
+
(
α12k−2 + 2α6k−1β6k−1 + β12k−2

)]
− 5

4

(
α12k + 2α6kβ6k + β12k

)
=

1

4

[(
α12k+2 + 2(αβ)6k+1 + β12k+2

)
+ 2

(
α12k + α6k+1β6k−1 + α6k−1β6k+1 + β12k

)
+
(
α12k−2 + 2(αβ)6k−1 + β12k−2

)]
− 5

4

(
α12k + 2(αβ)6k + β12k

)
.

Recall that α+ β = −1 and αβ = −1. Further, we find that α6k+1β6k−1 + α6k−1β6k+1 =(
α2 + β2

)
(αβ)6k−1 = − (α+ 1 + β + 1) = − (α+ β + 2) = −3. It follows that

x2 − 5y2 =
1

4

[(
α12k+2 − 2 + β12k+2

)
+ 2

(
α12k − 3 + β12k

)
+
(
α12k−2 − 2 + β12k−2

)]
− 5

4
(α12k + 2 + β12k)

=
1

4

[(
α12k+2 − 2 +

(
− 1

α

)12k+2
)

+ 2

(
α12k − 3 +

(
− 1

α

)12k
)

+

(
α12k−2 − 2 +

(
− 1

α

)12k−2
)]

− 5

4

(
α12k + 2 +

(
− 1

α

)12k
)

=

(
−2

4
− 6

4
− 2

4
− 10

4

)
+

1

4

(
α12k+2 + α−12k−2 + 2α12k + 2α−12k + α12k−2 + α−12k+2

)
− 5

4

(
α12k + α−12k

)
= −5 +

1

4

(
α12k+2 − 3α12k + α12k−2

)
+

1

4

(
α−12k−2 − 3α−12k + α−12k+2

)
= −5 +

1

4

(
α4 − 3α2 + 1

)
α12k−2 +

1

4

(
1− 3α2 + α4

)
α−12k−2.

By equation (1.1), α4 − 3α2 + 1 can be simplified into 0. Therefore, x2 − 5y2 = −5. The proof
is completed.

Theorem 3.12. All positive integer solutions of the equation x2− 5y2 = 5 are given by (x, y) =(
L6k+4+L6k+2

2 ,
L6k+3

2

)
for k ≥ 0.

Proof. Let x, y be positive integers. We apply Theorem 2.9 to the equation

(x+ y)2 − 3(x+ y)(x− y) + (x− y)2 = −5.

To solve this equation, we add and subtract the equations in the system

x+ y = L2n+2,

x− y = L2n.
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This implies that x = L2n+2+L2n

2 and y = L2n+1

2 . Note that F3 = 2. By Theorem 2.10 and
the necessity of y being an integer, we determine its value and find that the subscripts of the
Lucas number must be divisible by the subscript of Fibonacci number. In other words, 3 divides
2n+1. Thus, n = 3k+1 for k ≥ 0. Then x =

L6k+4+L6k+2

2 . Now, we only need to show that x is
certainly an integer. To do this, we use the fact that 3 ∤ 6k+4 and 3 ∤ 6k+2, then by Theorem
2.10, 2 ∤ L6k+4 and 2 ∤ L6k+2, respectively. This implies that both L6k+4 and L6k+2 are odd
numbers, so their sum is an even number, which is divisible by 2, ensuring that x is an integer.

To verify that (x, y) =
(
L6k+4+L6k+2

2 ,
L6k+3

2

)
for k ≥ 0 satisfies the equation (3.12), we use

Binet’s formula to substitute the Lucas numbers into the equation x2 − 5y2 = −5

x2 − 5y2 =
1

4

[(
α6k+4 + β6k+4

)2
+ 2

(
α6k+4 + β6k+4

)(
α6k+2 + β6k+2

)
+
(
α6k+2 + β6k+2

)2]
− 5

4

(
α6k+3 + β6k+3

)2
=

1

4

[(
α12k+8 + 2α6k+4β6k+4 + β12k+8

)
+ 2

(
α12k+6 + α6k+4β6k+2 + α6k+2β6k+4

+β12k+6
)
+
(
α12k+4 + 2α6k+2β6k+2 + β12k+4

)]
− 5

4

(
α12k+6 + 2α6k+3β6k+3

+β12k+6
)

=
1

4

[(
α12k+8 + 2 (αβ)6k+4 + β12k+8

)
+ 2

(
α12k+6 + α6k+4β6k+2 + α6k+2β6k+4

+β12k+6
)
+
(
α12k+4 + 2 (αβ)6k+2 + β12k+4

)]
− 5

4

(
α12k+6 + 2 (αβ)6k+3

+β12k+6
)
.

We can show that α6k+4β6k+2 + α6k+2β6k+4 = 3 in a similar way to the proof in the previous
theorem. Thus,

x2 − 5y2 =
1

4

[(
α12k+8 + 2 + β12k+8

)
+ 2

(
α12k+6 + 3 + β12k+6

)
+
(
α12k+4 + 2 + β12k+4

)]
− 5

4

(
α12k+6 − 2 + β12k+6

)
=

1

4

[(
α12k+8 + 2 +

(
− 1

α

)12k+8
)

+ 2

(
α12k+6 + 3 +

(
− 1

α

)12k+6
)

+

(
α12k+4 + 2 +

(
− 1

α

)12k+4
)]

− 5

4

(
α12k+6 − 2 +

(
− 1

α

)12k+6
)

=

(
2

4
+

6

4
+

2

4
+

10

4

)
+

1

4

(
α12k+8 + α−12k−8 + 2α12k+6 + 2α−12k−6

+α12k+4 + α−12k−4
)
− 5

4

(
α12k+6 + α−12k−6

)
= 5 +

1

4

(
α12k+8 − 3α12k+6 + α12k+4

)
+

1

4

(
α−12k−8 − 3α−12k−6 + α−12k−4

)
= 5 +

1

4

(
α4 − 3α2 + 1

)
α12k+4 +

1

4

(
1− 3α2 + α4

)
α−12k−8.

Once again, we have x2 − 5y2 = 5 since α4 − 3α2 + 1 = 0 as before. We conclude that
(x, y) =

(
L6k+4+L6k+2

2 ,
L6k+3

2

)
for k ≥ 0 is surely a solution to the equation (3.12).

Lastly, the solutions to the equations (1.11), (1.12), (3.9), and (3.10) are presented in the
following theorems, stated without proofs.
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Theorem 3.13. The equation x4 − 5y4 = −1 has no positive integer solutions.

Theorem 3.14. The only positive integer solution of the equation x4−5y4 = 1 is (x, y) = (3, 2).

Theorem 3.15. All positive integer solutions of the equation x2 − 5y2 = −1 are given by
(x, y) =

(
L6k+3

2 ,
F6k+3

2

)
for k ≥ 0.

Theorem 3.16. All positive integer solutions of x2 − 5y2 = 1 are given by (x, y) =
(
L6k
2 , F6k

2

)
for k ≥ 1.
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1 Introduction
Recently, some mathematicians are interested in the iterated partial sums of the sequence

as follows. Chu [1], defined P (Fn) :=

{
n∑

i=1
Fi

}
n≥1

; this is, the function P give the sequence

of partial sums of Fibonacci sequence {Fn}n≥1. The author gave an identity involving P k(Fn) ,
which is the resulting sequence from applying P to {Fn}n≥1 k time, and provide a combinatorial
interpretation of the number in P k(Fn) . For example, for natural number k ,

n∑
m=1

ak−1(m) = ak−1(n+ 2)−
(
n+ k

k − 1

)
and

sk(n) = ak(n− 2(k − 1))

where ak(n) denote the nth number in the sequence P k(Fn) and
sk(n) = |{S ⊆ {1, 2, . . . , n} : |S| ≥ k and minS ≥ |S|}| is a shift of ak(n).

†Speaker. ‡Corresponding author.
Email: supamit.p@ubru.ac.th (S. Pimsri), somthawin.k@ubru.ac.th (S. Khunkhet),
boonyen.t@ubru.ac.th (B. Thongkam).

408



Falcon and Plaza [2], defined the iterated partial sums of the k-Fibonacci sequence, say
S
r)
k,n =

n∑
j=1

S
r−1)
k,j with initial condition S

0)
k,n = Fk,n. They presented the iterated partial sums

of the k-Fibonacci numbers are given as a function of k-Fibonacci numbers. For example, for
natural number r , they showed that

S
r)
k,n =

n∑
j=0

(
r + j − 1

j

)
Fk,n−j (1.1)

and
S
r)
k,n = S

r)
k,n−1 + S

r−1)
k,n . (1.2)

Falcon and Plaza [3, 4], introduced general k-Fibonacci number {Fk,n}n≥0 were found by
studying the recursive application of two geometrical transformations used in the well-known
four-triangle longest-edge (4TLE) partition. From this definition, if k = 1 the classical Fi-
bonacci sequence [5] is obtained 0, 1, 1, 2, 3, 5, 8, . . . and if k = 2 that is the Pell sequence [6]
0, 1, 2, 5, 12, 29, 70, . . .. They presented some properties of these numbers are deduce directly
from elementary matrix algebra. For example, They showed some properties for the sum of
the k-Fibonacci sequence, obtained by summing up the first n matrices

(
Rk−1L

)n as following,

where Rk−1 =

[
−k + 2 k − 1
−k + 1 k

]
and L =

[
0 1
1 1

]
n∑

i=1

Fk,i =
1

k
(Fk,n+1 + Fk,n − 1)

n∑
i=1

Fk,2i =
1

k
(Fk,2n+1 − 1)

n∑
i=1

Fk,2i+1 =
1

k
Fk,2n+2.

In combinatorics, these numbers are related to Ramsey-type theorems for subset of N. Our
purpose in this paper we investigate some properties of the iterated partial sums of the k-
Fibonacci sequence. We give some new identities using (1.1), (1.2) and alternating sums.

2 Preliminaries
In this section, we present the definition of the iterated partial sums of the k-Fibonacci sequence
and their properties.

Definition 2.1. The k-Fibonacci numbers are defined as

Fk,n = kFk,n−1 + Fk,n−2 , n ≥ 2

with Fk,0 = 0 and Fk,1 = 1.

Note that if k = 1 then F1,n = Fn is the classical Fibonacci numbers and if k = 2 then
F2,n = Pn is the Pell numbers.

Definition 2.2. [2] For n, r ≥ 1, the iterated partial sums of the k-Fibonacci numbers are
defined as

S
r)
k,n =

n∑
j=1

S
r−1)
k,j

with initial condition S
0)
k,n = Fk,n.
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Table 1: Iterated partial sums of k-Fibonacci sequences
r\n 1 2 3 4

0 Fk,1 Fk,2 Fk,3 Fk,4

1 Fk,1 Fk,2 + Fk,1 Fk,3 + Fk,2 + Fk,1 Fk,4 + Fk,3 + Fk,2 + Fk,1

2 Fk,1 Fk,2 + 2Fk,1 Fk,3 + 2Fk,2 + 3Fk,1 Fk,4 + 2Fk,3 + 3Fk,2 + 4Fk,1

3 Fk,1 Fk,2 + 3Fk,1 Fk,3 + 3Fk,2 + 6Fk,1 Fk,4 + 3Fk,3 + 6Fk,2 + 10Fk,1

4 Fk,1 Fk,2 + 4Fk,1 Fk,3 + 4Fk,2 + 10Fk,1 Fk,4 + 4Fk,3 + 10Fk,2 + 20Fk,1

Table 2: Iterated partial sums of k-Fibonacci sequences in power of k.
r\n 1 2 3 4 5

0 1 k k2 + 1 k3 + 2k k4 + 3k2 + 1
1 1 k + 1 k2 + k + 2 k3 + k2 + 3k + 2 k4 + k3 + 4k2 + 3k + 3
2 1 k + 2 k2 + 2k + 4 k3 + 2k2 + 5k + 6 k4 + 2k3 + 6k2 + 8k + 9
3 1 k + 3 k2 + 3k + 7 k3 + 3k2 + 8k + 13 k4 + 3k3 + 9k2 + 16k + 22
4 1 k + 4 k2 + 4k + 11 k3 + 4k2 + 12k + 24 k4 + 4k3 + 13k2 + 28k + 46

Table 3: Iterated partial sums of the classical Fibonacci sequences (k = 1)
r\n 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 2 3 5 8 13 21 34 55 89 144
1 1 2 4 7 12 20 33 54 88 143 232 376
2 1 3 7 14 26 46 79 133 221 364 596 972
3 1 4 11 25 51 97 176 309 530 894 1490 2462
4 1 5 16 41 92 189 365 674 1204 2098 3588 6050

Table 4: Iterated partial sums of the Pell sequences (k = 2)
r\n 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 5 12 29 70 169 408 985 2378 5741 13860
1 1 3 8 20 49 119 288 696 1681 4059 9800 23660
2 1 4 12 32 81 200 488 1184 2865 6924 16724 40384
3 1 5 17 49 130 330 818 2002 4867 11791 28515 68899
4 1 6 23 72 202 532 1350 3352 8219 20010 48525 117424

The Table 1 shown the first elements of these sequences. By applying elements in Table 1,
the following sequences are obtained in Tables 2-4.

Theorem 2.3. [2] For r ≥ 1,

S
r)
k,n =

n∑
j=0

(
r + j − 1

j

)
Fk,n−j .

Theorem 2.4. [2] For r ≥ 1,
S
r)
k,n = S

r)
k,n−1 + S

r−1)
k,n .

3 Main Results

In this section, we study the sums and alternating sums of iterated partial sums of k-Fibonacci
sequence.
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Theorem 3.1. For m ≥ 0,

m∑
r=0

S
r)
k,n = (m+ 1)Fk,n +

n∑
j=1

(
m+ j

j + 1

)
Fk,n−j .

Proof. From Theorem 2.3, we have

m∑
r=0

S
r)
k,n = S

0)
k,n +

m∑
r=1

S
r)
k,n

= S
0)
k,n +

m∑
r=1

 n∑
j=0

(
r + j − 1

j

)
Fk,n−j


= S

0)
k,n +

n∑
j=0

(
m∑
r=1

(
r + j − 1

j

)
Fk,n−j

)

= S
0)
k,n +

n∑
j=0

(
Fk,n−j

m∑
r=1

(
r + j − 1

j

))

= S
0)
k,n +

n∑
j=0

(
m+ j

j + 1

)
Fk,n−j

= Fk,n +
n∑

j=0

(
m+ j

j + 1

)
Fk,n−j

= Fk,n +

(
m

1

)
Fk,n +

n∑
j=1

(
m+ j

j + 1

)
Fk,n−j

= (m+ 1)Fk,n +
n∑

j=1

(
m+ j

j + 1

)
Fk,n−j .

Corollary 3.2. For m ≥ 0 and n ≥ 1,

1.
m∑
r=0

S
r)
1,n = Fn +

n∑
j=0

(
m+ j

j + 1

)
Fn−j;

2.
m∑
r=0

S
r)
2,n = Pn +

n∑
j=0

(
m+ j

j + 1

)
Pn−j.

Corollary 3.3. For m ≥ 0,

1.
m∑
r=0

S
r)
k,1 = (m+ 1)Fk,1;

2.
m∑
r=0

S
r)
k,2 = (m+ 1)Fk,2 +

m(m+ 1)

2
Fk,1;

3.
m∑
r=0

S
r)
k,3 = (m+ 1)Fk,3 +

m(m+ 1)

2
Fk,2 +

m(m+ 1)(m+ 2)

3!
Fk,1.
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Theorem 3.4. For n ≥ 1,

n∑
r=0

S
n−r)
k,r+1 = Fk,n+1 +

n∑
j=1

2n−jFk,j .

Proof.

n∑
r=0

S
n−r)
k,r+1 = S

0)
k,n+1 +

n−1∑
r=0

S
n−r)
k,r+1

= Fk,n+1 +

n−1∑
r=0

[
r+1∑
i=0

(
n− r + i− 1

i

)
Fk,r+1−i

]

= Fk,n+1 +

n−1∑
r=0

[(
n− r − 1

0

)
Fk,r+1 +

(
n− r

1

)
Fk,r + · · ·+

(
n− 1

r

)
Fk,1

]

= Fk,n+1 +

n−1∑
r=0

(
n− 1

r

)
Fk,1 +

n−2∑
r=0

(
n− 2

r

)
Fk,2 + · · ·+

(
0

0

)
Fk,n

= Fk,n+1 + 2n−1Fk,1 + 2n−2Fk,2 + · · ·+ Fk,n

= Fk,n+1 +
n∑

j=1

2n−jFk,j .

Corollary 3.5. For n ≥ 1,

1.
n∑

r=0

S
n−r)
1,r+1 = Fn+1 +

n∑
j=1

2n−jFj;

2.
n∑

r=0

S
n−r)
2,r+1 = Pn+1 +

n∑
j=1

2n−jPj.

Example 3.6. For n = 1, 2, 3,

1∑
r=0

S
1−r)
k,r+1 = Fk,2 + Fk,1;

2∑
r=0

S
2−r)
k,r+1 = Fk,3 + Fk,2 + 2Fk,1;

3∑
r=0

S
3−r)
k,r+1 = Fk,4 + Fk,3 + 2Fk,2 + 4Fk,1.

Next, we present alternating sums of iterated partial sums of k-Fibonacci sequence.

Theorem 3.7. For n ≥ 1,

n∑
r=0

(−1)rS
n−r)
k,r+1 =

{
Fk,n − Fk,n+1 ; n is odd;
Fk,n+1 − Fk,n ; n is even.
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Proof. From Theorem 2.4 we have
n∑

r=0

(−1)rS
n−r)
k,r+1 = S

n)
k,1 +

n−1∑
r=1

(−1)r
(
S
n−r)
k,r + S

n−r−1)
k,r+1

)
+ (−1)nS

0)
k,n+1

= S
n)
k,1 −

(
S
n−1)
k,1 + S

n−2)
k,2

)
+ · · ·+ (−1)n−1

(
S
1)
k,n−1 + S

0)
k,n

)
+ (−1)nS

0)
k,n+1

= (−1)n−1S
0)
k,n + (−1)nS

0)
k,n+1

= (−1)n
(
S
0)
k,n+1 − S

0)
k,n

)
= (−1)n (Fk,n+1 − Fk,n) .

Corollary 3.8. For n ≥ 1,

1.
n∑

r=0

(−1)rS
n−r)
1,r+1 =

{
−Fn−1 ; n is odd;
Fn−1 ; n is even.

2.
n∑

r=0

(−1)rS
n−r)
2,r+1 =

{
Pn − Pn+1 ; n is odd;
Pn+1 − Pn ; n is even.

The following theorem present different of alternating sums of iterated partial sum of k-
Fibonacci sequence.
Theorem 3.9. For n ≥ 1,

n−1∑
r=0

(−1)r
[
kS

n−r)
k,r+1 − S

n−r−1)
k,r+1

]
= (−1)n [Fk,n − Fk,n+1] .

Proof. From Theorem 3.7 we have,
n∑

r=0

(−1)rkS
n−r)
k,r+1 = (−1)nk (Fk,n+1 − Fk,n) (3.1)

n−1∑
r=0

(−1)rS
n−r−1)
k,r+1 = (−1)n−1 (Fk,n − Fk,n−1) . (3.2)

Subtract (3.2) from (3.1) we get

(−1)nkFk,n+1 +

n−1∑
r=0

(−1)r
[
kS

n−r)
k,r+1 − S

n−r−1)
k,r+1

]
= (−1)n (kFk,n+1 − kFk,n + Fk,n − Fk,n−1)

n−1∑
r=0

(−1)r
[
kS

n−r)
k,r+1 − S

n−r−1)
k,r+1

]
= (−1)n (Fk,n − Fk,n+1) .

From Theorems 3.7 and 3.9, we have

n∑
r=0

(−1)rS
n−r)
k,r+1 =

n−1∑
r=0

(−1)r+1
[
kS

n−r)
k,r+1 − S

n−r−1)
k,r+1

]
.

Conclusion. In this paper, we present the sums of the iterated partial sums of k-Fibonacci
sequence and alternating sums. Moreover, we present results to some special cases such as
classical Fibonacci and Pell sequences.
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สมบัติบางประการสำหรับลำดับ k-โอเรสเมในรูปแบบเชิงซ้อน∗
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บทคัดย่อ

ในงานวิจัยนี้ได้พิสูจน์สมบัติของลำดับ k-โอเรสเมในรูปแบบเชิงซ้อน โดยการสร้างฟังก์ชันก่อกำเนิด พิสูจน์
สูตรไบเนตและเอกลักษณ์บางประการของลำดับ k-โอเรสเมเชิงซ้อน

คำสำคัญ: k-โอเรสเม, k-โอเรสเมเชิงซ้อน, ฟังก์ชันก่อกำเนิด
2020 MSC: ปฐมภูมิ 11B37; ทุติยภูมิ 11B39

1 บทนำ
จากการนำเสนอของ Horadam [4] เกี่ยวกับประวัติความเป็นมาของตัวเลขที่เกิดจากนิโคล โอเรส

เม คือลำดับ {On}n≥1 =
{ n

2n

}
=
{1
2
,
2

4
,
3

8
, ...,

n

2n
, ...
}
โดยที่ตัวเลขของโอเรสเมสามารถนิยามผ่านความ

สัมพันธ์เวียนเกิด คือ On+2 = On+1 −
1

4
On มีเงื่อนไขเริ่มต้น คือ O0 = 0 และ O1 =

1

2
ซึ่งจำนวนโอเรส

เมมีคุณสมบัติที่น่าสนใจเป็นจำนวนมากและมีบทประยุกต์ในหลายสาขาของวิทยาศาสตร์ (ดูตัวอย่างได้จาก [1–
3] ) จากนั้น Cerda-Morales [5] ได้กล่าวถึงนิยามความสัมพันธ์เวียนเกิดของลำดับ k-โอเรสเมว่่า O

(k)
n =

O
(k)
n−1 − 1

k2
O

(k)
n−2 โดยมีเงื่อนไขเริ่มต้นของสองจำนวนแรก คือ O

(k)
0 = 0 และ O

(k)
1 =

1

k
ซึ่งได้พิสูจน์สูตร

ไบเนต เอกลักษณ์ของ Cassini ของลำดับ k-โอเรสเม โดยมีเงื่อนไข คือ k2 − 4 > 0 และได้พิสูจน์สูตรการ
หาผลรวม รวมถึงการพิสูจน์คุณสมบัติหลายประการของพหุนามของ k-โอเรสเม และ Soykan [7] ได้แนะนำ
k -โอเรสเมทั่วไป ได้กล่าวถึงลำดับ k-โอเรสเม และลำดับ k-โอเรสเมลูคัส ซึ่งได้สร้างฟังก์ชันก่อกำเนิด พิสูจน์
เอกลักษณ์ของ Cassini พิสูจน์เอกลักษณ์ของ Catalan พิสูจน์เอกลักษณ์ของ d’Ocagne ของลำดับ k-โอเรสเม
และได้พิสูจน์สูตรผลรวมรูปแบบต่าง ๆ พร้อมทั้งการหาเมทริกซ์ที่เกี่ยวข้องกับตัวเลข k-โอเรสเม ที่มีเงื่อนไข คือ
k2 − 4 > 0

∗งานวิจัยเรื่องนี้ได้รับทุนสนับสนุนจากภาควิชาคณิตศาสตร์ และคณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา
†ผู้นำเสนอ ‡ผู้แต่งหลัก
อีเมล: 63030028@go.buu.ac.th (ชนนิกานต์ คนเพียร), boonyong@buu.ac.th (บุญยงค์ ศรีพลแผ้ว).
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จากนิยามความสัมพันธ์เวียนเกิดของลำดับฟีโบนักชี ที่กล่าวว่า Fn+2 = Fn+1+Fn ซึ่งมีเงื่อนไขเริ่มต้นของ
สองจำนวนแรก คือ F0 = 0, F1 = 1 ตามลำดับ และ Harman [6] ได้สร้างนิยามลำดับฟิโบนักชีเชิงซ้อน เมื่อ
n เป็นจำนวนเต็ม คือ

Gn = Fn + iFn+1

โดย i =
√
−1 และได้สร้างฟังก์ชันก่อกำเนิด พิสูจน์สูตรไบเนตและเอกลักษณ์ต่าง ๆ ของลำดับฟิโบนักชีเชิงซ้อน

งานวิจัยนี้จึงสนใจที่จะศึกษาลำดับ k-โอเรสเม เพื่อนำมาทำเป็นลำดับ k-โอเรสเมเชิงซ้อน พร้อมทั้งสร้าง
ฟังก์ชันก่อกำเนิด พิสูจน์สูตรไบเนต พิสูจน์เอกลักษณ์และสมบัติบางประการ รวมถึงสูตรของผลรวมรูปแบบ
ต่าง ๆ ของลำดับ k-โอเรสเมเชิงซ้อน

2 ความรู้พื้นฐานและงานวิจัยที่เกี่ยวข้อง
ในงานวิจัยของ Cerda-Morales [5] ได้นิยามลำดับทั่วไปของ k-โอเรสเม จากความสัมพันธ์เวียนเกิด คือO

(k)
n =

O
(k)
n−1 − 1

k2
O

(k)
n−2 โดยมีเงื่อนไขเริ่มต้น คือ O

(k)
0 = 0 และ O

(k)
1 =

1

k
และกล่าวถึงสูตรไบเนตของลำดับ k-โอ

เรสเม เมื่อ k2 − 4 > 0 คือ O
(k)
n =

1√
k2 − 4

(
αn − βn

)
เมื่อ α =

k +
√
k2 − 4

2k
และ β =

k −
√
k2 − 4

2k

โดยที่ α และ β เป็นผลเฉลยของสมการลักษณะเฉพาะ r2 − r +
1

k2
= 0

นอกจากนั้นในงานวิจัยของ Cerda-Morales [5] ได้พิสูจน์เอกลักษณ์ของ Cassini ของลำดับ k-โอเรสเม

O
(k)
n+1O

(k)
n−1 −

(
O(k)

n

)2
= −

(
1

k2

)n

Soykan [7] ได้พิสูจน์เอกลักษณ์ของ Catalan และเอกลักษณ์ของ d’Ocagne ของลำดับ k-โอเรสเม โดยที่
m,n และ r เป็นจำนวนเต็ม เมื่อ k2 − 4 > 0 ตามลำดับ คือ

O
(k)
n+rO

(k)
n−r −

(
O(k)

n

)2
= − 1

22rk2n(k2 − 4)

[(
k +

√
k2 − 4

)r
−
(
k −

√
k2 − 4

)r]2
และ

O
(k)
m+1O

(k)
n −O(k)

m O
(k)
n+1 = − 1

k
√
k2 − 4

(
αmβn − αnβm

)

3 ผลการศึกษา
จากงานวิจัยของ Harman [6] ที่ได้ให้นิยามลำดับทั่วไปของฟิโบนักชีเชิงซ้อน เราได้นำแนวความคิด

เดียวกันมาสร้างนิยามของลำดับ k-โอเรสเมเชิงซ้อน ดังนี้
นิยาม 3.1. ลำดับทั่วไปของ k-โอเรสเมเชิงซ้อน (CO

(k)
n

) เมื่อ n เป็นจำนวนเต็ม กำหนดโดย

CO(k)
n = O(k)

n + iO
(k)
n+1

โดย O
(k)
n คือพจน์ที่ n ของลำดับ k-โอเรสเม และ i =

√
−1

เราจะเริ่มจากการพิสูจน์สมการเวียนเกิดของพจน์ที่ n ของลำดับ k -โอเรสเมเชิงซ้อน ดังนี้

บทตั้ง 3.2. สมการเวียนเกิดของ CO
(k)
n โดยที่ n เป็นจำนวนเต็ม คือ

CO
(k)
n+2 = CO

(k)
n+1 −

1

k2
CO(k)

n
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พิสูจน์. จาก CO
(k)
n+2 = O

(k)
n+2 + iO

(k)
n+3 จะได้

CO
(k)
n+2 =

(
O

(k)
n+1 − 1

k2
O(k)

n

)
+ i

(
O

(k)
n+2 − 1

k2
O

(k)
n+1

)
= O

(k)
n+1 −

1

k2
O(k)

n + iO
(k)
n+2 −

1

k2
iO

(k)
n+1

= O
(k)
n+1 + iO

(k)
n+2 −

1

k2

(
O(k)

n + iO
(k)
n+1

)
= CO

(k)
n+1 −

1

k2
CO(k)

n

เราพิสูจน์สูตรไบเนตของลำดับ k-โอเรสเมเชิงซ้อน ซึ่งเป็นสูตรในการหาค่าพจน์ทั่วไปของลำดับ k-โอเรสเม
เชิงซ้อน

ทฤษฎีบท 3.3. สูตรไบเนตของลำดับ k-โอเรสเมเชิงซ้อน เมื่อ n เป็นจำนวนเต็ม และ k2 − 4 > 0 คือ

CO(k)
n =

1√
k2 − 4

[
αnα̃− βnβ̃

]

เมื่อ α =
k +

√
k2 − 4

2k
, α̃ = 1 + αi, β =

k −
√
k2 − 4

2k
และ β̃ = 1 + βi

โดยที่ α และ β เป็นผลเฉลยของสมการลักษณะเฉพาะ r2 − r +
1

k2
= 0

พิสูจน์. จากทฤษฎีบทสูตรไบเนตของลำดับ k-โอเรสเม สามารถนำมาพิสูจน์ได้ ดังนี้

CO(k)
n = O(k)

n + iO
(k)
n+1

=

[
1√

k2 − 4

(
αn − βn

)]
+ i

[
1√

k2 − 4

(
αn+1 − βn+1

)]
=

1√
k2 − 4

[
αn − βn + iαn+1 − iβn+1

]
=

1√
k2 − 4

[
αn + iαn+1 −

(
βn + iβn+1

)]
=

1√
k2 − 4

[
αn
(
1 + αi

)
− βn

(
1 + βi

)]
=

1√
k2 − 4

[
αnα̃− βnβ̃

]

ฟังก์ชันก่อกำเนิดของลำดับ k-โอเรสเมเชิงซ้อน เมื่อ n เป็นจำนวนเต็ม อยู่ในรูปทั่วไปคือ

g(t) =

∞∑
n=0

CO(k)
n tn

เราจะนำฟังก์ชันก่อกำเนิดของลำดับ k-โอเรสเมเชิงซ้อน มาหาค่าผลบวกให้ได้ผลลัพธ์เป็นทฤษฎีบทดังต่อไป
นี้
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ทฤษฎีบท 3.4. ฟังก์ชันก่อกำเนิดของลำดับ k-โอเรสเมเชิงซ้อน สามารถเขียนได้ดังนี้

g(t) =
(i+ t)k

k2 − k2t+ t2

พิสูจน์. โดยใช้ความสัมพันธ์เวียนเกิดของลำดับ k-โอเรสเมเชิงซ้อนจะได้ว่า

g(t) ·

[
t0 − t1 +

1

k2
t2

]

=

( ∞∑
n=0

CO(k)
n tn

)[
t0 − t1 +

1

k2
t2

]

=
∞∑
n=0

CO(k)
n tn −

∞∑
n=0

CO(k)
n tn+1 +

1

k2

∞∑
n=0

CO(k)
n tn+2

=

∞∑
j=0

CO
(k)
j tj −

∞∑
j=1

CO
(k)
j−1t

j +
1

k2

∞∑
j=2

CO
(k)
j−2t

j

=

(
CO

(k)
0 t0 + CO

(k)
1 t1 +

∞∑
j=2

CO
(k)
j tj

)
−

(
CO

(k)
0 t1 +

∞∑
j=2

CO
(k)
j−1t

j

)
+

1

k2

( ∞∑
j=2

CO
(k)
j−2t

j

)

= CO
(k)
0 t0 + CO

(k)
1 t− CO

(k)
0 t+

∞∑
j=2

[
CO

(k)
j − CO

(k)
j−1 +

1

k2
CO

(k)
j−2

]
tj

= CO
(k)
0 t0 + CO

(k)
1 t− CO

(k)
0 t

จะได้ว่า

g(t) =
CO

(k)
0 t0 + CO

(k)
1 t− CO

(k)
0 t[

t0 − t1 +
1

k2
t2
]

=
CO

(k)
0

(
1− t

)
+ CO

(k)
1 t

1− t+
t2

k2

แทนค่า CO
(k)
0 และ CO

(k)
1 จะได้ว่า

g(t) =

i

k

(
1− t

)
+

(
1 + i

k

)
t

1− t+
t2

k2

=

(
i− it+ t+ it

k

)
(
k2 − k2t+ t

k2

)
=

(
i+ t

)
k2

k
(
k2 − k2t+ t2

)
=

(
i+ t

)
k

k2 − k2t+ t2
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ต่อไปเราจะพิสูจน์เอกลักษณ์ Cassini ของลำดับ k-โอเรสเมเชิิงซ้อน โดยใช้เอกลักษณ์ของ Cassini และ
เอกลักษณ์ของ d’Ocagne ของลำดับ k-โอเรสเม
ทฤษฎีบท 3.5. เอกลักษณ์ Cassini ของลำดับ k-โอเรสเมชิงซ้อน เมื่อ n เป็นจำนวนเต็ม และ k2 − 4 > 0 คือ

CO
(k)
n+1 · CO

(k)
n−1 −

(
CO(k)

n

)2
=

(
1

k

)2n−1
[(

1

k

)3

−
(
1

k

)
− i

(
1

k

)]

พิสูจน์. จากนิยามของลำดับทั่วไปของ k-โอเรสเมเชิงซ้อนจะได้ว่า
CO

(k)
n+1 · CO

(k)
n−1 −

(
CO

(k)
n

)2
=

(
O

(k)
n+1 + iO

(k)
n+2

)(
O

(k)
n−1 + iO(k)

n

)
−
(
O(k)

n + iO
(k)
n+1

)2
= O

(k)
n+1O

(k)
n−1 + iO

(k)
n+1O

(k)
n + iO

(k)
n+2O

(k)
n−1 + i2O

(k)
n+2O

(k)
n

−
[(

O(k)
n

)2
+ 2iO(k)

n O
(k)
n+1 + i2

(
O

(k)
n+1

)2]
= O

(k)
n+1O

(k)
n−1 + iO

(k)
n+1O

(k)
n + iO

(k)
n+2O

(k)
n−1 −O

(k)
n+2O

(k)
n

−
(
O(k)

n

)2
− 2iO(k)

n O
(k)
n+1 +

(
O

(k)
n+1

)2
= O

(k)
n+1O

(k)
n−1 −O

(k)
n+2O

(k)
n −

(
O(k)

n

)2
+
(
O

(k)
n+1

)2
+
(
O

(k)
n+1O

(k)
n +O

(k)
n+2O

(k)
n−1 − 2O(k)

n O
(k)
n+1

)
i

=

[
O

(k)
n+1O

(k)
n−1 −

(
O(k)

n

)2]
−
[
O

(k)
n+2O

(k)
n −

(
O

(k)
n+1

)2]
+
(
O

(k)
n+2O

(k)
n−1 −O

(k)
n+1O

(k)
n

)
i

จากเอกลักษณ์ Cassini และ d’Ocagne ของลำดับ k-โอเรสเม และบทตั้ง 3.3 จะได้ว่า
CO

(k)
n+1 · CO

(k)
n−1 −

(
CO

(k)
n

)2
= −

(
1

k

)2n

+

(
1

k

)2(n+1)

− 1

k
√
k2 − 4

[
αn+1βn−1 − αn−1βn+1

]
i

=

(
1

k

)2n+2

−
(
1

k

)2n

− 1

k
√
k2 − 4

[
α2
(
αβ
)n−1 − β2

(
αβ
)n−1

]
i

=

(
1

k

)2n+2

−
(
1

k

)2n

−
(
1

k

)
1√

k2 − 4

[
α2

(
1

k2

)n−1

− β2

(
1

k2

)n−1
]
i

=

(
1

k

)2n+2

−
(
1

k

)2n

−
(
1

k

)
1√

k2 − 4

[(
1

k

)2(n−1)(
α2 − β2

)]
i

=

(
1

k

)2n+2

−
(
1

k

)2n

−
(
1

k

)2n−1
[

1√
k2 − 4

(
α2 − β2

)]
i

=

(
1

k

)2n−1
[(

1

k

)3

−
(
1

k

)
− i

(
α2 − β2

√
k2 − 4

)]

จากสูตรไบเนต จะได้ว่า

CO
(k)
n+1 · CO

(k)
n−1 −

(
CO(k)

n

)2
=

(
1

k

)2n−1
[(

1

k

)3

−
(
1

k

)
− iO

(k)
2

]
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ดังนั้น

CO
(k)
n+1 · CO

(k)
n−1 −

(
CO(k)

n

)2
=

(
1

k

)2n−1
[(

1

k

)3

−
(
1

k

)
− i

(
1

k

)]

เราจะพิสูจน์ บทตั้ง 3.5 โดยใช้สูตรไบเนตของลำดับ k-โอเรสเม เพื่อนำสมบัติของบทตั้งนี้ไปใช้ในการพิสูจน์
ทฤษฎีบท 3.6

บทตั้ง 3.6. สมบัติบางประการของลำดับ k-โอเรสเม โดยที่ n และ r เป็นจำนวนเต็ม เมื่อ k2 − 4 > 0 คือ

O
(k)
n+rO

(k)
n−r+1 +O

(k)
n+r+1O

(k)
n−r − 2O(k)

n O
(k)
n+1 = −(k)−2n+2r

(
O(k)

r

)2
พิสูจน์. จากสูตรของไบเนต จะได้ว่า
O

(k)
n+rO

(k)
n−r+1 +O

(k)
n+r+1O

(k)
n−r − 2O

(k)
n O

(k)
n+1

=
1√

k2 − 4

(
αn+r − βn+r

) 1√
k2 − 4

(
αn−r+1 − βn−r+1

)
+

1√
k2 − 4

(
αn+r+1 − βn+r+1

) 1√
k2 − 4

(
αn−r − βn−r

)
−2

[
1√

k2 − 4

(
αn − βn

) 1√
k2 − 4

(
αn+1 − βn+1

)]
=

1

k2 − 4

[(
αn+r − βn+r

)(
αn−r+1 − βn−r+1

)
+
(
αn+r+1 − βn+r+1

)(
αn−r − βn−r

)
−2
(
αn − βn

)(
αn+1 − βn+1

)]
=

1

k2 − 4

[
αn+rαn−r+1 − αn+rβn−r+1 − αn−r+1βn+r + βn+rβn−r+1 + αn+r+1αn−r

−αn+r+1βn−r − αn−rβn+r+1 + βn−rβn+r+1 − 2αnαn+1 + 2αnβn+1 + 2αn+1βn

−2βnβn+1

]
=

1

k2 − 4

[
α2n+1 − αn+rβn−r+1 − αn−r+1βn+r + β2n+1 + α2n+1 − αn+r+1βn−r

−αn−rβn+r+1 + β2n+1 − 2α2n+1 + 2αnβn+1 + 2αn+1βn − 2β2n+1

]
=

1

k2 − 4

[
− αn+rβn−r+1 − αn−r+1βn+r − αn+r+1βn−r − αn−rβn+r+1 + 2αnβn+1

+2αn+1βn

]
=

−
(
αβ
)n−r

k2 − 4

[
αn+r−(n−r)βn−r+1−(n−r) + αn−r+1−(n−r)βn+r−(n−r)

+αn+r+1−(n−r)βn−r−(n−r) + αn−r−(n−r)βn+r+1−(n−r) − 2αn−(n−r)βn+1−(n−r)

−2αn+1−(n−r)βn−(n−r)

]
=

−
(
αβ
)n−r

k2 − 4

[
α2rβ + αβ2r + α2r+1 + β2r+1 − 2αrβr+1 − 2αr+1βr

]
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=
−
(
αβ
)n−r

k2 − 4

[(
α2r+1 + αβ2r − 2αr+1βr

)
+
(
β2r+1 + α2rβ − 2αrβr+1

)]
=

−
(
αβ
)n−r

k2 − 4

[
α
(
α2r + β2r − 2αrβr

)
+ β

(
β2r + α2r − 2αrβr

)]
=

−
(
αβ
)n−r

k2 − 4

[
α
(
αr − βr

)2
+ β

(
αr − βr

)2]
=

−
(
αβ
)n−r

k2 − 4

[(
α+ β

)(
αr − βr

)2]
= −

(
αβ
)n−r(

α+ β
) 1

k2 − 4

(
αr − βr

)2
= −

(
αβ
)n−r(

α+ β
)( 1√

k2 − 4

)2(
αr − βr

)2
ดังนั้น

O
(k)
n+rO

(k)
n−r+1 +O

(k)
n+r+1O

(k)
n−r − 2O(k)

n O
(k)
n+1 = −

(
1

k2

)n−r(
1
)(

O(k)
r

)2
= −

(
k
)−2n+2r

(
O(k)

r

)2

ต่อไปเราจะพิสูจน์เอกลักษณ์ Catalan ของลำดับ k-โอเรสเมเชิงซ้อน โดยใช้เอกลักษณ์ของ Catalan และ
สูตรไบเนต ของลำดับ k-โอเรสเม และบทตั้ง 3.6

ทฤษฎีบท 3.7. เอกลักษณ์ Catalan ของลำดับ k-โอเรสเมเชิงซ้อน โดยที่ n และ r เป็นจำนวนเต็ม
เมื่อ k2 − 4 > 0 คือ

CO
(k)
n+rCO

(k)
n−r −

(
CO(k)

n

)2
=
(
k
)−2n+2r

[
1

k2
− 1− i

](
O(k)

r

)2
พิสูจน์. จากนิยามของลำดับ k-โอเรสเมเชิงซ้อน จะได้ว่า
CO

(k)
n+rCO

(k)
n−r −

(
CO

(k)
n

)2
=

(
O

(k)
n+r + iO

(k)
n+r+1

)(
O

(k)
n−r + iO

(k)
n−r+1

)
−
(
O(k)

n + iO
(k)
n+1

)2
= O

(k)
n+rO

(k)
n−r + iO

(k)
n+rO

(k)
n−r+1 + iO

(k)
n+r+1O

(k)
n−r + i2O

(k)
n+r+1O

(k)
n−r+1

−
[(

O(k)
n

)2
+ 2iO(k)

n O
(k)
n+1 + i2

(
O

(k)
n+1

)2]
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= O
(k)
n+rO

(k)
n−r + iO

(k)
n+rO

(k)
n−r+1 + iO

(k)
n+r+1O

(k)
n−r −O

(k)
n+r+1O

(k)
n−r+1

−
(
O(k)

n

)2
− 2iO(k)

n O
(k)
n+1 +

(
O

(k)
n+1

)2
= O

(k)
n+rO

(k)
n−r −O

(k)
n+r+1O

(k)
n−r+1 −

(
O(k)

n

)2
+
(
O

(k)
n+1

)2
+

[
O

(k)
n+rO

(k)
n−r+1 +O

(k)
n+r+1O

(k)
n−r − 2O(k)

n O
(k)
n+1

]
i

=

[
O

(k)
n+rO

(k)
n−r −

(
O(k)

n

)2]
−
[
O

(k)
n+r+1O

(k)
n−r+1 −

(
O

(k)
n+1

)2]
+

[
O

(k)
n+rO

(k)
n−r+1 +O

(k)
n+r+1O

(k)
n−r − 2O(k)

n O
(k)
n+1

]
i

จากเอกลักษณ์ Catalan และบทตั้ง 3.6 จะได้ว่า
CO

(k)
n+rCO

(k)
n−r −

(
CO

(k)
n

)2
= − 1

22rk2n
(
k2 − 4

)[(k +
√
k2 − 4

)r − (k −
√
k2 − 4

)r]2
+

1

22rk2(n+1)
(
k2 − 4

)[(k +
√
k2 − 4

)r − (k −
√
k2 − 4

)r]2 − (k)−2n+2r
(
O(k)

r

)2
i

= − 1

22rk2r
(
k2n−2r

)( 1√
k2 − 4

)2[(
k +

√
k2 − 4

)r − (k −
√

k2 − 4
)r]2

+
1

22rk2r
(
k2n−2r+2

)( 1√
k2 − 4

)2[(
k +

√
k2 − 4

)r − (k −
√
k2 − 4

)r]2
−
(
k
)−2n+2r

(
O(k)

r

)2
i

= − 1

k2n−2r

(
1√

k2 − 4

[(
k +

√
k2 − 4

2k

)r

−
(
k −

√
k2 − 4

2k

)r])2

+
1

k2n−2r+2

(
1√

k2 − 4

[(
k +

√
k2 − 4

2k

)r

−
(
k −

√
k2 − 4

2k

)r])2

−
(
k
)−2n+2r

(
O(k)

r

)2
i

จากสูตรของไบเนต จะได้ว่า

CO
(k)
n+rCO

(k)
n−r −

(
CO(k)

n

)2
= − 1

k2n−2r

(
O(k)

r

)2
+

1

k2n−2r+2

(
O(k)

r

)2
− 1

k2n−2r

(
O(k)

r

)2
i

=
1

k2n−2r

[
− 1 +

1

k2
− i

](
O(k)

r

)2
= k−2n+2r

[
1

k2
− 1− i

](
O(k)

r

)2
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ถัดมาเราจะพิสูจน์เอกลักษณ์ d’Ocagne ของลำดับ k-โอเรสเมเชิงซ้อน โดยใช้สูตรไบเนตของลำดับ k-โอ
เรสเมและสูตรไบเนตของลำดับ k- โอเรสเมเชิงซ้อน

ทฤษฎีบท 3.8. เอกลักษณ์ d’Ocagne ของลำดับ k-โอเรสเมเชิงซ้อน โดยที่ m และ n เป็นจำนวนเต็ม
เมื่อ k2 − 4 > 0 คือ

CO
(k)
n+1 · CO(k)

m − CO(k)
n · CO

(k)
m+1 =

(
1

k

)2n+1

α̃β̃O
(k)
m−n

พิสูจน์. โดยใช้สูตรของไบเนต จะได้ว่า
CO

(k)
n+1 · CO

(k)
m − CO

(k)
n · CO

(k)
m+1

=
1√

k2 − 4

(
αn+1α̃− βn+1β̃

)
1√

k2 − 4

(
αmα̃− βmβ̃

)
− 1√

k2 − 4

(
αnα̃− βnβ̃

)
1√

k2 − 4

(
αm+1α̃− βm+1β̃

)
=

1

k2 − 4

[(
αn+1α̃− βn+1β̃

)(
αmα̃− βmβ̃

)

−
(
αnα̃− βnβ̃

)(
αm+1α̃− βm+1β̃

)]

=
1

k2 − 4

[(
αn+1α̃αmα̃− αn+1α̃βmβ̃ − αmα̃βn+1β̃ + βn+1β̃βmβ̃

)

−
(
αnα̃αm+1α̃− αnα̃βm+1β̃ − αm+1α̃βnβ̃ + βnβ̃βm+1β̃

)]

=
1

k2 − 4

[
αn+m+1α̃2 − αn+1α̃βmβ̃ − αmα̃βn+1β̃ + βn+m+1β̃2 −

αn+m+1α̃2 + αnα̃βm+1β̃ + αm+1α̃βnβ̃ − βn+m+1β̃2

]

=
1

k2 − 4

[
− αn+1α̃βmβ̃ − αmα̃βn+1β̃ + αnα̃βm+1β̃ + αm+1α̃βnβ̃

]

=
α̃β̃

k2 − 4

[
− αn+1βm − αmβn+1 + αnβm+1 + αm+1βn

]

=
α̃β̃

k2 − 4

[
− αnβm

(
α− β

)
+ αmβn

(
α− β

)]
=

α̃β̃

k2 − 4

[(
α− β

)(
αmβn − αnβm

)]

=
α̃β̃

k2 − 4

[(
α− β

)
αnβn

(
αm−n − βm−n

)]
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=
α̃β̃

k2 − 4

[(√
k2 − 4

k

)(
1

k

)2n(
αm−n − βm−n

)]

=
1√

k2 − 4

[
α̃β̃

(√
k2 − 4

k

)(
1

k

)2n
]

1√
k2 − 4

(
αm−n − βm−n

)
= α̃β̃

(
1

k

)(
1

k

)2n(αm−n − βm−n

√
k2 − 4

)
= α̃β̃

(
1

k

)2n+1(αm−n − βm−n

√
k2 − 4

)
จากสูตรของไบเนตจะได้ว่า

CO
(k)
m+1 · CO(k)

n − CO(k)
m · CO

(k)
n+1 = α̃β̃

(
1

k

)2n+1

O
(k)
m−n

=

(
1

k

)2n+1

α̃β̃O
(k)
m−n

ต่อมาเราจะพิสูจน์เอกลักษณ์ Honsberger ของลำดับ k-โอเรสเมเชิงซ้อน โดยใช้สูตรไบเนตของลำดับ k-โอ
เรสเมและสูตรไบเนตของลำดับ k-โอเรสเมเชิงซ้อน

ทฤษฎีบท 3.9. เอกลักษณ์ Honsberger ของลำดับ k-โอเรสเมเชิงซ้อน โดยที่ m และ n เป็นจำนวนเต็ม
เมื่อ k2 − 4 > 0 คือ

kO(k)
n CO

(k)
m+1 −

1

k
O

(k)
n−1CO(k)

m = CO
(k)
n+m

พิสูจน์. โดยใช้สูตรของไบเนตในการพิสูจน์ เมื่อ k2α2 = k2α− 1 และ k2β2 = k2β − 1 จะได้ว่า
kO

(k)
n CO

(k)
m+1 −

1

k
O

(k)
n−1CO

(k)
m

= k

(
αn − βn

√
k2 − 4

)(
αm+1α̃− βm+1β̃√

k2 − 4

)
− 1

k

(
αn−1 − βn−1

√
k2 − 4

)(
αmα̃− βmβ̃√

k2 − 4

)
=

1

k2 − 4

[
k

(
αn − βn

)(
αm+1α̃− βm+1β̃

)
− 1

k

(
αn−1 − βn−1

)(
αmα̃− βmβ̃

)]

=
1

k2 − 4

[
k

(
αnαm+1α̃− αnβm+1β̃ − αm+1α̃βn + βnβm+1β̃

)

−1

k

(
αn−1αmα̃− αn−1βmβ̃ − αmα̃βn−1 + βn−1βmβ̃

)]
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=
1

k2 − 4

[
k

(
αn+m+1α̃

)
− 1

k

(
αn+m−1α̃

)
− k

(
αnβm+1β̃

)
+

1

k

(
αn−1βmβ̃

)

−k

(
αm+1α̃βn

)
+

1

k

(
αmα̃βn−1

)
+ k
(
βn+m+1β̃

)
− 1

k

(
βn+m−1β̃

)]

=
1

k2 − 4

[
1

k

(
αn+m−1α̃

)(
k2α2 − 1

)
+

1

k

(
αn−1βmβ̃

)(
1− k2αβ

)

+
1

k

(
αmα̃βn−1

)(
1− k2αβ

)
+

1

k

(
βn+m−1β̃

)(
k2β2 − 1

)]

=
1

k2 − 4

[
1

k

(
αn+m−1α̃

)(
k2α− 1− 1

)
+

1

k

(
αn−1βmβ̃

)(
1− k2

1

k2

)

+
1

k

(
αmα̃βn−1

)(
1− k2

1

k2

)
+

1

k

(
βn+m−1β̃

)(
k2β − 1− 1

)]

=
1

k2 − 4

[
1

k

(
αn+m−1α̃

)(
k2α− 2

)
+

1

k

(
βn+m−1β̃

)(
k2β − 2

)]

=
1

k2 − 4

[
1

k

(
αn+m−1α̃

)(
k2
(
k +

√
k2 − 4

2k

)
− 2

)

+
1

k

(
βn+m−1β̃

)(
k2
(
k −

√
k2 − 4

2k

)
− 2

)]

=
1

k2 − 4

[(
αn+m−1α̃

)
1

k

(
k2 + k

√
k2 − 4− 4

2

)

+

(
βn+m−1β̃

)
1

k

(
k2 − k

√
k2 − 4− 4

2

)]

=
1

k2 − 4

[
αn+m−1α̃

(
k2 + k

√
k2 − 4− 4

2k

)
+ βn+m−1β̃

(
k2 − k

√
k2 − 4− 4

2k

)]

=
1

k2 − 4

[
αn+m−1α̃

(
k2 − 4

2k
+

k
√
k2 − 4

2k

)
+ βn+m−1β̃

(
k2 − 4

2k
− k

√
k2 − 4

2k

)]

=
1√

k2 − 4

[
αn+m−1α̃

(√
k2 − 4

2k
+

k

2k

)
− βn+m−1β̃

(
−

√
k2 − 4

2k
+

k

2k

)]

=
1√

k2 − 4

[
αn+m−1α̃

(
k +

√
k2 − 4

2k

)
− βn+m−1β̃

(
k −

√
k2 − 4

2k

)]

=
1√

k2 − 4

[
αn+m−1α̃

(
α
)
− βn+m−1β̃

(
β
)]

=
1√

k2 − 4

[
αn+mα̃− βn+mβ̃

]
= CO

(k)
n+m
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เราจะพิสูจน์สูตรการหาผลรวมของ n พจน์ของลำดับ k-โอเรสเมเชิงซ้อน โดยใช้สูตรไบเนตของลำดับ k-โอ
เรสเมเชิงซ้อนและสูตรผลบวกจำกัดพจน์ของอนุกรมเรขาคณิต
ทฤษฎีบท 3.10. ผลรวมของ n พจน์สำหรับลำดับ k-โอเรสเมในรูปแบบเชิงซ้อน เมื่อ n เป็นจำนวนเต็ม และ
k2 − 4 > 0 คือ

n∑
j=1

CO
(k)
j = k2

(
CO

(k)
1 − CO

(k)
n+2

)
− CO

(k)
0

พิสูจน์. จากสูตรของไบเนต จะได้ว่า
n∑

j=1

CO
(k)
j

=

n∑
j=1

1√
k2 − 4

(
αjα̃− βj β̃

)

=
1√

k2 − 4

(
α̃

n∑
j=1

αj − β̃
n∑

j=1

βj

)

=
1√

k2 − 4

[
α̃

(
α
(
1− αn

)
1− α

)
− β̃

(
β
(
1− βn

)
1− β

)]

=
1√

k2 − 4

[
α̃

(
α− αn+1

1− α

)
− β̃

(
β − βn+1

1− β

)]

=
1√

k2 − 4

[
α̃
(
α− αn+1

)(
1− β

)
− β̃

(
β − βn+1

)(
1− α

)(
1− α

)(
1− β

) ]

=
1√

k2 − 4

[
αα̃− αα̃β − αn+1α̃+ αn+1α̃β −

(
ββ̃ − αββ̃ − βn+1β̃ + αβn+1β̃

)
α− α+ αβ

]

=
1√

k2 − 4

[
αα̃− αα̃β − αn+1α̃+ αn+1α̃β − ββ̃ + αββ̃ + βn+1β̃ − αβn+1β̃

αβ

]

=
1√

k2 − 4

[
αα̃− ββ̃ − αn+1α̃+ αn+1α̃β + βn+1β̃ − αβn+1β̃

αβ

]

+
1√

k2 − 4

[
−αα̃β + αββ̃

αβ

]

=
1√

k2 − 4

(
1

αβ

)[
αα̃− ββ̃ − αn+1α̃

(
1− β

)
+ βn+1β̃

(
1− α

)]

+
1√

k2 − 4

[
αβ
(
− α̃+ β̃

)
αβ

]

=
k2√
k2 − 4

[
αα̃− ββ̃ − αn+1α̃

(
α
)
+ βn+1β̃

(
β
)]

− 1√
k2 − 4

(
α̃− β̃

)
= k2

[(
αα̃− ββ̃√
k2 − 4

)
−
(
αn+2α̃− βn+2β̃√

k2 − 4

)]
− α̃− β̃√

k2 − 4

= k2
(
CO

(k)
1 − CO

(k)
n+2

)
− CO

(k)
0
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เราจะพิสูจน์สูตรการหาผลรวมไม่จำกัดพจน์ของลำดับ k-โอเรสเมเชิงซ้อน โดยใช้สูตร
ไบเนตของลำดับ k-โอเรสเมเชิงซ้อนและสูตรผลบวกไม่จำกัดพจน์ของอนุกรมเรขาคณิต

ทฤษฎีบท 3.11. ผลรวมไม่จำกัดพจน์สำหรับลำดับ k-โอเรสเมเชิงซ้อน เมื่อ k2 − 4 > 0 คือ
∞∑
j=1

CO
(k)
j = kCO

(k)
2

พิสูจน์.
∞∑
j=1

CO
(k)
j =

∞∑
j=1

1√
k2 − 4

(
αjα̃− βj β̃

)

=
1√

k2 − 4

(
α̃

∞∑
j=1

αj − β̃
∞∑
j=1

βj

)

=
1√

k2 − 4

[
α̃

(
α

1− α

)
− β̃

(
β

1− β

)]

=
1√

k2 − 4

[
αα̃
(
1− β

)
− ββ̃

(
1− α

)
1− β − α+ αβ

]

=
1√

k2 − 4

[
αα̃
(
α
)
− ββ̃

(
β
)

αβ

]

=
1

αβ

[
α2α̃− β2β̃√

k2 − 4

]
= kCO

(k)
2

ต่อมาเราจะพิสูจน์ผลรวมกำลังสองของ n พจน์ของลำดับ k-โอเรสเมเชิงซ้อน โดยใช้บทตั้ง 3.2 และสูตรผล
บวกจำกัดพจน์ของอนุกรมเรขาคณิต

ทฤษฎีบท 3.12. ผลรวมกำลังสองของลำดับ k-โอเรสเมเชิงซ้อน เมื่อ n เป็นจำนวนเต็ม คือ
n∑

j=1

(
CO

(k)
j

)2
=

1

2k2 − 1

[
− k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
+2k2

[(
1

k

)3

−
(
1

k

)
− i

(
1

k

)](
k2n+1 − k

k2n+2 − k2n

)]
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พิสูจน์. การพิสูจน์ เราจะให้ T แทนผลรวมกำลังสอง ดังนี้

(
CO

(k)
1

)2
+
(
CO

(k)
2

)2
+
(
CO

(k)
3

)2
+ . . .+

(
CO(k)

n

)2
=

n∑
j=1

(
CO

(k)
j

)2
= T

จะได้ว่า

T =
n∑

j=1

[
CO

(k)
j+1 +

1

k2
CO

(k)
j−1

]2

=
n∑

j=1

[
k2CO

(k)
j+1 + CO

(k)
j−1

k2

]2

จะได้

k4T =
n∑

j=1

[
k2CO

(k)
j+1 + CO

(k)
j−1

]2

=
n∑

j=1

[
k4
(
CO

(k)
j+1

)2
+ 2k2CO

(k)
j+1CO

(k)
j−1 +

(
CO

(k)
j−1

)2]

= k4
n∑

j=1

(
CO

(k)
j+1

)2
+ 2k2

n∑
j=1

CO
(k)
j+1CO

(k)
j−1 +

n∑
j=1

(
CO

(k)
j−1

)2
จากทฤษฎีบท 3.5 จะได้ว่า

k4T = k4

[
n∑

m=1

(
CO(k)

m

)2
−
(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]

+2k2
n∑

m=1

[(
CO(k)

m

)2
+

(
1

k

)2m−1[(1

k

)3

−
(
1

k

)
− i

(
1

k

)]]

+

[
n∑

m=1

(
CO(k)

m

)2
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2]

= k4

[
T −

(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+ 2k2T

+2k2
n∑

m=1

[(
1

k

)2m−1[(1

k

)3

−
(
1

k

)
− i

(
1

k

)]]

+T +
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
= k4T − k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+ 2k2T

+2k2
[(

1

k

)3

−
(
1

k

)
− i

(
1

k

)] n∑
m=1

(
1

k

)2m−1

+T +
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
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= T

[
k4 + 2k2 + 1

]
− k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+2k2

[(
1

k

)3

−
(
1

k

)
− i

(
1

k

)] n∑
m=1

(
1

k

)2m−1

+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
จะได้

k4T − T

[
k4 + 2k2 + 1

]
= −k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
+2k2

[(
1

k

)3

−
(
1

k

)
− i

(
1

k

)] n∑
m=1

(
1

k

)2m−1

จากการหาอนุกรมเรขาคณิต จะได้ว่า

T

[
2k2 + 1

]
= −k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2

+2k2
[(

1

k

)3

−
(
1

k

)
− i

(
1

k

)](1

k

)
−
(
1

k

)2n+1

1−
(
1

k

)2

= −k4
[(

CO
(k)
1

)2
+
(
CO

(k)
n+1

)2]
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2

+2k2
[(

1

k

)3

−
(
1

k

)
− i

(
1

k

)](k2n − 1

k2n+1

)
(
k2 − 1

k2

)
= −k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
+2k2

[(
1

k

)3

−
(
1

k

)
− i

(
1

k

)](
k2n+1 − k

k2n+2 − k2n

)
จะได้

T =
1

2k2 − 1

[
− k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
+2k2

[(
1

k

)3

−
(
1

k

)
− i

(
1

k

)](
k2n+1 − k

k2n+2 − k2n

)]

ดังนั้น
n∑

j=1

(
CO

(k)
j

)2
=

1

2k2 − 1

[
− k4

[(
CO

(k)
1

)2
+
(
CO

(k)
n+1

)2]
+
(
CO

(k)
0

)2
−
(
CO(k)

n

)2
+2k2

[(
1

k

)3

−
(
1

k

)
− i

(
1

k

)](
k2n+1 − k

k2n+2 − k2n

)]
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ต่อมาเราจะพิสูจน์สูตรการหาผลรวมของ n พจน์ของลำดับ k-โอเรสเมเชิงซ้อน กรณีที่ดัชนีเป็นจำนวนเต็มคู่
โดยใช้สูตรไบเนตของลำดับ k-โอเรสเมเชิงซ้อนและสูตรผลบวกจำกัดพจน์ของอนุกรมเรขาคณิต

ทฤษฎีบท 3.13. การหาผลรวมของ n พจน์ของลำดับ k-โอเรสเมเชิงซ้อน กรณีที่ดัชนีเป็นจำนวนเต็มคู่
เมื่อ n เป็นจำนวนเต็ม และ k2 − 4 > 0 คือ

n∑
j=1

CO
(k)
2j =

k2

2k2 + 1

[
k2
(
CO

(k)
1 − CO

(k)
2n−1

)
+ CO

(k)
0 − CO

(k)
2n−2

]
+ CO

(k)
2n − CO

(k)
0

พิสูจน์. สูตรที่ใช้ในการหาผลรวมกรณีที่ดัชนีเป็นจำนวนเต็มคู่ คือ
n∑

j=1

CO
(k)
2j =

n−1∑
j=0

CO
(k)
2j + CO

(k)
2n − CO

(k)
0

n−1∑
j=0

CO
(k)
2j =

1√
k2 − 4

[
α̃

n−1∑
j=0

α2j − β̃

n−1∑
j=0

β2j

]

=
1√

k2 − 4

[
α̃

(
1− α2n−2

1− α2

)
− β̃

(
1− β2n−2

1− β2

)]
=

1√
k2 − 4

[
α̃+ α2n−2α̃(
1− α

)(
1 + α

) − β̃ − β2n−2β̃(
1− β

)(
1 + β

)]
=

1√
k2 − 4

[
α̃+ α2n−2α̃

β
(
1 + α

) − β̃ − β2n−2β̃

α
(
1 + β

) ]
=

1√
k2 − 4

[(
α̃+ α2n−2α̃

)(
α+ αβ

)
−
(
β̃ − β2n−2β̃

)(
β + αβ

)
αβ + αβ2 + α2β + (αβ)2

]
=

1√
k2 − 4

[
αα̃+ αα̃β − α2n−1α̃− α2n−1α̃β − ββ̃ − αββ̃ + β2n−1β̃ + αβ2n−1β̃

αβ
(
1 + β + α+ αβ

) ]
=

1√
k2 − 4

[(
αα̃− ββ̃

αβ
(
2 + αβ

))−
(
α2n−1α̃− β2n−1β̃

αβ
(
2 + αβ

) )
+

(
αα̃β − αββ̃

αβ
(
2 + αβ

))
−
(
α2n−1α̃β − αβ2n−1β̃

αβ
(
2 + αβ

) )]
=

1

αβ
(
2 + αβ

)[αα̃− ββ̃√
k2 − 4

− α2n−1α̃− β2n−1β̃√
k2 − 4

]
+

1

αβ
(
2 + αβ

)[αα̃β − αββ̃√
k2 − 4

− α2n−1α̃β − αβ2n−1β̃√
k2 − 4

]
=

1

αβ
(
2 + αβ

)[αα̃− ββ̃√
k2 − 4

− α2n−1α̃− β2n−1β̃√
k2 − 4

]
+

1

αβ
(
2 + αβ

)(αβ)[ α̃− β̃√
k2 − 4

− α2n−2α̃− β2n−2β̃√
k2 − 4

]
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=
1

αβ
(
2 + αβ

)[αα̃− ββ̃√
k2 − 4

− α2n−1α̃− β2n−1β̃√
k2 − 4

]
+

1

2 + αβ

[
α̃− β̃√
k2 − 4

− α2n−2α̃− β2n−2β̃√
k2 − 4

]
=

1

αβ
(
2 + αβ

)[CO
(k)
1 − CO

(k)
2n−1

]
+

1(
2 + αβ

)[CO
(k)
0 − CO

(k)
2n−2

]
=

1

2 + αβ

[
1

αβ

(
CO

(k)
1 − CO

(k)
2n−1

)
+ CO

(k)
0 − CO

(k)
2n−2

]
=

1

2k2 + 1

k2

[
k2
(
CO

(k)
1 − CO

(k)
2n−1

)
+ CO

(k)
0 − CO

(k)
2n−2

]

=
k2

2k2 + 1

[
k2
(
CO

(k)
1 − CO

(k)
2n−1

)
+ CO

(k)
0 − CO

(k)
2n−2

]

ดังนั้น
n∑

j=1

CO
(k)
2j =

k2

2k2 + 1

[
k2
(
CO

(k)
1 − CO

(k)
2n−1

)
+ CO

(k)
0 − CO

(k)
2n−2

]
+ CO

(k)
2n − CO

(k)
0

ต่อมาเราจะพิสูจน์สูตรการหาผลรวมไม่จำกัดพจน์ของลำดับ k-โอเรสเมเชิงซ้อน กรณีที่ดัชนีเป็นจำนวนเต็ม
คู่ โดยใช้สูตรไบเนตของลำดับ k-โอเรสเมเชิงซ้อนและสูตรผลบวกไม่จำกัดพจน์ของอนุกรมเรขาคณิต

ทฤษฎีบท 3.14. การหาผลรวมไม่จำกัดพจน์ของลำดับ k-โอเรสเมเชิงซ้อน กรณีที่ดัชนีเป็นจำนวนเต็มคู่
เมื่อ k2 − 4 > 0 คือ

∞∑
j=1

CO
(k)
2j =

k2

2k2 + 1

[
k2CO

(k)
3 + CO

(k)
2

]

พิสูจน์. จากสูตรของไบเนต จะได้ว่า
∞∑
j=1

CO
(k)
2j =

1√
k2 − 4

[
α̃

∞∑
j=1

α2j − β̃

∞∑
j=1

β2j

]

=
1√

k2 − 4

[
α̃

(
α2

1− α2

)
− β̃

(
β2

1− β2

)]

=
1√

k2 − 4

[
α2α̃

(1− α)(1 + α)
− β2β̃

(1− β)(1 + β)

]

=
1√

k2 − 4

[
α2α̃

β(1 + α)
− β2β̃

α(1 + β)

]
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=
1√

k2 − 4

[
α2α̃

β + αβ
− β2β̃

α+ αβ

]

=
1√

k2 − 4

[
α2α̃(α+ αβ)− β2β̃(β + αβ)

αβ + αβ2 + α2β + (αβ)2

]

=
1√

k2 − 4

[
α3α̃+ α3α̃β − β3β̃ − αβ3β̃

αβ(1 + β + α+ αβ)

]

=
1√

k2 − 4

[
α3α̃− β3β̃ + α3α̃β − αβ3β̃

αβ(2 + αβ)

]

=
1

αβ(2 + αβ)

[
α3α̃− β3β̃√

k2 − 4

]
+

1

αβ(2 + αβ)

[
α3α̃β − αβ3β̃√

k2 − 4

]

=
1

αβ(2 + αβ)

[
α3α̃− β3β̃√

k2 − 4

]
+

1

αβ(2 + αβ)
αβ

[
α2α̃− β2β̃√

k2 − 4

]

=
1

αβ(2 + αβ)

[
α3α̃− β3β̃√

k2 − 4

]
+

1

2 + αβ

[
α2α̃− β2β̃√

k2 − 4

]

=
1

2 + αβ

[
1

αβ
CO

(k)
3 + CO

(k)
2

]

=
1

2 + αβ

[
k2CO

(k)
3 + CO

(k)
2

]

=
k2

2k2 + 1

[
k2CO

(k)
3 + CO

(k)
2

]

ต่อมาเราจะพิสูจน์สูตรการหาผลรวมของ n พจน์ของลำดับ k-โอเรสเมเชิงซ้อน กรณีที่ดัชนีเป็นจำนวนเต็มคี่
โดยใช้สูตรไบเนตของลำดับ k-โอเรสเมเชิงซ้อนและสูตรผลบวกจำกัดพจน์ของอนุกรมเรขาคณิต

ทฤษฎีบท 3.15. การหาผลรวมของ n พจน์ของลำดับ k-โอเรสเมเชิงซ้อน กรณีที่ดัชนีป็นจำนวนเต็มคี่
เมื่อ n เป็นจำนวนเต็ม และ k2 − 4 > 0 คือ

n∑
j=1

CO
(k)
2j+1 =

1

2k2 + 1

[
k4
(
CO

(k)
3 − CO

(k)
2n+3

)
+ CO

(k)
1 − CO

(k)
2n+1

]

พิสูจน์.
n∑

j=1

CO
(k)
2j+1 =

1√
k2 − 4

[
α̃

n∑
j=1

α2j+1 − β̃

n∑
j=1

β2j+1

]

=
1√

k2 − 4

[
α̃

(
α3 (1− α2n)

1− α2

)
− β̃

(
β3 (1− β2n)

1− β2

)]

=
1√

k2 − 4

[(
α3α̃− α2n+3α̃

)(
1− β2

)
−
(
β3β̃ − β2n+3β̃

)(
1− α2

)
1− α2 − β2 +

(
αβ
)2

]
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=
1√

k2 − 4

[
α3α̃− α3α̃β2 − α2n+3α̃+ α2n+3α̃β2 − β3β̃ − α2β3β̃ + β2n+3β̃ − α2β2n+3β̃(

2k2 + 1
)(

αβ
)2

]

=
1(

2k2 + 1
)(

αβ
)2
[
α3α̃− β3β̃√

k2 − 4
− α2n+3α̃− β2n+3β̃√

k2 − 4

]

− 1√
k2 − 4

[(
αβ
)2(

αα̃− ββ̃ − α2n+1α̃+ β2n+1β̃
)

(
2k2 + 1

)(
αβ
)2

]

=
1(

2k2 + 1
)(

αβ
)2
[
α3α̃− β3β̃√

k2 − 4
− α2n+3α̃− β2n+3β̃√

k2 − 4

]

− 1

2k2 + 1

[
αα̃− ββ̃√
k2 − 4

− α2n+1α̃− β2n+1β̃√
k2 − 4

]

=
1

2k2 + 1

[
k4
(
CO

(k)
3 − CO

(k)
2n+3

)
− CO

(k)
1 + CO

(k)
2n+1

]

4 สรุปผลและข้อเสนอแนะ
จากการศึกษาลำดับ k-โอเรสเมในรูปแบบเชิงซ้อน ผู้วิจัยได้พิสูจน์สมบัติของลําดับ k-โอเรสเมในรูปแบบเชิงซ้อน
ตามที่เคยปรากฎในรูปแบบของงลําดับ k-โอเรสเมทั่วไปในงานวิจัยของ Soykan [7] นั่นคือได้สร้างฟังก์ชันก่อ
กำเนิดของลำดับ k- โอเรสเมเชิงซ้อน พิสูจน์สูตรไบเนตของลำดับ k-โอเรสเมเชิงซ้อน เอกลักษณ์ Cassini ของ
ลำดับ k-โอเรสเมเชิงซ้อน เอกลักษณ์ Catalan ของลำดับ k- โอเรสเมเชิงซ้อน และ เอกลักษณ์ d’Ocagne ของ
ลำดับ k-โอเรสเมเชิงซ้อน นอกจากนี้ผู้วิจัยได้พิสูจน์สมบัติเพิ่มเติมของลําดับ k-โอเรสเมในรูปแบบเชิงซ้อน ได้แก่
เอกลักษณ์ Honsherger ของลำดับ k-โอเรสเมเชิงซ้อน สูตรการหาผลรวมของลำดับ k-โอเรสเมเชิงซ้อน สูตร
การหาผลรวมของลำดับ k-โอเรสเมเชิงซ้อนยกกำลังสอง สูตรการหาผลรวมพจน์คี่ของลำดับ k-โอเรสเมเชิงซ้อน
และ สูตรการหาผลรวมพจน์คู่ของลำดับ k-โอเรสเมเชิงซ้อน ซึ่งผู้วิจัยเสนอแนะให้นำแนวคิดในการสร้างลำดับ
ในรูปแบบเชิงซ้อนจากลำดับบ k-โอเรสเม ไปสร้างและพิสูจน์สมบัติของลำดับในรูปแบบเชิงซ้อนที่เกิดลำดับอื่น
ๆต่อไป

กิตติกรรมประกาศ ผู้วิจัยขอขอบคุณผู้ทรงคุณวุฒิทุกท่านที่ได้ให้ข้อคิดเห็นและข้อเสนอแนะต่าง ๆ เพื่อปรับปรุง
บทความวิจัยนี้ และขอบคุณภาควิชาคณิตศาสตร์ และคณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ที่ให้ทุนวิจัยและ
นำเสนอผลงานนี้
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Abstract

The precious metals are valuable assets; therefore, price forecasting is one of the inter-
esting tasks that can be conducted by several methods. In this work, the stochastic grey
differential equation with singular spectrum analysis (SGDE+SSA) model was developed to
forecast monthly prices of gold, silver, platinum, and palladium. Firstly, the one-dimensional
SGDE+SSA model was constructed to forecast prices without consideration of their price
correlations. However, these prices are supposed to have some relations, so the multidi-
mensional SGDE+SSA model (MSGDE+SSA) was created by considering the historical
correlations of those four metals to model their sources of randomness in the diffusion part
of the system of stochastic differential equations. For the sensitivity analysis, the approach
of parameter selection was developed to improve the model proficiency. Additionally, the
expectation and variance of the models were studied. The accuracy of SGDE+SSA and
MSGDE+SSA models was compared with historical prices from January 2005 to January
2024 by using the mean absolute percentage error (MAPE). For SGDE+SSA model by plot
of logarithm, the MAPEs of predicted prices for gold, silver, platinum and palladium are
2.8485%, 3.9569%, 3.2240% and 4.8571%, respectively, while the MAPEs of forecasted prices
are 5.7642%, 11.0591%, 8.5403% and 44.1193%, respectively. For MSGDE+SSA model by
plot of logarithm, the MAPEs of predicted prices for gold, silver, platinum and palladium
are 2.8485%, 3.5729%, 2.3522% and 3.4241%, respectively, while the MAPEs of forecasted
prices are 5.7642%, 11.7033%, 6.2948% and 47.8827%, respectively. This study found that
the MSGDE+SSA model has more efficiency in prediction than the SGDE+SSA model.
Taken together, the MSGDE+SSA model is highly efficient in predicting gold, silver and
platinum prices and might be a useful tool for other metals.

Keywords: precious metal prices, stochastic differential equation, grey model, stochastic grey
differential equation, singular spectrum analysis.
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1 Introduction
Precious metals are rare elements and have high economic values as they are used in many fields
such as jewelry, aerospace, medicine, and electronics. In particular, gold, silver, platinum, and
palladium are essential elements in the development of industries and technology. Therefore,
they are investable precious metals and investors can purchase physical metals or metal stocks.
Consequently, investors are interested in forecasting these prices for planning the investment.

Several models are proposed to predict metal prices. One of the most famous models is the
stochastic differential equation (SDE). This model is appropriate to describe highly fluctuated
occurrences. In 2011, Issaranusorn et al. developed an SDE model to predict the gold price by
considering seasonality. The gold prices are assumed to follow an extended geometric brownian
motion with a time-varying drift which describes seasonal variation in gold prices. This work
obtained the prices of gold futures and European gold options prices that depend on the sea-
sonality in gold prices. Moreover, The researcher recommends the model can predict the gold
prices in the future with appropriately estimated parameters. In 2019, Alipour et al. studied
autoregressive integrated moving average (ARIMA), threshold generalized autoregressive con-
ditional heteroskedastic (TGARCH), and Black Sholes Merton SDE for monthly copper price.
The history data of copper prices from early 1987 to September 2017 was separated into a train-
ing group and a test group. The training group and the test group have periods from early 1987
to 2014 and 2015 to September 2017, respectively. The estimated parameters of the ARIMA,
TGARCH, and SDE models were estimated by using a training group. The summary of the
results of prediction models for time series of copper prices from EViews software shows that
ARIMA(2,1,3) and TGARCH(1,1) are the lowest Durbin-Watson measure, Akaike criterion,
and Shwarz criterion. The result of the comparison of ARIMA(2,1,3), TGARCH(1,1), and SDE
model shows that the SDE model achieved the highest predictive power for MAPE. However,
the prediction of the price problem can be solved by several techniques. The grey system the-
ory which is a technique since the 1980s can be used to develop a grey model (GM). The grey
model is effective with small sample sizes and short-term forecasts but the GM is inappropri-
ate for highly fluctuated situations. In 2020, Gligorić et al. merged the SDE and GM(1,1) to
solve this copper price problem; the resulting model was called the stochastic grey differential
equation (SGDE). Additionally, the singular spectrum analysis (SSA) technique can be applied
to an SGDE to create a new model called the SGDE+SSA model. The results showed that
SGDE+SSA has better efficiency than ARIMA(2,1,3), TGARCH(1,1), SDE and SGDE alone.

In this work, the one-dimensional SGDE+SSA and multidimensional SGDE+SSA models
were developed by using the historical price from January 2005 to December 2020 for monthly
price prediction of gold, silver, platinum, and palladium. The one-dimensional SGDE+SSA
model was constructed without consideration of their price correlations. Indeed, these precious
metal prices have a correlation, so augmenting their correlation into the SGDE+SSA model
can make the model more realistic. The model was called the multidimensional SGDE+SSA
model. Next, the expectation and variance of the numerical solution of the models will be
derived. Furthermore, the sensitivity analysis of some important parameters will be studied as
well. Finally, the accuracy of both models will be compared with historical price from January
2021 to January 2024 and the comparison is represented by the mean absolute percentage error
(MAPE) as the criterion.

2 Literature Review
2.1 Precious Metals
Precious metals including the gold, silver, platinum, and palladium have high economic values.
Therefore, these metals are interested asset for investor. For these four primary precious metals,
gold is the most well-known metal because it can be used to standardize assets in many countries.
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It is used in accessories, aerospace, medicine, and electronics [6]. It is one of the keys to the
development of industry and technology. Silver is the second most common precious metal. It
is an important industrial metal used in the electronics and photography industries. In some
situations, silver prices can outperform gold during periods of high investor demand for industry.
The correlation of gold and silver prices has been studied and it turns out that they have been
strongly related in the same direction [10]. For platinum and palladium, they have similar
physical and chemical properties since they are platinum-group metals (PGMs) which consist
of platinum, palladium, ruthenium, rhodium, osmium and iridium. Platinum has important
role in the automotive industry. It is used to make the catalyst for reducing emissions from
vehicles. In addition, the computer and petroleum industries have more demand for the use of
platinum. Gold and platinum prices are also highly correlated [8]. Palladium is another PGM
with important industrial usage. It is used in electronics and industrial products, dentistry,
medicine, chemical, and groundwater treatment. The advantages of investing in precious metals
are a hedge against inflation, tangible assets, liquid investment, and portfolio diversification.

2.2 Model Development

Several models can be predict the metal prices. In this work, the SGDE+SSA model was
adapted to forecast the gold, silver, platinum and palladium prices. The detail of GM(1,1),
SGDE, SGDE+SSA, and accuracy of the model was described in this section.

2.2.1 Grey Model

Grey models deal with the series of primarily discrete data and converting difference equa-
tions to differential equations. The grey model creates a continuous and dynamic differential
equation from a discrete series of data to predict of time series [2]. In this study, we are inter-
ested in GM(1,1) which means that the order of the differential equation equals one and there
is only one variable. The following methodology explains the GM(1,1) model in detail. Let
x = x(1), x(2), . . . , x(T ) be a positive valued time series that is obtained by training data over
a specific period. The accumulating generation operator (AGO) is used to smooth out the ran-
domness of the primitive series. Applying the AGO on the original series [7], the new series by
AGO is the monotonically increasing series x(1) = {x(1)(1), x(1)(2), . . . , x(1)(T )} where elements
of the new series are calculated as follows:

x(1)(t) =
t∑

i=1

x(i), for t = 1, 2, . . . , T.

The generated mean value series of adjacent values of accumulated series x(1) is defined as:

z(1) = {z(1)(2), z(1)(3), ..., z(1)(T )},

where
z(1)(t) =

1

2

(
x(1)(t) + x(1)(t− 1)

)
, for t = 2, 3, . . . , T.

The grey differential equation modeling the mean value series is:

x(t) + az(1)(t) = b. (2.1)

Then, the whitened equation of the grey differential equation is defined as:

dx(1)(t)

dt
+ ax(1)(t) = b.
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The solution of the grey differential equation is given by:

x̃(1)(t+ 1) =

(
x(1)− b

a

)
e−at +

b

a
(2.2)

Moreover, parameters a and b can be obtained by using the least square method to (2.1) as
follow:

[a, b]′ = (B′B)−1B′Y

where

B =


−z(1)(2) 1

−z(1)(3) 1
...

...
−z(1)(t) 1

 and Y =


x(2)
x(3)

...
x(t)

 .

After that, the solution of grey differential equation can be calculated by substituting a and b
in (2.2). Then, the predicted value of primitive metal price is shown below:

x̃(1) = x(1)

x̃(t+ 1) = x̃(1)(t+ 1)− x̃(1)(t), for t = 1, 2, . . . , T − 1.

Therefore, we obtain the predicted series x̃(1), x̃(2), . . . , x̃(T ), and the forecasted series is

x̃(T + 1), x̃(T + 2), . . . , x̃(T + h)

where h represents the number of steps ahead.
Next, GM(1,1) can be adapted to develop an SGDE model.

2.2.2 Stochastic Grey Differential Equation

The actual data x(t) is the collection of observations which have been recorded at time t =
1, 2, . . . , T . Assume that, for t ≥ 2, their values can be expressed as [4]:

x(t) = x(t− 1) + ω(t), for t = 1, 2, . . . , T

where ω(t) is a discrete-time white noise process. Therefore, x(t) relies on only x(t − 1) not
x(t− 2), x(t− 3), . . . , x(1), i.e., the future value is associated with only the present value. Then,
we can consider the grey differential equation of the AGO series as:

dx(1)(t)

dt
+ ax(1)(t) = b+ kσω(t).

Hence, we obtain an SGDE of the AGO series:

dx(1)(t) =
(
b− ax(1)(t)

)
dt+ kσdW (t) (2.3)

where x(1)(0) is equal to x(1), k is the coefficient that depends on the time scale of actual values,
σ is the standard deviation of AGO series and W (t) is a standard Brownian motion. The value
of the coefficient k is 1, 1√

12
and 1√

250
for annual, monthly and daily time scales, respectively.

Here, 250 is the number of trading days per year in the United State which is our reference
market. Applying Ito’s lemma with the function f(t, x) = xeat, we have that

df
(
t, x(1)(t)

)
= beatdt+ kσeatdW (t). (2.4)
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The solution of the previous SDE is represented by the integral equation:

x(1)(T ) = x(1)(0)e−aT +
b

a
(1− e−aT ) + kσ

∫ T

0
e−a(T−t) dW (t)

where the last integral is an Ito stochastic integral. Integrating (2.4) from time t − 1 to t, we
obtain the final discrete-time equation of the reconstructed AGO series:{

x̂(1)(1) = x(1),

x̂(1)(t) = x̂(1)(t− 1)e−a∆t + b
a(1− e−a∆t) + kσ

√
1−e−2a∆t

2a Zt

(2.5)

where Zt ∼ N(0, 1) and ∆t = 1 (year, month, or day).
Simulating x̂(1)(t) by (2.5) the space of simulation is created which can be represented by

the following simulation matrix:

X̂(1) = [x̂
(1)
s,t ]

S,T
s,t=1 =


x̂
(1)
1,1 x̂

(1)
1,2 . . . x̂

(1)
1,T

x̂
(1)
2,1 x̂

(1)
2,2 . . . x̂

(1)
2,T

...
... . . . ...

x̂
(1)
S,1 x̂

(1)
S,1 . . . x̂

(1)
S,T


where S denotes the total number of simulations and T is the number of monitoring periods.
Each row of the previous matrix represents one artificial AGO path, while each column represents
the set of artificial AGO values at time points. Obviously, for t ≥ 2, the model generates sequence
of expected values of X̂:

x̂(1)(1) = x(1)

x̂(1)(1) =
1

S

S∑
s=1

x̂
(1)
s,t , for t = 2, 3, . . . , T.

The inverse accumulated generating operation (IAGO) is used to reconstruct a primitive time
series of the metal price:

x̂(1)(1) = x(1)

x̂(t+ 1) = x̂(1)(t+ 1)− x̂(1)(t), t = 1, 2, . . . , T − 1.

For simplicity, the reconstructed (predicted) series is expressed as:

y = {x̂(1), x̂(2), . . . , x̂(T )}

and we obtain the forecasted series as:

x̂(T + 1), x̂(T + 2), . . . , x̂(T + h),

where h represents the number of steps ahead.

2.2.3 Singular Spectrum Analysis

The objective of SSA is that the residual series can be decomposed into the sum of a small number
of independent and interpretable components. The SSA consists of two sections: decomposition
and reconstruction [5]. The decomposition section comprises phase1: embedding and phase2:
singular value decomposition (SVD). The embedding phase regards a mapping that transfers
a one-dimensional time series into a multidimensional series. Suppose ε(t), t = 1, 2, ..., T is the
residual error time series that the real-valued nonzero time series of sufficient length T . We
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created a matrix X to collect the residual error series. Let L be an integer such that 2 ≤ L ≤ T ,
and it is called the window length. The selection of L depends on the problem.

Assume that the actual and reconstructed value of the metal price at time t is x(t) and x̂(t),
respectively. The residual error is calculated according to the following expression:

εt = x̂(t+ 1)− x(t+ 1), t = 1, 2, . . . , T − 1.

A mapping that transforms residual error series into a multidimensional matrix [X1, X2, . . . , XK ]
with the following vectors Xj = (εj , . . . , εj+L−1)

′ ∈ RL, where K = T − L, is called an embed-
ding. The result of embedding is the trajectory matrix:

X =


ε1 ε2 ε3 . . . εK
ε2 ε3 ε4 . . . εK+1
...

...
... . . . ...

εL εL+1 εL+2 . . . εT−1

 = [X1, X2, . . . , XK ] = [εi,j ]
L,K
i,j=1.

Singular value decomposition phase aims to find the eigenvalues of XX ′ and eigenvectors.
Corresponding eigenvalues and eigenvectors are denoted by λ1, , λL and U1, , UL. Eigenvalues
and corresponding eigenvectors of the matrix XX ′ must be arranged in decreasing order. More-
over, U1, . . . , UL are orthonormal system, i.e., ⟨Ui, Uj⟩ = 0 for i ̸= j and ∥Ui∥ = 1. Next, we
denote r = max{i|λi > 0} = rankX. Therefore, the trajectory matrix X can be represented as
the following sum of matrices

X̂ =

r∑
i=1

UiU
′
iX = X̂1 + X̂2 + . . . X̂r

where X̂i = UiU
′
iX for all i = 1, 2, . . . , r.

Next, the reconstruction section composes the grouping and diagonal averaging phases. The
grouping step corresponds to splitting the elementary matrices Xi into several groups and sum-
ming the matrices within each group. Let I = {i1, . . . , iq} be a group of indices i1, . . . , iq. Then
the matrix XI corresponding to the group I is defined as XI = Xi1 + · · ·+Xiq. The spilt of the
set of indices J = 1, . . . , q into the disjoint subsets I1, . . . , Im corresponds to the representation

X̂ = X̂I1 + · · ·+ X̂Im .

Selecting the value of q is important. The first approach to select the appropriate value of q
is based on the plot of the logarithms of eigenvalues. The point where there is a significant
drop in logarithm value is adopted as the appropriate value of q. The Second approach is the
selecting q by w-correlation. This method is a measure of dependence between two reconstructed
residual error series X(1)

T and X
(2)
T . This method can separate the series into groups for diagonal

averaging. The w-correlation method is denoted as follows:

ρ
(w)
12 =

(
X

(1)
T , X

(2)
T

)
w

∥X(1)
T ∥w∥X(2)

T ∥w
(2.6)

where ∥X(i)
T ∥w =

√(
X

(i)
T , X

(i)
T

)
w
,
(
X

(i)
T , X

(j)
T

)
w

=
∑T

k=1wkx
(i)
k x

(j)
k , wk = min {k, L, T − k}

(assume L ≤ T/2). The value of w-correlations is measured on a scale that varies from 0 to
1. If two reconstructed residual error series have zero w-correlation, it means that these two
components are separable. Large values of w-correlations between reconstructed components
indicate that the series should possibly be gathered into one group and correspond to the same
series. Moreover, the rule of thumb for interpreting the size of a correlation coefficient is shown
in Table 1.
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Table 1: The rule of thumb for interpreting the size of a correlation coefficient

Size of correlation Interpretation
0.90 to 1.00(−0.90 to −1.00) Very high positive (negative) correlation
0.70 to 0.90(−0.70 to −0.90) High positive (negative) correlation
0.50 to 0.70(−0.50 to −0.70) Moderate positive (negative) correlation
0.30 to 0.50(−0.30 to −0.50) Low positive (negative) correlation

0 to 0.30(0.00 to −0.30) Negligible correlation

Therefore, each reconstructed matrix decomposition X̂1, X̂2, . . . , X̂r

X̂n[ε̂i,j ]
L,K
i,j=1 =


ε̂
(n)
1,1 ε̂

(n)
1,2 ε̂

(n)
1,3 . . . ε̂

(n)
1,K

ε̂
(n)
2,1 ε̂

(n)
2,2 ε̂

(n)
2,3 . . . ε̂

(n)
2,K+1

...
...

... . . . ...
ε̂
(n)
L,1 ε̂

(n)
L+1,2 ε̂

(n)
L+2,3 . . . ε̂

(n)
L,T−1

 for n = 1, 2, . . . , r

is transformed into a new one-dimensional residual error time series of length T − 1 by making
the anti-diagonal averaging over the matrix elements:

δn = (δn,1, δn,2, . . . , δn,T−1)

where δn,1 = ε̂
(n)
1,1 , ϵn,2 =

ε̂
(n)
1,2+ε̂

(n)
2,1

2 , δn,3 =
ε̂
(n)
1,3+ε̂

(n)
2,2+ε̂

(n)
3,1

3 , . . . , δn,T−1 = ε̂
(n)
L,T−1 for all n = 1, 2, . . . , r.

Accordingly, the original residual error time series is reconstructed by the sum of selected groups:

ϵ(t) =
r∑

i=1

δ1,t = δ1,t + δ2,t + · · ·+ δr,t, t = 1, 2, . . . , T − 1.

Therefore, we can use the reconstructed residual error series ϵ = ϵ(1), ϵ(2), . . . , ϵ(T − 1) to
forecast the future values of residual error. Next, the future reconstructed residual error was
generated based on the linear recurrent equation. Calculation of the linear vector of coefficients
is performed in the following way:

R =
1

1− ν2

r∑
i=1

αiU
(L−1)
i = (βL−1, βL−2, . . . , β1)

′ (2.7)

where U
(L−1)
i is the vector composed of the first L − 1 values of the eigenvectors Ui, αi is the

last value of the eigenvectors Ui, i = 1, 2, . . . , r and ν2 is the verticality coefficient which must
satisfy the condition that ν2 < 1. The verticality coefficient is calculated as follows:

ν2 =

r∑
i=1

α2
i = α2

1 + α2
2 + · · ·+ α2

r .

The h−step ahead forecasting of the residual error is based on the following equation:

ϵ(t) = R′ϵh(t), t = T + 1, T + 2, . . . , T + h

where ϵh(T + i) = (ϵ(T + i−L+1), . . . , ϵ(T + i−1))′ for i = 1, 2, . . . , h. Outcomes of the residual
error model can be represented as:{

{ϵ(1), ϵ(2), . . . , ϵ(T − 1)},
{ϵ(T + 1), ϵ(T + 2), . . . , ϵ(T + h)}.
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2.3 SGDE+SSA Model
The SGDE+SSA is the model that combines the SGDE model and the SSA technique. The
model consisted of reconstructed residual error, the reconstructed (predicted) series, and the
forecasted series from the SGDE model. The reconstructed (predicted) series is expressed as:

y = {x̂(1), x̂(2), . . . , x̂(T )}

and the forecasted series is form as:

y = {x̂(T + 1), x̂(T + 2), . . . , x̂(T + h)}

Accordingly, the reconstructed (predicted) series with reconstructed residual was obtained from
the SGDE+SSA model. The series is expressed as follows:

y = {x̂(1), x̂(2) + ϵ(1), . . . , x̂(T ) + ϵ(T − 1)}

and we obtain the forecasted series with reconstructed residual as follows:

x̂(T + 1) + ϵ(T + 1), x̂(T + 2) + ϵ(T + 2), . . . , x̂(T + h) + ϵ(T + h).

2.4 Accuracy of the Model
The mean absolute percentage error is a measure describing the degree of deviation of predicted
values from actual values to percentages. The MAPE is one of the most popular measures of
forecasting accuracy which is defined by

MAPE =
1

T

T∑
t=1

|x̂(t)− x(t)|
x(t)

× 100%

where x̂(t) and x(t) represent the predicted value and actual values.
However, the MAPE is not appropriate for all data. If the actual value of data is close to

zero, MAPE produces infinite or undefined values for some occurrence. Additionally, for the
actual values less than one or very small, their MAPEs have extremely large percentage errors
(outliers), while zero actual values result in infinite MAPEs [9].

3 Main Results
The one-dimensional SGDE+SSA and multidimensional SGDE+SSA models of gold, silver,
platinum, and palladium prices were constructed to forecast these prices by using the histori-
cal prices from January 2005 to January 2024 [11]. A one-dimensional model means that the
models were created without the correlation between four precious metals. Accordingly, the
precious metals are not related to other metals. In contrast, the correlations of four prices
were considered for constructing a multidimensional model because these prices have relations
in real occur. For the construction of the models, the one-dimensional SGDE and multidi-
mensional SGDE models were created. After that, the SSA technique was applied to improve
the SGDE models to be SGDE+SSA models. For this work, the one-dimensional SGDE and
multidimensional SGDE models were simplified called SGDE and MSGDE models. Moreover,
the one-dimensional SGDE+SSA and multidimensional SGDE+SSA models were defined as
SGDE+SSA and MSGDE+SSA models.

Firstly, the monthly historical prices of gold, silver, platinum, and palladium were collected
from January 2005 to January 2024. This data was separated into two subsets including training
data and testing data. The training data ranged from January 2005 to December 2020 (192
months) which was used for model construction. Next, the testing data ranged from January

The 28th Annual Meeting in Mathematics (AMM2024)

443



Figure 1: Historical gold price from January 2005 to January 2024

Figure 2: Historical silver price from January 2005 to January 2024

Figure 3: Historical platinum price from January 2005 to January 2024

2021 to January 2024 (37 months). This data was compared with forecasted prices to indicate
the proficiency of model prediction. Additionally, historical prices are shown in Figure 1 to
Figure 4 where black and red lines represent training and testing data, respectively.

The historical price graphs exposed two interesting behaviors of structures. The first inter-
ested behavior of prices appeared from 2008 to 2012. The gold, silver, platinum, and palladium
prices decreased from 2008 to early 2009 although these prices explicitly increased after mid-
2009. After that, all prices from the middle of 2011 to 2012 reversed to a downtrend again. This
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Figure 4: Historical palladium price from January 2005 to January 2024

behavior of prices was affected by the global financial crisis that started in 2008. The crisis was
caused by the housing market crisis in the United States. The Housing Market refers to the
supply and demand for houses, usually in a particular country or region. The event was the
worst housing crisis since the Great Depression (1926-1947). Several people in the world lost
their occupations, residences, and businesses. The crucial factors of this crisis consisted of the
subprime mortgage crisis, high levels of doubt and a lack of regulation in the financial system.
The subprime mortgage crisis was the primary problem of the housing market crisis. As a result,
the precious metals including gold, silver, platinum, and palladium prices continually increased
after intermediate 2009. However, these prices decreased after the end of 2012 because the hous-
ing market crisis was unraveled by government and financial institutions. The second interesting
structure appeared from 2019 till to the present. The Covid-19 pandemic wildly spreads around
the world. This situation affected the confidence of investors, financial institutions, and the
stability of the economic system. The event made a similar result in the housing market crisis
for four precious metal prices which their prices increased from previous years. The gold, silver,
and platinum prices slightly increased, although the palladium prices sharply rose because of
high demand for production. Several industries desired to use palladium for constructing their
product. The platinum was replaced by palladium for autocatalyst curbing harmful emission.
The reason is the prices between palladium and platinum which the palladium price is cheaper
than platinum price. However, the palladium demand suddenly reduced in 2021. This situation
affected to rapidly decreased the values of palladium from 2021 to the present.

3.1 One-Dimensional and Multidimensional SGDE Models

The primitive series are defined xg = {xg(t)}, xs = {xs(t)}, xp = {xp(t)} and xl = {xl(t)}. Series
represents the historical prices of gold, silver, platinum, and palladium, respectively. Applying
the method in section 2, the AGO series of precious metals were generated to convert primitive
series into monotonically increasing series. Accordingly, the whitened grey differential equations
are constructed as follows:

dx
(1)
g (t)

dt
+ agz

(1)
g (t) = bg, (3.1)

dx
(1)
s (t)

dt
+ asz

(1)
s (t) = bs, (3.2)

dx
(1)
p (t)

dt
+ apz

(1)
p (t) = bp, (3.3)
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dx
(1)
l (t)

dt
+ alz

(1)
l (t) = bl (3.4)

where xg, xs, xp and xl are primitive price at time t,
zg, zs, zp and zl are mean valued series of adjacent values of AGO series,
ag, as, ap and al parameters are defined by least square method,
bg, bs, bp and bl parameters are defined by least square method.

Moreover, the estimated parameters by least square method are represented in Table 2. Next,

Table 2: Estimated parameters by least square method for the model

Parameter Value Parameter value
ag −3.7141× 10−3 bg 8.1710× 102

as −1.2053× 10−3 bs 16.4278
ap 1.8199× 10−3 bp 1.4451× 103

al −1.2118× 10−2 bl 1.6224× 102

GM(1,1) and SDE models were combined to construct the SGDE model. Consequently, the
(3.1) to (3.4) are appended the additional term. This term is a discrete-time white noise process.
Therefore, the future value is associated with only the present value as follows:

dx
(1)
g (t)

dt
+ ax(1)g (t) = bg + kσgωg(t),

dx
(1)
s (t)

dt
+ ax(1)s (t) = bs + kσsωs(t),

dx
(1)
p (t)

dt
+ ax(1)p (t) = bp + kσpωp(t),

dx
(1)
l (t)

dt
+ ax

(1)
l (t) = bl + kσlωl(t).

where x
(1)
g (1) = xg(1), x

(1)
s (1) = xs(1), x

(1)
p (1) = xp(1) and x

(1)
l (1) = xl(1),

k is time scale of historical values,
σg, σs, σp and σl are the standard deviation of AGO series for precious metals,
ωg, ωs, ωp and ωl are white noise.

Hence, SGDEs of the AGO series are defined as follows:

dx(1)g (t) =
(
bg − agx

(1)
g (t)

)
dt+ kσgdWg(t), (3.5)

dx(1)s (t) =
(
bs − asx

(1)
s (t)

)
dt+ kσsdWs(t), (3.6)

dx(1)p (t) =
(
bp − apx

(1)
p (t)

)
dt+ kσpdWp(t), (3.7)

dx
(1)
l (t) =

(
bl − alx

(1)
l (t)

)
dt+ kσldWl(t) (3.8)

where Wg(t),Ws(t),Wp(t) and Wl(t) are standard Brownian motion.
Next, the MSGDEs of the AGO series were constructed. Firstly, the correlations of four

prices were analysed which are shown below:

C =


1 ρgs ρgp ρgl
ρgs 1 ρsp ρsl
ρgp ρsp 1 ρpl
ρgl ρsl ρpl 1

 =


1 0.7707 0.1601 0.6892

0.7707 1 0.6109 0.2419
0.1601 0.6109 1 −0.3196
0.6892 0.2419 −0.3196 1
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where ρgs, ρgp, ρgl, ρsp, ρsl and ρpl are correlation coefficient.
The coefficient correlations indicate the direction, relation, and strength of prices. In this

case, the coefficients of correlation results were separated into four types which are displayed
in Table 1. The first range is a very highly positive correlation. The correlation coefficient
is 0.7707 for the relationship between gold and silver prices. These prices have a very highly
positive correlation, so there appears to be a considerable association between the two variables.
For silver and platinum prices, the correlation coefficient is 0.6109 which has the similarity
between gold and silver prices. Therefore, gold and silver prices are strongly changing in the
same direction. Moreover, platinum price strongly changes with a strong change in silver price
as well. The second range is a moderate positive correlation. The correlation coefficient is
0.6892 for the relationship between gold and palladium prices. These prices moderately change
in the same direction. Next, the third range is low correlation. The correlation coefficient is
0.1601 for the relationship between gold and platinum prices. For platinum and silver prices, the
correlation coefficient is 0.2419. These prices slowly change in the same direction. In contrast,
platinum and palladium prices change in the opposite direction and the correlation coefficient is
−0.3196. Secondly, the AGO series of MSGDE was recreated because the Itô term of the AGO
series in the SGDE model was adjusted to a new term that considers correlations. The cholesky
factorization method was applied to generate the new term which the process of the MSGDE
model is


dx

(1)
g (t)

dx
(1)
s (t)

dx
(1)
p (t)

dx
(1)
l (t)

 =


bg − agx

(1)
g (t)

bs − asx
(1)
s (t)

bp − apx
(1)
p (t)

bl − alx
(1)
l (t)

 dt+ kc


σg 0 0 0
0 σs 0 0
0 0 σp 0
0 0 0 σl



dWg(t)
dWs(t)
dWp(t)
dWl(t)



where c is lower matrix. After that, c was calculated by applying cholesky factorization to
correlation matrix (C). Therefore, the MSGDE model defines as follows:


dx

(1)
g (t)

dx
(1)
s (t)

dx
(1)
p (t)

dx
(1)
l (t)

 =


bg − agx

(1)
g (t)

bs − asx
(1)
s (t)

bp − apx
(1)
p (t)

bl − alx
(1)
l (t)

 dt+ k


σgdWg(t)

ρ1σgdWg(t) + ρ2σsdWs(t)
ρ3σgdWg(t) + ρ4σsdWs(t) + ρ5σpdWp(t)

ρ6σgdWg(t) + ρ7σsdWs(t) + ρ8σpdWp(t) + ρ9σldWl(t).


(3.9)

where ρ1 = 0.7707, ρ2 = 0.6371, ρ3 = 0.1601, ρ4 = 0.7651, ρ5 = 0.6237, ρ6 = 0.6892, ρ7 =
−0.4540, ρ8 = −0.1324 and ρ9 = 0.5490.

After that, Ito’s lemma was applied to solve the solution of (3.5) to (3.9). The final discrete
time of the reconstructed AGO series of these metal prices for SGDEs is

x̂(1)g (1) = xg(1),

x̂(1)g (t) = x̂(1)g (t− 1)e−ag∆t +
bg
ag

(1− e−ag∆t) + kσg

√
1− e−2ag∆t

2ag
Zt (3.10)

x̂(1)s (1) = xs(1),

x̂(1)s (t) = x̂(1)s (t− 1)e−as∆t +
bs
as

(1− e−as∆t) + kσs

√
1− e−2as∆t

2as
Zt, (3.11)
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x̂(1)p (1) = xp(1),

x̂(1)p (t) = x̂(1)p (t− 1)e−ap∆t +
bp
ap

(1− e−ap∆t) + kσp

√
1− e−2ap∆t

2ap
Zt, (3.12)

x̂
(1)
l (1) = xl(1),

x̂
(1)
l (t) = x̂

(1)
l (t− 1)e−al∆t +

bl
al
(1− e−al∆t) + kσl

√
1− e−2al∆t

2al
Zt (3.13)

where Zt ∼ N(0, 1) and ∆t = 1 represents month. Moreover, the discrete-time of the recon-
structed AGO series for MSGDEs is

x̂(1)g (1) =xg(1),

x̂(1)g (t) =x̂(1)g (t− 1)e−ag∆t +
bg
ag

(1− e−ag∆t) + kσg

√
1− e−2ag∆t

2ag
Z

(1)
t (3.14)

x̂(1)s (1) =xs(1),

x̂(1)s (t) =x̂(1)s (t− 1)e−as∆t +
bs
as

(1− e−as∆t) + ρ1kσg

√
1− e−2ag∆t

2ag
Z

(1)
t

+ ρ2kσs

√
1− e−2as∆t

2as
Z

(2)
t , (3.15)

x̂(1)p (1) =xp(1),

x̂(1)p (t) =x̂(1)p (t− 1)e−ap∆t +
bp
ap

(1− e−ap∆t) + ρ3kσg

√
1− e−2ag∆t

2ag
Z

(1)
t

+ ρ4kσs

√
1− e−2as∆t

2as
Z

(2)
t + ρ5kσp

√
1− e−2ap∆t

2ap
Z

(3)
t , (3.16)

x̂
(1)
l (1) =xl(1),

x̂
(1)
l (t) =x̂

(1)
l (t− 1)e−al∆t +

bl
al
(1− e−al∆t) + ρ6kσg

√
1− e−2ag∆t

2ag
Z

(1)
t

+ ρ7kσs

√
1− e−2as∆t

2as
Z

(2)
t + ρ8kσp

√
1− e−2ap∆t

2ap
Z

(3)
t

+ ρ9kσl

√
1− e−2al∆t

2al
Z

(4)
t (3.17)

where Z
(1)
t , Z

(2)
t , Z

(3)
t , Z

(4)
t

iid∼ N(0, 1) and ∆t = 1 represents month.
Next, the solutions of the reconstructed AGO series were used to simulate 100,000 paths for

each price by (3.10) to (3.17). The parameters of simulations are shown in Table 2. T equals
192 which represents the number of monthly training data. k is equal to 1√

12
≈ 0.2887 for

monthly time scale. Moreover, the 100,000 simulated paths of the reconstructed AGO series
were computed mean.

Then, the mean path was calculated to generate the predicted and forecasted series of the
SGDE and MSGDE models by using the inverse accumulated generating operation (IAGO).
The predicted price is the price of the model in the period of training data and The forecasted
price is the price of the model in the period of testing data. These prices are shown in Figure
5 to Figure 8 where black, blue, and red dash lines are prices of history, SGDE and MSGDE
models, respectively. Moreover, the black dashed line is the separated line to split the training
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Figure 5: Monthly gold price of history, SGDE and SGDE models

Figure 6: Monthly silver price of history, SGDE and SGDE models

Figure 7: Monthly platinum price of history, SGDE and SGDE models

and testing period. The figures indicate the prices of SGDE and MSGDE models are not
significantly different, although these prices do not fit with the historical prices. This situation
is related to the results of MAPE which are in Table 3.

The results of MAPE indicate that the SGDE and MSGDE models can forecast precious
metal prices. However, the efficiencies of the models should improve because the MAPE values
more than 20% for predicted prices. These prices are similar in short periods because historical
prices are more fluctuate and rapidly change due to many factors such as politics, geography, and
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Figure 8: Monthly palladium price of history, SGDE and SGDE models

Table 3: Accuracy of SGDE for predicted and forecasted prices

Model Price MAPE
Gold Silver Platinum Palladium

SGDE Predicted 21.5219 30.7918 21.7233 26.2394
Forecasted 5.7029 11.2589 8.3864 45.5903

MSGDE Predicted 21.5219 30.5373 21.1318 25.5757
Forecasted 5.7029 11.5225 6.1698 45.5810

economics. The explicit examples of this situation are the housing market crisis, the COVID-19
pandemic, and high palladium demand which were described. Moreover, the predicted prices
of SGDE are slightly changed as a result of the first term of the right-hand side in (3.5),
(3.6), (3.7) and (3.8) has linear character. Moreover, the standard deviation of AGO series
(σg, σs, σp and σl) are constant values that are not enough to describe the historical prices.
Therefore, the SGDE and MSGDE can not cover all situations that suddenly happened in the
historical price. For forecasted prices, this model has satisfied efficiency in predicting gold and
platinum prices. The MAPE values are less than 10%. Moreover, the MSGDE model has a
better result of prediction than the SGDE model which the MAPE of the MSGDE model is less
than the MAPE of the SGDE model for platinum price. The results of silver price prediction
show that the efficiency of SGDE and MSGDE models are not significantly different at 11%. In
contrast, the capability of platinum price prediction is not as expected where MAPE is 45.5903%
and 45.5810% for SGDE and MSGDE. This platinum situation is affected by the high palladium
demand. Consequently, the SGDE and MSGDE models can predict gold, silver, and platinum
prices but the model is not suitable for palladium price prediction. However, the efficiency of
SGDE and MSGDE models can improve to increase more accuracy of prediction. This problem
can use the SSA technique to reduce the error described in the next section 3.3. Next, the
expectation and variance of the numerical solution were derived in the next section.

3.2 Expectations and Variances of Numerical Solution

The solution of the SGDE and MSGDE model, the simulations, means and the results of pre-
dictions were shown in the previous section. In this section, the expectation and variance of
models were derived. Firstly, the solutions of SGDEs represented by the integral equation were
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recalled as follows:

x(1)g (T ) = x(1)g (0)e−agT +
bg
ag

(
1− e−agT

)
+ kσg

∫ T

0
e−ag(T−t)dWg(t),

x(1)s (T ) = x(1)s (0)e−asT +
bs
as

(
1− e−asT

)
+ kσs

∫ T

0
e−as(T−t)dWs(t),

x(1)p (T ) = x(1)p (0)e−apT +
bp
ap

(
1− e−apT

)
+ kσp

∫ T

0
e−ap(T−t)dWp(t),

x
(1)
l (T ) = x

(1)
l (0)e−alT +

bl
al

(
1− e−alT

)
+ kσl

∫ T

0
e−al(T−t)dWl(t),

and the solutions of MSGDEs are

x(1)g (T ) =x(1)g (0)e−agT +
bg
ag

(
1− e−agT

)
+ kσg

∫ T

0
e−ag(T−t)dWg(t),

x(1)s (T ) =x(1)s (0)e−asT +
bs
as

(
1− e−asT

)
+ ρ1kσg

∫ T

0
e−ag(T−t)dWg(t)

+ ρ2kσs

∫ T

0
e−as(T−t)dWs(t),

x(1)p (T ) =x(1)p (0)e−apT +
bp
ap

(
1− e−apT

)
+ ρ3kσg

∫ T

0
e−ag(T−t)dWg(t)

+ ρ4kσs

∫ T

0
e−as(T−t)dWs(t) + ρ5kσp

∫ T

0
e−ap(T−t)dWp(t),

x
(1)
l (T ) =x

(1)
l (0)e−alT +

bl
al

(
1− e−alT

)
+ ρ6kσg

∫ T

0
e−ag(T−t)dWg(t)

− ρ7kσs

∫ T

0
e−as(T−t)dWs(t)− ρ8kσp

∫ T

0
e−ap(T−t)dWp(t)

+ ρ9kσl

∫ T

0
e−al(T−t)dWl(t).

After that, the expectations were taken in these integral equations. The last integrals repre-
sent stochastic integrals that have the centered Gaussian distribution. Then, the expectation of
stochastic integrals is equal to zero. Consequently, the expectations of SGDE and MSGDE are

E
[
x(1)g (T )

]
= x(1)g (0)e−agT +

bg
ag

(
1− e−agT

)
,

E
[
x(1)p (T )

]
= x(1)p (0)e−apT +

bp
ap

(
1− e−apT

)
,

E
[
x(1)p (T )

]
= x(1)p (0)e−apT +

bp
ap

(
1− e−apT

)
,

E
[
x
(1)
l (T )

]
= x

(1)
l (0)e−alT +

bl
al

(
1− e−alT

)
.
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Additionally, Itô isometry was applied to solve variances which variances of SGDE are

Var
[
x(1)g (T )

]
= k2σ2

g

(
1− e−2agT

2ag

)
,

Var
[
x(1)s (T )

]
= k2σ2

s

(
1− e−2asT

2as

)
,

Var
[
x(1)p (T )

]
= k2σ2

p

(
1− e−2apT

2ap

)
,

Var
[
x
(1)
l (T )

]
= k2σ2

l

(
1− e−2alT

2al

)
,

and variances of MSGDE are

Var
[
x(1)g (T )

]
=k2σ2

g

(
1− e−2agT

2ag

)
,

Var
[
x(1)s (T )

]
=ρ21k

2σ2
g

(
1− e−2agT

2ag

)
+ ρ22k

2σ2
s

(
1− e−2asT

2as

)
,

Var
[
x(1)p (T )

]
=ρ23k

2σ2
g

(
1− e−2agT

2ag

)
+ ρ24k

2σ2
s

(
1− e−2asT

2as

)
+ ρ25k

2σ2
p

(
1− e−2apT

2ap

)
,

Var
[
x
(1)
l (T )

]
=ρ26k

2σ2
g

(
1− e−2agT

2ag

)
+ ρ27k

2σ2
s

(
1− e−2asT

2as

)
+ ρ28k

2σ2
p

(
1− e−2apT

2ap

)
+ ρ29k

2σ2
l

(
1− e−2alT

2al

)
.

Next, the SGDE+SSA and MSGDE+SSA models were developed and shown in the next
section.

3.3 SGDE+SSA and MSGDE+SSA Models
SSA is a high-performance technique to reduce the error of model prediction. This technique
has two sections. In the first section, the X matrix was constructed to collect errors of a model
by considering the important parameter L. The idea of selecting L has many ideas such as the
behavior of prices and time period. In this work, L equals 12, 24, 36, 48, 60, 72, and 84 which
represents a period of the year. Next, the S = XX ′ was generated and computed eigenvalues (λ)
and eigenvectors (U). Moreover, eigenvectors were applied to construct several X̂ matrices for
each eigenvector which were calculated by UU ′X. For the second section, the idea of generating
predicted price and forecasted price has two ways. Firstly, several X̂ matrices were grouped into
the signal group and noise group by considering the plot of logarithms of eigenvalues. The signal
group was further calculated in the diagonal averaging method. Secondly, several matrices were
calculated by the diagonal averaging method. Then, the w-correlation was applied to the group
results of the diagonal averaging method. Consequently, the predicted prices of SGDE+SSA
and MSGDE+SSA were completed from two ideas, and the forecasted prices were generated by
(2.7). Four logarithm plots were created for each L value. The varying of q was considered from
these plots. The examples of logarithm plots (L = 12) were shown in Figure 9.

For the logarithm plot of gold, the significant drop in values occurs around component 8
which the next component could be interpreted as the start of the noise group. The noise
components produced a slowly decreasing sequence of singular values. Accordingly, the only
components were organized into noise groups. In contrast, the components from 1 to 8 were
grouped into signal groups. Therefore, q values of gold are equal to 8 which were shown in
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(a) (b)

(c) (d)

Figure 9: The plot of logarithm for eigenvalues (L = 12)

Figure 9(a). In the same way, q values of silver, platinum, and palladium are equal to 8, 8, and
8 which can be observed in the Figure. 9(b), 9(c) and 9(d), respectively.

Table 4: Accuracy of SGDE+SSA by plot of logarithm for predicted price

L MAPE
q Gold q Silver q Platinum q Palladium

SGDE - 21.5219 - 30.7918 - 21.7233 - 26.2394
12 8 2.8485 8 3.9569 8 3.2240 8 5.3470
24 7 4.9144 11 6.2195 13 4.7597 10 7.3112

19 2.8778 19 4.3454 20 3.3955 19 4.5871
36 9 5.9469 15 7.7577 13 7.0360 13 7.9336

20 4.8041 22 6.9360 17 6.3362 27 5.7109
48 12 5.7028 18 7.7757 16 7.5091 16 7.3556

22 5.5334 32 6.7516 27 6.4364 26 7.3556
36 4.2334 40 5.7820 39 5.4904 32 6.7924

60 11 6.8142 8 10.6824 10 9.0262 9 12.1925
17 6.3522 19 8.9443 15 8.1724 18 10.4624
36 4.9380 27 8.2822 27 7.2263 35 8.7255
42 4.3073 48 6.4964 54 5.5388 45 7.6218

72 11 4.9345 10 8.1801 17 6.6952 15 9.2353
29 5.3666 26 8.2531 29 6.5426 20 8.8537
38 5.4169 34 8.1514 45 6.4726 30 8.9812
56 4.5812 49 8.0076 64 6.1434 62 7.7587

84 9 7.4499 12 11.7264 13 9.5236 11 13.2503
30 6.6674 28 10.4351 22 8.8116 20 12.1548
39 6.0493 34 10.0509 37 7.9043 37 10.6370
70 4.5524 70 7.3364 68 6.7466 68 8.6626
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Table 5: Accuracy of MSGDE+SSA by plot of logarithm for predicted price

L MAPE
q Gold q Silver q Platinum q Palladium

SGDE - 21.5219 - 30.5373 - 21.1318 - 25.5757
12 8 2.8485 8 3.5729 8 2.3522 8 4.2624
24 7 4.1944 11 5.8410 14 3.4916 10 5.9845

19 2.8778 17 4.6267 21 2.6572 22 3.4241
36 9 5.9469 17 7.2299 15 5.4984 12 6.7683

20 4.8041 27 5.7957 22 4.8514 22 5.4927
48 6 7.0241 10 9.2221 18 6.2619 14 7.6661

22 5.5334 23 7.7021 26 5.6173 31 5.9785
36 4.2334 41 5.8449 38 4.8778 41 5.0759

60 11 6.8142 13 9.3156 20 6.7476 9 10.8568
17 6.3522 23 8.5397 29 6.1757 16 9.0417
36 4.9380 31 7.8563 35 5.8955 28 8.2708
42 4.3073 44 6.7292 48 5.2846 50 6.4193

72 11 7.3138 13 10.2455 21 7.2968 15 10.2714
29 6.2853 28 9.4680 29 6.8323 32 8.9938
38 5.7817 44 8.4774 53 5.9776 51 7.7571
56 4.5812 58 7.3221 62 5.7178 62 7.0036

84 12 7.3751 11 10.6437 20 7.7859 15 10.9075
30 6.6674 28 10.1433 35 7.1399 28 10.1340
39 6.0493 56 8.1190 41 6.9202 49 8.7593
50 5.2332 64 7.5681 66 6.2468 72 7.6768

Table 6: Accuracy of SGDE+SSA and MSGDE+SSA by plot of logarithm for forecasted prices

Model Price MAPE
Gold Silver Platinum Palladium

SGDE+SSA Predicted 2.8485 3.9569 3.2240 4.8571
Forecasted 5.7642 11.0591 8.5403 44.1193

MSGDE+SSA Predicted 2.8485 3.5729 2.3522 3.4241
Forecasted 5.7642 11.7033 6.2948 47.8827

The results of SGDE+SSA and MSGDE+SSA by plot of logarithm are shown in Table
4 and Table 5, respectively. The MAPE results show that the highest efficiency strategy of
SGDE+SSA are (L = 12, q = 8), (L = 12, q = 8), (L = 12, q = 8) and (L = 24, q = 19)
for gold, silver, platinum and palladium price. These strategies predicted the prices with the
lowest MAPE values which are equal to 2.8485%, 3.9569%, 3.2240%, and 4.5871%, respectively.
For the highest efficiency strategies of MSGDE+SSA, the lowest MAPE are 2.8485%, 3.5729%,
2.3522% and 3.4241% which happened from (L = 12, q = 8), (L = 12, q = 8), (L = 12, q = 8)
and (L = 24, q = 22). These results show that the SGDE+SSA and MSGDE+SSA models can
reduce the error of predicted price in the SGDE and MSGDE models where MAPE approxi-
mated 20% to 30%. Furthermore, the efficiency of SGDE+SSA and MSGDE+SSA models were
compared in Table 6 for best L and q values for forecasted prices. The results indicated the MS-
GDE+SSA model can predict gold, silver, and platinum prices which the MAPE values less than
the SGDE+SSA model. In contrast, the error of forecasted palladium prices is 44.1193% and
47.8827% because the model can not describe the many fluctuations of palladium from the high
demand of industries. Consequently, the MSGDE+SSA model is a more suitable model than
SGDE, MSGDE, and SGDE+SSA for gold, silver, and platinum prices, although these models
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are not suitable models to forecast the palladium price. Finally, the prices of SGDE+SSA and
MSGDE+SSA for the highest strategy shown in Figure 10 to Figure 13.

Figure 10: The gold prices of SGDE+SSA and MSGDE+SSA by plot of logarithm

Figure 11: The silver prices of SGDE+SSA and MSGDE+SSA by plot of logarithm

Figure 12: The platinum prices of SGDE+SSA and MSGDE+SSA by plot of logarithm

The 28th Annual Meeting in Mathematics (AMM2024)

455



Figure 13: The palladium prices of SGDE+SSA and MSGDE+SSA by plot of logarithm

(a) (b)

(c) (d)

Figure 14: The heatmap of w-correlation (L = 12)

For the w-correlation method, the results are displayed in the grey heatmap which color
represents the correlation of two series. The values of w-correlation are measured on a scale
that varies from 0 to 1. Large values of w-correlation indicate that the series should possibly
be gathered into one group and correspond to the same series. The examples of heatmap for
L = 12 are depicted in Figure 14 for SGDE+SSA. The q values of precious metal prices were
selected by observing many boxes of correlation. The red line represents the separated point
that denoted the q value. The components before the red line were combined into the signal
group and the other components were combined into the noise group. Next, the components
in the signal group were summed to generate predicted and forecasted prices. These results of
SGDE+SSA and MSGDE+SSA by the w-correlation method are shown in Table 7 and Table
8, respectively. For predicted prices, the (L = 24, q = 16), (L = 24, q = 14), (L = 12, q = 8)
and (L = 12, q = 7) are the highest strategies of SGDE+SSA model and (L = 24, q = 16), (L =
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12, q = 5), (L = 12, q = 6) and (L = 12, q = 7) are the highest strategies of MSGDE+SSA model
as well. The comparison of capability between SGDE+SSA and MSGDE+SSA shown in Table
9 and the prices shown in Figure 15 to Figure 18. The results indicated that the MSGDE+SSA
model has more efficiency of prediction than SGDE+SSA but the models are not suitable to
forecast the palladium price.

Table 7: Accuracy of SGDE+SSA by w-correlation method for predicted price

L MAPE
q Gold q Silver q Platinum q Palladium

SGDE - 21.5219 - 30.7918 - 21.7233 - 26.2394
12 6 3.7188 4 6.2874 8 3.2240 7 5.9453
24 11 4.7968 9 6.5649 12 4.9164 5 8.5298

16 3.4349 14 5.4655 19 3.4911 12 6.6051
36 10 5.7731 9 8.9442 8 7.9820 7 9.2523

20 4.8041 19 7.3320 19 6.1453 20 6.6950
48 12 6.4016 18 8.1610 10 8.4670 12 9.4755

22 5.5334 28 7.2122 16 7.6826 21 7.9847
30 4.7239 32 6.7516 25 6.6946 32 6.7924

60 13 6.6420 8 10.6824 11 8.7387 14 10.7706
26 5.7361 23 8.5898 25 7.3642 28 9.4499
36 4.9380 32 7.9495 39 6.4366 35 8.7255

72 13 7.1275 14 10.6619 12 9.2940 15 12.0536
29 6.2853 23 9.9448 29 7.8065 30 10.4453
38 5.7817 34 9.2321 38 7.2788 37 9.8613
49 4.9054 57 7.3873 43 7.0196 48 9.0601

84 13 7.2713 10 12.3394 18 9.0796 15 12.5461
28 6.7600 28 10.4351 38 7.8298 36 10.6464
41 5.8237 49 8.7002 69 6.7149 50 10.0875

Figure 15: The gold prices of SGDE+SSA and MSGDE+SSA by w-correlation method
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Table 8: Accuracy of MSGDE+SSA by w-correlation method for predicted price

L MAPE
q Gold q Silver q Platinum q Palladium

SGDE - 21.5219 - 30.5373 - 21.1318 - 25.5757
12 6 3.7188 5 4.6845 6 2.8232 7 4.7458
24 9 4.4906 9 6.0812 11 3.9306 5 6.7758

16 3.4349 16 4.8708 14 3.4916 15 5.0494
36 11 5.7466 12 7.7828 15 5.4984 12 6.7683

22 4.4725 22 6.5116 22 4.8514 22 5.4927
48 12 6.4016 9 9.2759 18 6.2619 12 7.8661

22 5.5334 24 7.6190 31 5.3240 21 7.1172
31 4.6357 31 6.9042 37 4.9220 30 6.1951

60 13 6.6420 15 9.1996 22 6.5837 15 9.1065
27 5.6118 23 8.5397 29 6.1757 24 8.6440
37 4.7975 31 7.8563 37 5.8383 36 7.5647
49 3.8893 41 6.9512 44 5.4785 45 6.9700

72 13 7.1275 10 10.9947 11 7.8405 16 9.9125
28 6.3350 21 9.8928 21 7.2968 26 9.5027
38 5.7817 33 9.1630 38 6.4844 49 7.8854
49 4.9054 50 8.0510 53 5.9776 52 7.6688

84 23 6.9375 17 10.7315 20 7.7859 20 10.3713
34 6.3242 30 10.1386 36 7.0768 38 9.4805
42 5.7693 45 9.1004 51 6.6132 55 8.3406
57 4.9957 8.2585 62 6.3179 66 7.8281

Table 9: Accuracy of SGDE+SSA and MSGDE+SSA by w-correlation for forecasted prices

Model Price MAPE
Gold Silver Platinum Palladium

SGDE+SSA Predicted 3.4349 5.4655 3.2240 5.9453
Forecasted 5.4418 11.1913 8.5403 46.6540

MSGDE+SSA Predicted 3.4349 4.6845 2.8232 4.7458
Forecasted 5.4418 11.8667 6.2756 46.6051

Figure 16: The silver prices of SGDE+SSA and MSGDE+SSA by w-correlation method
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Figure 17: The platiunm prices of SGDE+SSA and MSGDE+SSA by w-correlation method

Figure 18: The palladium prices of SGDE+SSA and MSGDE+SSA by w-correlation method

4 Discussion and Conclusion
The one-dimensional and multidimensional models were constructed in this work. The SGDE
and MSGDE models can predict the gold, silver, platinum, and palladium prices but the ac-
curacy of the models is not satisfied. Then, the SGDE+SSA and MSGDE+SSA models were
created to improve the efficiency of the SGDE and MSGDE models. The SGDE+SSA and
MSGDE+SSA models have higher performance than SGDE or MSGDE models for predicted
prices of gold, silver, platinum, and palladium although the accuracy of the forecasted prices
are not significantly different for four precious metals. Interestingly, this study also found that
the MSGDE+SSA has a higher capacity than the SGDE+SSA model. However, the error of
the forecasted palladium price is not as expected as it is higher than the error of the other three
precious metals. This is because of the decreasing palladium demand after 2021. Therefore, a
more appropriate model needs to be explored for predicting palladium prices. Taken together,
the results from this study confirmed that the MSGDE+SSA model is the best model to forecast
gold, silver, and platinum prices comparing with SGDE, SGDE+SSA and MSGDE models.
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It is known that a Poisson binomial distribution, which represents a sum of non-identically
Bernoulli distributed random variable, can be approximated by normal or Poisson distribu-
tion. In this study, we focus on the approximation of a Poisson binomial distribution through
a translated Poisson distribution. To achieve this, we introduce a non-uniform bound for the
approximation, utilizing Stein’s method and exchangeable pair coupling. Furthermore, we
provide an illustrative example to compare the sharpness of our derived bound with previous
result.
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1 Introduction and Main Result
Let X1, X2, X3, . . . , Xn be a sequence of independent Bernoulli random variables such that

pi = P (Xi = 1), qi = P (Xi = 0) = 1− pi

for each i, and let

W =
n∑

i=1

Xi, λ =
n∑

i=1

pi and σ2 =
n∑

i=1

piqi. (1.1)

This distribution of W is formally known as the Poisson binomial distribution, parameterized by
p = (p1, ..., pn). In instances where all pi are uniform and equal to p, the distribution simplifies
to the binomial distribution with parameters n and p. It is established that the distribution
†Speaker. ‡Corresponding author.
Email: kamonrat.k@kru.ac.th (K. Kamjornkittikoon), suporn.j@chula.ac.th (S. Jongpreechaharn).
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of W can be approximated by the Poisson distribution with a mean λ, expressed as Po(λ),
particularly when the probabilities pi are sufficiently small.

Many authors have developed the error bound for approximating the distribution of W . One
of the known uniform bound is obtained by Barbour and Hall [1] as follows:∣∣∣P (W ∈ A)− Po(λ)(A)

∣∣∣ ≤ λ−1(1− e−λ)
n∑

i=1

p2i ≤ min
{
1, λ−1

} n∑
i=1

p2i , (1.2)

where Po(λ)(A) =
∑
k∈A

λke−λ

k! and A ⊆ Z.

In the case that pi’s are not all small, the estimation of the Poisson binomial distribution
with a translated Poisson distribution introduced by Kruopis [6] is investigated to obtain a
closer approximation than using the Poisson distribution. We say that an integer-valued random
variable Y has a translated Poisson distribution with parameters λ and σ2 written by

Y ∼ TP(λ, σ2)

if Y −λ+σ2+γ ∼ Po(σ2+γ), where γ = ⟨λ−σ2⟩ and ⟨x⟩ = x−⌊x⌋ denotes the fractional part of
x. Note that EY = λ and σ2 ≤ VarY = σ2+γ ≤ σ2+1. Note also that Po(σ2) = TP(σ2, σ2).

Let Z ∼ TP(λ, σ2). Čekanavičius [14] proved an error bound for W by utilizing the method
of characteristic function. For 0 ≤ pi ≤ 1

2 and any Borel sets A, the bound is expressed as
follows:

|P (W ∈ A)− P (Z ∈ A)| ≤ Cmin

{
σ−3

n∑
i=1

p2i + γσ−2,
n∑

i=1

p2i

}
, (1.3)

where C is a positive constant.
In 2001, Čekanavičius and Vaitkus [15] used Stein’s method to estimate the total variation

distance between the distribution of W and a translated Poisson distribution, leading to the
following inequality. For 0 ≤ pi ≤ 1 and σ > 0, and for any Borel set A, the inequality is given
by:

∣∣P (W ∈ A) − P (Z ∈ A)
∣∣ ≤ n∑

i=1

p2i qimin
{
2, b−1τ−

1
2

}
+ γmin

{
1, b−1

}
+ e−

σ2

4 , (1.4)

where b = σ2 + γ and τ = σ2 − max
1≤j≤n

{pjqj}.

Afterward, Barbour and Čekanavičius [3] also illustrated the the distance between the dis-
tribution of W and a translated Poisson distribution using Stein’s method. This demonstration
is expressed as follows: for any sets A ⊆ Z,

∣∣P (W ∈ A)− P (Z ∈ A)
∣∣ ≤ min

{
1, σ−2

}(
γ + 2d

n∑
i=1

p2i qi

)
+ σ−2, (1.5)

where d ≤
[(

n∑
i=1

1−|pi−qi|
2

)
− 1

]− 1
2

(see Proposition 4.6 in [4]). In the binomial case where

p ≤ 1
2 , the convergence rate of (1.5) has order O(p

1
2n− 1

2 +(np)−1). Further details can be found
in [7] and [8].

In addition to Stein’s method, there is also an approach known as the exchangeable pair
method, introduced by Stein [12], which is commonly utilized. The exchangeable pair method
involves identifying a suitable transformation of random variables, typically seeking a new pair
of variables, to ensure that the joint distribution of the transformed pair remains invariant under
permutations. For a given random variable Y , we call (Y, Y ′) an exchangeable pair if there is
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another random variable Y ′ such that L(Y, Y ′) = L(Y ′, Y ). As in [10] and [9], the exchangeable
pair (Y, Y ′) is constructed in such a way that

EY (Y ′ − EY ) = (1− ν)(Y − EY ) +R (1.6)

for some ν ∈ (0, 1) and R is a random variable of small order. In general, random variable Y
and Y ′ exhibit slight differences stemming from their property of being an exchangable pair. As
a result, when we consider the integer-valued random variable Y , it is reasonable to assume that
Y − Y ′ ∈ {−1, 0, 1}.

By following the construction method presented by Röllin [10], let X∗
1 , . . . , X

∗
n be independent

copies of the Xi, and an exchangeable pair (W,W ′) is constructed to satisfy

W ′ = W −XK +X∗
K ,

where K is uniformly distributed over {1, 2, . . . , n}. This construction satisfies the condition
described in (1.6), with R ≡ 0 and ν = 1

n . Additionally, Röllin [10] utilized the technique of
exchangeable pairs to establish an error bound for translated Poisson approximation, which is
presented as follows:

∣∣P (W ∈ A)− P (Z ∈ A)
∣∣ ≤ 2 +

√
n∑

i=1
p3i qi

n∑
i=1

piqi

(1.7)

for all A ⊆ Z
Some remarks in the case pi = p ≤ 1

2 are shown in the following details.

1. Estimates (1.2), (1.3) and (1.7) have order O(min
{
p, np2

}
),

O
(
min

{
np2, p

1
2n− 1

2 + (np)−1
})

and O(p
1
2n− 1

2 + (np)−1), respectively. When the proba-
bility p is significantly smaller than a positive power of n, represented as p = O(n−δ), (1.5)
and (1.7) exhibit the same order, following O

(
n− 1

2
(δ+1)

)
when 0 < δ < 1

3 , and O
(
nδ−1

)
when δ ≥ 1

3 .
2. In the case where p = O(n−δ), it can be observed that estimate (1.2) has order O(n−δ)

for 0 < δ < 1. When 0 < δ < 1
3 , the error bounds presented in (1.3), (1.4), and (1.7) all

have the same order of magnitude, which is O(n− 1
2
(δ+1)). These error bounds converge

to zero at a faster rate compared to the error bound presented in (1.2) as n approaches
infinity. Similarly, for 1

3 ≤ δ < 1
2 , the error bounds in (1.3), (1.4), and (1.7) share the

same order of O(nδ−1), which also tend to zero faster than the error bound in (1.2) as n
approaches infinity. Furthermore, in the case of 1

2 ≤ δ < 1, the approximation using Po(λ)
converges to zero more rapidly than the approximation using TP(λ, σ2). For 1

2 ≤ δ < 2
3 ,

all estimates (1.3), (1.4), and (1.7) have the same order denoted as O(nδ−1). Lastly, for
2
3 ≤ δ < 1, estimate (1.4) and (1.7) still share the same order of O(nδ−1), while estimate
(1.3) exhibits an order of O(n1−2δ).

3. In the scenario of p = O(n−δ) for δ ≥ 1, both estimate (1.2) and (1.3) have the same order
of O(n1−2δ), which tends to zero. However, the estimates for (1.4) and (1.7) with an order
of O(nδ−1) does not tend to zero.

Therefore, when 0 < δ < 1
2 , the approximation using TP(λ, σ2) converges to zero more

rapidly than Po(λ). In our work, we use Stein’s method and exchangeable pairs to achieve
our main result. To find a non-uniform bound for approximating the distribution of W , we
concentrate on the translated Poisson distribution as approximation which is shown in the
following theorem. Set b = σ2 + γ and s = λ− σ2 − γ = λ− b.
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Theorem 1.1. Suppose that w0 ∈ {1, . . . , n − 1} such that w0 ≤ b
σ3

(
n∑

i=1
p2i

)2

. We have the

following results.

1. If w0 > s, then

|P (W ≤ w0)− P (Z ≤w0)|

≤

√√√√ n∑
i=1

p3i qi + 1

 b−1min

{
1− e−b,

2b−1(eb − b− 1)

w0 − s+ 1
,

b

w0 − s

}

+
1

w0σ3

(
n∑

i=1

p2i

)2

. (1.8)

2. If w0 = s, then

|P (W ≤ w0)− P (Z ≤ w0)| ≤
2

w0σ3

(
n∑

i=1

p2i

)2

. (1.9)

3. If w0 < s, then

|P (W ≤ w0)− P (Z ≤ w0)| ≤
1

w0σ3

(
n∑

i=1

p2i

)2

. (1.10)

It is evident that the convergence rate of (1.7) which is a uniform bound, is O(n− 1
2
(δ+1)),

whereas the convergence rate of (1.8) which is a non-uniform bound, is O

(
n− 1

2 (δ+1)

w0

)
when

0 < δ < 1
3 . This indicates that the bound provided by (1.8) is sharper than the bound (1.7)

as w0 increases. Furthermore, when 1
3 ≤ δ < 1

2 , the convergence rate in (1.7) and (1.8) are

O(nδ−1) and O

(
n− 1

2 (δ+1)

w0

)
, respectively. This further confirms that our non-uniform bound

refines the previous bound. Additionally, for 0 < δ < 1
3 , the error bounds in (1.9) and (1.10)

with a rate of O
(

n− 1
2 (δ+1)

w0

)
are more accurate than (1.7) with a rate of O(n− 1

2
(δ+1)). In another

case, when 1
3 ≤ δ < 1

2 , the convergence rate in (1.7) is O(nδ−1), whereas (1.9) and (1.10) exhibit

O

(
n− 1

2 (δ+1)

w0

)
.

The subsequent sections of this work are organized as follows. Section 2 displays numerical
results demonstrating the contrast between uniform and non-uniform bounds. Lastly, the proof
of the main result is presented.

2 Example
Let X1, X2, X3, . . . , Xn be a sequence of independent Bernoulli random variables with parameter
p. Then, W =

n∑
i=1

Xi has a binomial distribution with mean np and variance np(1− p). In this

section, we provide a comparison of a uniform bound in (1.7) with our result in Theorem 1.1.
By applying the main theorem, the non-uniform bounds are sharper than uniform bounds for

sufficiently large w0 under the condition that w0 ≤ b
σ3

(
n∑

i=1
p2i

)2

. It should be noted that the

non-uniform bounds are more precise compared to the uniform bounds, attributed to the impact
of w0. When n = 1000 and p = 0.3, the outcomes are illustrated in Table 1.
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Table 1: Comparison of uniform bound and non-uniform bound for translated Poisson approxi-
mation when n = 1000 and p = 0.3

s w0 Uniform Bound Non-Uniform Bound
90 80 0.03023 0.03327

85 0.03023 0.03131
87 0.03023 0.03059
89 0.03023 0.02991

90 90 0.03023 0.05915
90 100 0.03023 0.05208

150 0.03023 0.04321
200 0.03023 0.03877
250 0.03023 0.03611
300 0.03023 0.03434
350 0.03023 0.02817
400 0.03023 0.02390
500 0.03023 0.01837

3 Proof of Main Theorem
Our main result in Theorem 1.1 will be proved by Stein’s method. The method was originally
introduced by Stein [11] for normal approximation, and the idea was adapted to the Poisson
distribution by Chen [5].

Proof of Theorem 1.1. Let w0 ∈ {1, . . . , n− 1} be such that w0 ≤ b
σ3

(
n∑

i=1
p2i

)2

. First, we notice

that

P (W ≤ s) = P (W − λ ≤ −b) ≤ P (|W − λ| ≥ b) ≤ σ2

b2
,

where we utilize the Markov inequality in the last inequality. From this fact and the formula
for b that b = σ2 + γ, we obtain that

P (W ≤ s) ≤ 1

b
. (3.1)

By the condition w0 ≤ b
σ3

(
n∑

i=1
p2i

)2

, we obtain that

P (W ≤ s) ≤ 1

w0σ3

(
n∑

i=1

p2i

)2

. (3.2)

1. Assume that w0 > s. Since Z − s ∼ Po(b),
|P (W ≤ w0)− P (Z ≤ w0)|
= |P (W − s ≤ w0 − s)− P (Z − s ≤ w0 − s)|

= |P (W − s ≤ w0 − s)− P (Z̃ ≤ w0 − s)|

≤ |P (0 < W − s ≤ w0 − s)− P (Z̃ ≤ w0 − s))|+ P (W − s ≤ 0)

= |R1|+R2, (3.3)

where R1 = P (0 < W − s ≤ w0 − s)− P (Z̃ ≤ w0 − s),

R2 = P (W − s ≤ 0),

and Z̃ = Z − s.
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By (3.1) and (3.2), we immediately obtain that

R2 ≤
1

w0σ3

(
n∑

i=1

p2i

)2

. (3.4)

In order to derive an upper bound for |R1|, we can express the term involving R1 in a similar
manner as demonstrated in the proof by Röllin [10], using Stein’s method of exchangeable
pair for the Poisson distribution with a parameter b. This method is initiated by Stein’s
equation, defined for a given function h as:

h(w)− Po(b)(h) = bg(w + 1)− wg(w), (3.5)

where Po(b)(h) = e−b
∑∞

l=0 h(l)
bl

l! and g is a bounded real–valued functions defined on N
depending on the given function h. In this case, we consider hw0 : N → R defined by

hw0(w) =

{
1, if 0 < w ≤ w0 − s,
0, if w > w0 − s.

Following [2], gw0 which is the solution of (3.5) for the above function hw0 is

gw0(w) =

{
(w − 1)!b−web[Po(b)(hw0)Po(b)(1− hw−1)], if w > w0 − s,
(w − 1)!b−web[Po(b)(hw−1)Po(b)(1− hw0)], if w ≤ w0 − s.

(3.6)

Let ∆gw0(w) = gw0(w + 1)− gw0(w). From (3.6), it follows that

∆gw0(w) =

{
(w−1)!ebPo(b)(hw0 )[wPo(b)(1−hw)−bPo(b)(1−hw−1)]

bw+1 , if w ≥ w0 − s+ 1,
(w−1)!ebPo(b)(1−hw0 )[wPo(b)(hw0 )−bPo(b)(hw−1)]

bw+1 , if w ≤ w0 − s.

According to Lemma 2.2 in [13], for w ≥ 1, it holds that

|∆gw0(w)| ≤ b−1min

{
1− e−b,

2b−1(eb − b− 1)

w0 − s+ 1
,

b

w0 − s

}
. (3.7)

From (3.5), we obtain

R1 = bE(gw0(W − s+ 1))− E((W − s)gw0(W − s))

= (σ2 + γ)E(gw0(W − s+ 1))− (σ2 + γ)E(gw0(W − s)) + (σ2 + γ)E(gw0(W − s))

− E((W − λ+ σ2 + γ)gw0(W − s))

= E
(
σ2∆gw0(W − s)− (W − λ)gw0(W − s)

)
+ E (γ∆gw0(W − s))

=: K1 +K2. (3.8)

By using (3.7), we get

|K2| ≤ γE|∆gw0(W − s)| ≤ b−1min

{
1− e−b,

2b−1(eb − b− 1)

w0 − s+ 1
,

b

w0 − s

}
. (3.9)

To establish a bound for K1, we initiate the process by modifying the proof as originally
presented in [10], p.1603. From (1.6), we have EW (W ′ − λ) =

(
1− 1

n

)
(W − λ). Define

the anti-symmetric function F (w,w′) := (w′ − w)(gw0(w
′ − s) + gw0(w − s)). By using

exchangeability, we can see that EW (W ′ −W ) = − 1
n(W − λ) and EF (W −W ′) = 0. This

implies that

0 = EF (W −W ′)

= E
{
(W ′ −W )

(
2gw0(W − s) + gw0(W

′ − s)− gw0(W − s)
)}

= − 2

n
E {(W − λ)gw0(W − s)}+ E

{
(W ′ −W )

(
gw0(W

′ − s)− gw0(W − s)
)}

.
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By using exchangeability, we observe that

E
{
I(W ′ −W = −1)∆gw0(W − s− 1)

}
= E

{
I(W −W ′ = 1)∆gw0(W

′ − s)
}

= E
{
I(W ′ −W = 1)∆gw0(W − s)

}
,

which implies that

E
{
(W ′ −W )

(
gw0(W

′ − s)− gw0(W − s)
)}

= E
{
I(W ′ −W = 1)∆gw0(W − s)

}
+ E

{
I(W ′ −W = −1)∆gw0(W − s− 1)

}
= 2E

{
I(W ′ −W = 1)∆gw0(W − s)

}
.

Now, we obtain

E ((W − λ)gw0(W − s)) = nE
(
I(W ′ −W = 1)∆gw0(W − s)

)
.

This implies that

|K1| =
∣∣E ((I (W ′ −W = 1

)
n− σ2

)
∆gw0 (W − s)

)∣∣
≤ E|∆gw0(W − s)|n

√
VarS, (3.10)

where S := EW I(W ′ − W = 1) = P (W ′ = W + 1|W ). To bound VarS, we introduce a
sequence of random variables X = (X1, . . . , Xn) that satisfies the properties specified in
(1.1). We then consider

S∗ := EXI(W ′ −W = 1) =
1

n

n∑
i=1

EX(Xi = 0, X∗
i = 1) =

1

n

n∑
i=1

(1−Xi)pi.

Note that VarS∗ = n−2
∑n

i=1 p
3
i qi. As X is a random variable with corresponding σ-

algebras satisfying σ(W ) ⊂ σ(X), it follows that VarS ≤ VarS∗. From (3.7) and (3.10),
we obtain

|K1| ≤

b−1

√√√√ n∑
i=1

p3i qi

min

{
1− e−b,

2b−1(eb − b− 1)

w0 − s+ 1
,

b

w0 − s

}
. (3.11)

By combining equations (3.3), (3.4), (3.8), (3.9) and (3.11), we obtain (1.8) as required.

2. Assume that w0 = s. We derive the target distribution to

|P (W ≤ w0)− P (Z ≤ w0)| = |P (W ≤ s)− P (Z̃ ≤ w0 − s)|

≤ P (W ≤ s) + P (Z̃ = 0).

By the fact that Z̃ is a Poisson random variable with parameter b and (3.1), we obtain
that

|P (W ≤ w0)− P (Z ≤ w0)| ≤
1

b
+ e−b ≤ 2

b
.

Therefore, (1.9) holds by utilizing (3.2).

3. Suppose that w0 < s. Since w0 − s < 0 and Z̃ ∼ Po(b), P (Z̃ ≤ w0 − s) = 0. By (3.1) and
(3.2), we obtain that

|P (W ≤ w0)− P (Z ≤ w0)| = |P (W ≤ w0)− P (Z̃ ≤ w0 − s)|
= P (W ≤ w0)

≤ P (W < s)

≤ 1

w0σ3

(
n∑

i=1

p2i

)2

.
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This results in (1.10), thus concluding the proof.
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and suggestions.
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การแจกแจงความน่าจะเป็นของความเร็วลมในพื้นที่ที่มีศักยภาพ
ในการตั้งฟาร์มลม:

ความเร็วลม∗

วนิดา พงษ์ศักดิ์ชาติ1,‡ และ พรหมพร ธรรมสาร1,†
1ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา

บทคัดย่อ
พลังงานไฟฟ้ามีความสำคัญอย่างมากทั้งในแง่ของการดำรงชีวิต และคุณภาพชีวิต นอกจากนั้นไฟฟ้า

ยังเป็นปัจจัยสำคัญในการพัฒนาประเทศทั้งทางคมนาคม เศรษฐกิจ อุตสาหกรรม เกษตรกรรม และการ
บริการ ซึ่งการผลิตไฟฟ้าจำเป็นต้องใช้เชื้อเพลิงในการผลิต พลังงานลมเป็นแหล่งพลังงานหมุนเวียนที่ใช้ผลิต
ไฟฟ้า โดยเป็นพลังงานที่ใช้แล้วไม่หมดไป อีกทั้งยังเป็นพลังงานสะอาดไม่ก่อให้เกิดมลพิษกับสิ่งแวดล้อม
งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อศึกษาหาการแจกแจงความน่าจะเป็นที่เหมาะสมกับข้อมูลความเร็วลมเฉลี่ย
รายวันเพื่อประเมินศักยภาพในการตั้งฟาร์มลมเพื่อผลิตไฟฟ้าพลังงานลม โดยศึกษาในพื้นที่ 4 จังหวัด คือ
ขอนแก่น อุบลราชธานี ชัยภูมิ และนครราชสีมา ใช้ข้อมูลความเร็วลมเฉลี่ยรายวันจากสถานีตรวจอากาศ
กรมอุตุนิยม-วิทยา จำนวน 6 สถานี ที่ตั้งอยู่ในจังหวัดเหล่านี้ การแจกแจงความน่าจะเป็นที่นำมาศึกษา 7
ชนิด คือ การแจกแจงปรกติ การแจกแจงไวบูล การแจกแจงล็อกนอร์มัล การแจกแจงแกมมา การแจกแจง
ปรกติแบบผสม การแจกแจงไวบูลแบบผสม และการแจกแจงแกมมาแบบผสม จากการศึกษาพบว่าการ
แจกแจงล็อกนอร์มัลเป็นการแจกแจงความน่าจะเป็นที่เหมาะสมกับข้อมูลความเร็วลมเฉลี่ยรายวันของสถานี
ตรวจอากาศขอนแก่น สถานีอุตุนิยมวิทยาชัยภูมิ และสถานีตรวจอากาศอุบลราชธานี ส่วนสถานีอุตุนิยม
วิทยาเกษตรอุบลราชธานี และสถานีอุตุนิยมวิทยานครราชสีมา การแจกแจงความน่าจะเป็นที่เหมาะสมคือ
การแจกแจงปรกติ สำหรับสถานีอุตุนิยมวิทยาท่าพระการแจกแจงความน่าจะเป็นที่เหมาะสมคือการแจก
แจงไวบูลแบบผสม นอกจากนั้นพื้นที่ในบริเวณสถานีเหล่านี้ยังเป็นพื้นที่ที่มีศักยภาพในการตั้งฟาร์มลมเพื่อ
ผลิตไฟฟ้าเนื่องจากมีความเร็วลมเฉลี่ยรายวันอยู่ในช่วงที่เหมาะสม

†ผู้นำเสนอ ‡ผู้แต่งหลัก
อีเมล: vanida@buu.ac.th (วนิดา พงษ์ศักดิ์ชาติ), 63030176@go.buu.ac.th (พรหมพร ธรรมสาร).
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1 บทนำ
พลังงานไฟฟ้ามีความสำคัญอย่างมากทั้งในแง่ของการดำรงชีวิต คุณภาพชีวิต และการอำนวยความสะดวกใน
การดำรงชีวิต นอกจากนั้นไฟฟ้ายังเป็นปัจจัยสำคัญในการพัฒนาประเทศทั้งทางคมนาคม เศรษฐกิจ อุตสาห-
กรรม เกษตรกรรม และการบริการ ซึ่งการผลิตไฟฟ้าจำเป็นต้องใช้เชื้อเพลิงในการผลิต ปัจจุบันการผลิตไฟฟ้า
ในระบบของการไฟฟ้าฝ่ายผลิตห่งประเทศไทย (กฟผ.) มีการใช้เชื้อเพลิงอยู่หลายประเภท ได้แก่ ก๊าซธรรมชาติ
ถ่านหิน และพลังงานหมุนเวียน (เช่น พลังน้ำ พลังลม และพลังแสงอาทิตย์) โดยเชื้อเพลิงที่ใช้มากที่สุดคือ ก๊าซ
ธรรมชาติ รองลงมาคือถ่านหิน และพลังงานหมุนเวียน ตามลำดับ และเป็นที่ทราบกันดีว่าความต้องการพลังงาน
ไฟฟ้านั้นมีเพิ่มขึ้นในทุก ๆ ปี ทำให้มีความจำเป็นในการใช้เชื้อเพลิงเพิ่มขึ้นด้วยเช่นเดียวกัน อย่างไรก็ตามก๊าซ
ธรรมชาติ และถ่านหิน (เชื้อเพลิงฟอสซิล) ซึ่งเป็นเชื้อเพลิงหลักในการผลิตไฟฟ้ามีปริมาณลดลงเรื่อย ๆ สวน
ทางกับความต้องการในการใช้ไฟฟ้าในปัจจุบันและในอนาคต ประเทศไทยจึงมีนโยบายและการวางแผนในการ
พัฒนาพลังงานหมุนเวียนอื่น ๆ มาใช้เชื้อเพลิงฟอสซิล เช่น พลังงานแสงอาทิตย์ พลังงานน้ำ พลังงานชีวมวล
และพลังงานลม เป็นต้น

พลังงานลมเป็นหนึ่งในพลังงานหมุนเวียนที่ใช้ผลิตไฟฟ้า และเป็นพลังงานสะอาดที่มีอยู่ตามธรรมชาติ ใช้
แล้วไม่หมดไป อีกทั้งยังไม่สร้างมลพิษแก่สิ่งแวดล้อม ถือได้ว่าเป็นพลังงานที่มีประโยชน์แก่ประเทศ ไม่ว่าจะเป็น
ลดการใช้เชื้อเพลิงฟอสซิลที่ต้องนำเข้ามาจากต่างประเทศ และก่อให้เกิดมลพิษกับสิ่งแวดล้อมอีกด้วย อย่างไร
ก็ตามลมที่จะสามารถนำมาใช้ผลิตไฟฟ้าได้ต้องมีความเร็วอยู่ ในช่วงที่ เหมาะสม ดังนั้นการที่จะตั้งฟาร์มลม
(wind farm) เพื่อผลิตไฟฟ้าพลังงานลมในพื้นใดจำเป็นต้องมีการประเมินศักยภาพของพลังงานลมในพื้นที่
นั้น ๆ ก่อน [4, 5]

การพัฒนาพลังงานลมของประเทศไทยได้เริ่มต้นจากที่การไฟฟ้าฝ่ายผลิตแห่งประเทศไทยได้ติดตั้งกังหันลม
ตัวแรกที่มีขนาด 150 กิโลวัตต์ ที่แหลมพรหมเทพ จังหวัดภูเก็ต ในปี พ.ศ. 2539 ที่มีความเร็วเฉลี่ยรายปี 5
เมตรต่อวินาที ส่วนการติดตั้งกังหันลมผลิตไฟฟ้าในเชิงพาณิชย์แห่งแรก ติดตั้งที่ยอดเขายายเที่ยงเหนือเขื่อน
ลำตะคอง จังหวัดนครราชสีมา โดยการไฟฟ้าฝ่ายผลิตแห่งประเทศไทยในปี พ.ศ. 2552 ซึ่งได้ติดตั้งกังหันลม
จำนวน 2 ตัว ขนาด 1,250 กิโลวัตต์ ในบริเวณนั้นมีความเร็วลมเฉลี่ยที่ 6.7 เมตรต่อวินาที [6] นอกจากนั้น
ยังพบว่าในบริเวณภาคตะวันออกเฉียงเหนือ ภาคใต้ และบริเวณนอกชายฝั่งทะเลฝั่งอ่าวไทย เป็นบริเวณที่มี
ศักยภาพในการผลิตไฟฟ้าจากพลังงานลม การตั้งฟาร์มลมเพื่อผลิตไฟฟ้าในประเทศไทยมี 2 รูปแบบ คือการ
ติดตั้งกังหันลมบนบก ซึ่งส่วนใหญ่เป็นพื้นที่บนภูเขาสูงและชายฝั่งทะเล มีความเร็วลมเฉลี่ยรายวันอยู่ที่ 6 - 7
เมตรต่อวินาที ที่ระดับความสูง 50 เมตร และการติดตั้งกังหันลมนอกชายฝั่งซึ่งจะเป็นพื้นที่ที่เหมาะสมในการ
ตั้งฟาร์มลมเนื่องจากไม่มีสิ่งกีดขวาง พื้นที่กว้างขวางมีกำลังลมที่แรงและสม่ำเสมอตลอดทั้งปี พบว่าเป็นพื้นที่ที่
มีศักยภาพคือพื้นที่ที่ความเร็วลมเฉลี่ยรายวัน 6.5 เมตรต่อวินาที [1]

จากการศึกษาที่ผ่านมาได้มีนักวิจัยที่นำวิธีเชิงสถิติคือการแจกแจงความน่าจะเป็นของความเร็วลมมาใช้ใน
การประเมินศักยภาพของพื้นที่ที่มีศักยภาพในการผลิตไฟฟ้าด้วยพลังงานลมจากฟาร์มลม ซึ่งการแจกแจงความ
น่าจะเป็นที่เหมาะสมกับความเร็วลมในพื้นที่ต่าง ๆ ที่มีการวิจัยผ่านมา ได้แก่ การแจกแจงไวบูล (Weibull dis-
tribution) การแจกแจงแกมมา (Gamma distribution) [7] การแจกแจงไวบูลแบบผสม (Mixture Weibull
distribution) การแจกแจงล็อกนอร์มอล (Log-normal distribution) [9] นอกจากนั้นในการศึกษาของ Koca
et al. [8] ในปี 2019 ยังพบว่าการแจกแจงความน่าจะเป็นผสมมีความเหมาะสมกับความเร็วลมมากกว่าการ
แจกแจงฐานนิยมเดี่ยว

ในประเทศไทยยังมีพื้นที่อีกหลายแห่งที่มีสภาพแวดล้อมเหมาะต่อการตั้งฟาร์มลม การศึกษานี้จึงมีวัตถุ
ประสงค์ที่จะศึกษาการแจกแจงความน่าจะเป็นของความเร็วลมและประเมินศักยภาพในการตั้งฟาร์มลมในพื้นที่
จังหวัดชัยภูมิ นครราชสีมา อุบลราชธานี และขอนแก่น ทั้งนี้เนื่องจากจังหวัดชัยภูมิ และนครราชสีมา มีการติด
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ตั้งกังหันลมผลิตกระแสไฟฟ้าอยู่แล้ว สำหรับจังหวัดอุบลราชธานี และขอนแก่นเป็นจังหวัดที่อยู่ในภาคตะวัน
ออกเฉียงเหนือซึ่งเป็นภูมิภาคที่เป็นพื้นที่ราบสูงและใกล้แม่น้ำโขงซึ่งจะทำให้ได้รับอิทธิพลจากร่องเขาด้วย จึง
เป็นพื้นที่ที่น่าสนใจในการตั้งฟาร์มลม

2 ความรู้พื้นฐาน
2.1 ลม
ลมเป็นแหล่งพลังงานสะอาดชนิดหนึ่งที่มีอยู่ตามธรรมชาติสามารถใช้ได้อย่างไม่มีวันหมดสิ้น ซึ่งการใช้ลมเป็น
แหล่งพลังงานในการผลิตไฟฟ้าต้องพิจารณาถึงความเร็วลมในพื้นที่นั้นต้องอยู่ในช่วงที่เหมาะสม การนำพลังลม
มาใช้ประโยชน์จะต้องอาศัยกังหันลมในการเปลี่ยนพลังงานจลน์จากการเคลื่อนที่ของลมไปเป็นพลังงานกลก่อน
นำไปใช้ประโยชน์ โดยพื้นที่ที่มีความเร็วลม 2 - 5 เมตรต่อวินาที ควรติดตั้งกังหันลมขนาด 200 วัตต์ พื้นที่ที่มี
ความเร็วลม 5 - 7 เมตรต่อวินาที ควรติดตั้งกังหันลมขนาด 500 วัตต์ และ พื้นที่ที่มีความเร็วลม 7 - 12 เมตร
ต่อวินาที ควรติดตั้งกังหันลมขนาด 1000 วัตต์ [2, 3]

2.2 การแจกแจงความน่าจะเป็น
การแจกแจงความน่าจะเป็นที่นำมาศึกษาเพื่อหาการแจกแจงความน่าจะเป็นที่เหมาะสมของความเร็วลมในพื้นที่
ที่ศึกษามีจำนวน 7 ชนิด ได้แก่

1. การแจกแจงปรกติ (Normal distribution)
เมื่อตัวแปรสุ่ม X มีการแจกแจงปรกติ เขียนแทนด้วย X ∼ N(µ, σ2) [8] มีฟังก์ชันความหนาแน่นความ
น่าจะเป็น

f(x;µ, σ) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
(2.1)

โดยที่ µ คือ พารามิเตอร์บ่งตำแหน่ง และ σ2 คือ พารามิเตอร์บ่งรูปร่าง และมีฟังก์ชันความน่าจะเป็น
สะสม คือ

F (x;µ, σ) =
1

2

[
1 + erf(

x− µ√
2σ2

)

]
(2.2)

2. การแจกแจงไวบูล (Weibull distribution)
เมื่อตัวแปรสุ่ม X มีการแจกแจงไวบูล เขียนแทนด้วย X ∼ W (k, c) [8] มีฟังก์ชันความหนาแน่นความ
น่าจะเป็น

f(x; k, c) =
k

c

(x
c

)k−1
exp

[
−
(x
c

)k
]

(2.3)

โดยที่ k คือ พารามิเตอร์บ่งรูปร่าง และ c คือ พารามิเตอร์บ่งขนาด มีฟังก์ชันความน่าจะเป็นสะสม คือ

F (x; k, c) = 1− exp

[
−
(x
c

)k
]

(2.4)

3. การแจกแจงล็อกนอร์มัล
เมื่อตัวแปรสุ่ม X มีการแจกแจงล็อกนอร์มอล เขียนแทนด้วย X ∼ Lognormal(µ, σ2) [8] มีฟังก์ชัน
ความหนาแน่นความน่าจะเป็น

f(x;µ, σ) =
1

xσ
√
2π

exp

(
−(lnx− µ)2

2σ2

)
(2.5)
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โดยที่ µ คือ พารามิเตอร์บ่งตำแหน่ง และσ2 คือ พารามิเตอร์บ่งรูปร่าง และมีฟังก์ชันความน่าจะเป็น
สะสม คือ

F (x;µ, σ) =
1

2

[
1 + erf

(
(lnx− µ)

σ
√
2

)]
(2.6)

4. การแจกแจงแกมมา (Gamma distribution)
เมื่อตัวแปรสุ่ม X มีการแจกแจงแกมมา เขียนแทนด้วย X ∼ Γ(α, β) [8] มีฟังก์ชันความหนาแน่นความ
น่าจะเป็น

f(x;α, β) =
xα−1

Γ(α)βα
exp

[
−x

β

]
(2.7)

โดยที่ α คือ พารามิเตอร์บ่งรูปร่าง , α > 0 และ β คือ พารามิเตอร์บ่งขนาด , β > 0 และมีฟังก์ชันความ
น่าจะเป็นสะสม คือ

F (x;α, β) =

∫
xα−1

Γ(α)βα
exp

[
−x

β

]
dx (2.8)

5. การแจกแจงปรกติแบบผสม (Mixture normal distribution)
เมื่อตัวแปรสุ่ม X มีการแจกแจงปรกติแบบผสม เขียนแทนด้วย X ∼ NN(µ1, µ2, σ

2
1, σ

2
2) [8] มีฟังก์ชัน

ความหนาแน่นความน่าจะเป็น

f(x; p, µ1, σ1, µ2, σ2) = p
1

σ1
√
2π

exp

[
−(x− µ1)

2

2σ2
1

]
+(1−p)

1

σ2
√
2π

exp

[
−(x− µ2)

2

2σ2
2

]
(2.9)

โดยที่ p คือ พารามิเตอร์ถ่วงน้ำหนัก µ1, µ2 คือ พารามิเตอร์บ่งตำแหน่ง และ σ2
1, σ

2
2 คือ พารามิเตอร์บ่ง

รูปร่าง และมีฟังก์ชันความน่าจะเป็นสะสม คือ

F (x; p, µ1, σ1, µ2, σ2) =
p

2

[
1 + erf

(
x− µ1

σ1
√
2

)]
+

(1− p)

2

[
1 + erf

(
x− µ2

σ2
√
2

)]
(2.10)

6. การแจกแจงไวบูลแบบผสม (Mixture Weibull distribution)
เมื่อตัวแปรสุ่ม X มีการแจกแจงไวบูลแบบผสม เขียนแทนด้วย X ∼ WW (p, k1, c1, k2, c2) [8] มี
ฟังก์ชันความหนาแน่นความน่าจะเป็น

f(x; p, k1, c1, k2, c2) = p
k1
c1

(
x

c1

)k1−1

exp

[
−
(
x

c1

)k1
]

+ (1− p)
k2
c2

(
x

c2

)k2−1

exp

[
−
(
x

c2

)k2
]

(2.11)

โดยที่ p คือ พารามิเตอร์ถ่วงน้ำหนัก k1, k2 คือ พารามิเตอร์บ่งรูปร่าง และ c1, c2 คือ พารามิเตอร์บ่ง
ขนาด และมีฟังก์ชันความน่าจะเป็นสะสม

F (x; p, k1, c1, k2, c2) = p

{
1− exp

[
−
(
x

c1

)k1
]}

+(1−p)

{
1− exp

[
−
(
x

c2

)k2
]}

(2.12)

7. การแจกแจงแกมมาแบบผสม (Mixture gamma distribution)
เมื่อตัวแปรสุ่ม X มีการแจกแจงแกมมาแบบผสม เขียนแทนด้วย X ∼ GG(p, α1, β1, α2, β2) [8] มี
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ฟังก์ชันความหนาแน่นความน่าจะเป็น

f(x; p, α1, β1, α2, β2) = p
xα1−1

Γ(α1)β
α1
1

exp

[
− x

β1

]
+ (1− p)

xα2−1

Γ(α2)β
α2
2

exp

[
− x

β2

]
(2.13)

โดยที่ p คือ พารามิเตอร์ถ่วงน้ำหนัก α1, α2 คือ พารามิเตอร์แสดงรูปร่าง และ β1, β2 คือ พารามิเตอร์
แสดงขนาด และมีฟังก์ชันความน่าจะเป็นสะสม คือ

F (x; p, α1, β1, α2, β2) = p

∫
xα1−1

Γ(α1)β
α1
1

exp

[
− x

β1

]
dv + (1− p)

∫
xα2−1

Γ(α2)β
α2
2

exp

[
− x

β2

]
dx

(2.14)

3 วิธีการศึกษา
ในการศึกษาการแจกแจงความน่าจะเป็นที่เหมาะสมกับความเร็วลม เพื่อประเมินศักยภาพในการผลิตไฟฟ้าใน
พื้นที่ที่ศึกษา มีขั้นตอนการศึกษาดังนี้

1. ข้อมูลความเร็วลม
งานวิจัยครั้งนี้ได้รับความอนุเคราะห์ข้อมูลความเร็วลมจากกรมอุตุนิยมวิทยา ข้อมูลที่ศึกษาเป็นข้อมูล
ความเร็วลมเฉลี่ยรายวัน ตั้งแต่วันที่ 1 มกราคม พ.ศ. 2560 จนถึง 21 กันยายน พ.ศ. 2566 ใน 4
จังหวัด จำนวน 6 สถานี ดังนี้

• 381201: สถานีตรวจอากาศขอนแก่น(ขอนแก่น)
• 381301: สถานีอุตุนิยมวิทยาเกษตรท่าพระ (ขอนแก่น)
• 403201: สถานีอุตุนิยมวิทยาชัยภูมิ (ชัยภูมิ)
• 407301: สถานีอุตุนิยมวิทยาเกษตรอุบลราชธานี (อุบลราชธานี)
• 407501: สถานีตรวจอากาศอุบลราชธานี (อุบลราชธานี)
• 431301: สถานีอุตุนิยมวิทยานครราชสีมา (นครราชสีมา)

เมื่อได้ข้อมูลความเร็วลมเฉลี่ยรายวันแล้ว ได้แบ่งข้อมูลออกเป็น 2 ส่วน ดังนี้

• ข้อมูลในวันที่ 1 มกราคม พ.ศ. 2560 - 20 กันยายน พ.ศ. 2565 เป็นชุดข้อมูลฝึกฝน (training
data set) จะถูกใช้เพื่อหาการแจกแจงความน่าจะเป็นที่เหมาะสมของข้อมูล

• ข้อมูลในวันที่ 21 กันยายน พ.ศ. 2565 - 21 กันยายน พ.ศ. 2566 เป็นชุดข้อมูลตรวจสอบ (test
data set) จะถูกใช้เพื่อประมาณความคลาดเคลื่อนของการทำนายของการแจกแจงความน่าจะเป็น
ที่เลือกได้จากการใช้ข้อมูลในส่วนที่หนึ่ง

โดยจำนวนข้อมูลความเร็วลมเฉลี่ยรายวันของแต่ละสถานีที่ใช้ในการศึกษาแสดงในตารางที่ 1

2. นำชุดข้อมูลฝึกฝนมาประมาณค่าพารามิเตอร์ของการแจกแจงความน่าจะเป็นที่ศึกษาทั้งหมด 7 ชนิด
ได้แก่ การแจกแจงปรกติ การแจกแจงไวบูล การแจกแจงล็อกนอร์มอล การแจกแจงแกมมา การแจกแจง
ปรกติแบบผสม การแจกแจงไวบูลแบบผสม และการแจกแจงแกมมาแบบผสม ด้วยวิธีภาวะน่าจะเป็น
สูงสุด (Maximum likelihood method) โดยใช้โปรแกรม R และโปรแกรมสำเร็จ mixR fitdistrplus
และ extraDistr
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ตารางที่ 1: จำนวนข้อมูลความเร็วลมเฉลี่ยรายวันของชุดข้อมูลฝึกฝนและชุดข้อมูลตรวจสอบ
สถานี จำนวนข้อมูล (วัน)

ชุดข้อมูลฝึกฝน ชุดข้อมูลตรวจสอบ
สถานีตรวจอากาศขอนแก่น 2038 361
สถานีอุตุนิยมวิทยาเกษตรท่าพระ 2087 364
สถานีอุตุนิยมวิทยาชัยภูมิ 2073 360
สถานีอุตุนิยมวิทยาเกษตรอุบลราชธานี 2017 366
สถานีตรวจอากาศอุบลราชธานี 2087 365
สถานีอุตุนิยมวิทยานครราชสีมา 2085 365

3. พิจารณาการแจกแจงความน่าจะเป็นที่เหมาะสมกับข้อมูลความเร็วลมเฉลี่ยรายวันที่เป็นข้อมูลชุดฝึกฝน
ด้วยการทดสอบแอนเดอร์สัน-ดาร์ลิง (โดยใช้ค่าประมาณพารามิเตอร์จากข้อ 2) หากการแจกแจงความ
น่าจะเป็นชนิดใดมีค่าพี (p-value) ของการทดสอบมากกว่าระดับนัยสำคัญ 0.05 แสดงว่าการแจกแจงที่
พิจารณาเป็นการแจกแจงที่เหมาะสมกับชุดข้อมูล

4. นำการแจกแจงความน่าจะเป็นและค่าประมาณพารามิเตอร์ของการแจกแจงนั้นที่ได้จากข้อ 3 มาตรวจ
สอบกับชุดข้อมูลทดสอบ และประเมินความเหมาะสมของการแจกแจงความน่าจะเป็นกับชุดข้อมูล
ทดสอบด้วยค่า

• รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root mean square error: RMSE) [8]

RMSE =

√√√√√√
n∑

i=1

(
F̂ (xi)−

i

n+ 1

)2

n
(3.1)

เมื่อ
F̂ (xi) คือ ตัวประมาณค่าฟังก์ชันความน่าจะเป็นสะสม
xi คือ ความเร็วลมเฉลี่ยรายวัน ณ เวลาที่ i
n คือ จำนวนข้อมูลความเร็วลมเฉลี่ยรายวัน

• ค่าสัมประสิทธิ์การกำหนด (Coefficient of determination: R2) โดย 0 ≤ R2 ≤ 1 [8]

R2 = 1−

n∑
i=1

(
F̂ (xi)−

i

n+ 1

)2

n∑
i=1

(
F̂ (xi)−

¯̂
F (xi)

)2
(3.2)

โดยที่
¯̂
F (xi) =

n∑
i=1

F̂ (xi)

n
(3.3)

เมื่อ
F̂ (xi) คือ ตัวประมาณค่าฟังก์ชันความน่าจะเเป็นสะสม
xi คือ ความเร็วลมเฉลี่ยรายวัน ณ เวลาที่ i
n คือ จำนวนข้อมูลความเร็วลมเฉลี่ยรายวัน

หากการแจกแจงความน่าจะเป็นใดมีค่าเป็นไปตามเกณฑ์ทั้ง 2 เกณฑ์นี้มากที่สุด นั่นคือมีค่า RMSE ต่ำ
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ที่สุด และ R2 สูงที่สุด จะถือว่าการแจกแจงความน่าจะเป็นชนิดนั้นเป็นการแจกแจงความน่าจะเป็นที่
เหมาะสมกับข้อมูลความเร็วลมเฉลี่ยรายวันในพื้นที่นั้นมากที่สุด

5. นำการแจกแจงความน่าจะเป็นที่เหมาะสมที่สุดที่ได้จากข้อ 4 มาหาความน่าจะเป็นที่ความเร็วลมเฉลี่ย
รายวันจะมีค่าอยู่ในช่วง 2 - 12 เมตรต่อวินาที ที่เป็นความเร็วลมที่เหมาะสมในการตั้งฟาร์มลม

4 ผลการศึกษา
4.1 ค่าประมาณพารามิเตอร์ของการแจกแจงความน่าจะเป็นทั้ง 7 ชนิด
จากการนำชุดข้อมูลฝึกฝนของแต่ละสถานีมาประมาณค่าพารามิเตอร์ของการแจกแจงความน่าจะเป็นทั้ง 7 ชนิด
ได้ค่าประมาณพารามิเตอร์ดังตารางที่ 2 - 7

ตารางที่ 2: ค่าประมาณพารามิเตอร์ของการแจกแจง 7 ชนิด ณ 381201: สถานีตรวจอากาศขอนแก่น
การแจกแจง ค่าประมาณพารามิเตอร์
ปรกติ µ = 5.1925 σ = 1.1314
ไวบูล k = 4.6266 c = 5.6512
ล็อกนอร์มอล µ = 1.6241 σ = 0.2144
แกมมา α = 21.8497 β = 4.2079
ปรกติแบบผสม µ1 = 4.8184 σ1 = 0.8214 µ2 = 6.1650 σ2 = 1.2426

p = 0.7221 (1− p) = 0.2778
ไวบูลแบบผสม k1 = 6.6477 c1 = 5.1877 k2 = 5.2144 c2 = 6.7203

p = 0.7425 (1− p) = 0.2574
แกมมาแบบผสม α1 = 28.1287 β1 = 5.6717 α2 = 32.5023 β2 = 4.8931

p = 0.8614 (1− p) = 0.1385

ตารางที่ 3: ค่าประมาณพารามิเตอร์ของการแจกแจง 7 ชนิด ณ 381301: สถานีอุตุนิยมวิทยาเกษตรท่าพระ

การแจกแจง ค่าประมาณพารามิเตอร์
ปรกติ µ = 6.2295 σ = 2.0399
ไวบูล k = 3.0128 c = 6.9333
ล็อกนอร์มอล µ = 1.7801 σ = 0.3134
แกมมา α = 10.3438 β = 1.6604
ปรกติแบบผสม µ1 = 5.9157 σ1 = 1.5521 µ2 = 9.4995 σ2 = 3.2714

p = 0.9124 (1− p) = 0.0875
ไวบูลแบบผสม k1 = 4.2487 c1 = 6.4625 k2 = 2.8155 c2 = 9.7520

p = 0.8765 (1− p) = 0.1234
แกมมาแบบผสม α1 = 13.7578 β1 = 2.2721 α2 = 4.1578 β2 = 0.5386

p = 0.8951 (1− p) = 0.1048
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ตารางที่ 4: ค่าประมาณพารามิเตอร์ของการแจกแจง 7 ชนิด ณ 403201: สถานีอุตุนิยมวิทยาชัยภูมิ

การแจกแจง ค่าประมาณพารามิเตอร์
ปรกติ µ = 7.8601 σ = 2.0540
ไวบูล k = 4.0159 c = 8.6417
ล็อกนอร์มอล µ = 2.0262 σ = 0.2731
แกมมา α = 14.2154 β = 1.8086
ปรกติแบบผสม µ1 = 7.4688 σ1 = 1.7407 µ2 = 9.7177 σ2 = 2.3841

p = 0.8259 (1− p) = 0.1740
ไวบูลแบบผสม k1 = 5.0930 c1 = 8.0478 k2 = 4.2128 c2 = 10.3391

p = 0.7697 (1− p) = 0.2302
แกมมาแบบผสม α1 = 10.1685 β1 = 1.3343 α2 = 23.1302 β2 = 2.8648

p = 0.4713 (1− p) = 0.5286

ตารางที่ 5: ค่าประมาณพารามิเตอร์ของการแจกแจง 7 ชนิด ณ 407301: สถานีอุตุนิยมวิทยาเกษตร
อุบลราชธานี

การแจกแจง ค่าประมาณพารามิเตอร์
ปรกติ µ = 4.5826 σ = 1.9022
ไวบูล k = 2.5463 c = 5.1720
ล็อกนอร์มอล µ = 1.4399 σ = 0.4072
แกมมา α = 6.2364 β = 1.3609
ปรกติแบบผสม µ1 = 3.4343 σ1 = 0.9057 µ2 = 5.8849 σ2 = 1.8975

p = 0.5314 (1− p) = 0.4685
ไวบูลแบบผสม k1 = 4.3851 c1 = 3.7330 k2 = 2.9734 c2 = 6.1730

p = 0.4405 (1− p) = 0.5594
แกมมาแบบผสม α1 = 11.8851 β1 = 3.4847 α2 = 10.4806 β2 = 1.7821

p = 0.5255 (1− p) = 0.4744

ตารางที่ 6: ค่าประมาณพารามิเตอร์ของการแจกแจง 7 ชนิด ณ 407501: สถานีตรวจอากาศอุบลราชธานี

การแจกแจง ค่าประมาณพารามิเตอร์
ปรกติ µ = 6.7796 σ = 2.2773
ไวบูล k = 3.0573 c = 7.5637
ล็อกนอร์มอล µ = 1.8585 σ = 0.3377
แกมมา α = 9.1924 β = 1.3560
ปรกติแบบผสม µ1 = 6.1699 σ1 = 1.65507 µ2 = 9.1042 σ2 = 2.7740

p = 0.7922 (1− p) = 0.2077
ไวบูลแบบผสม k1 = 4.2798 c1 = 6.7553 k2 = 3.1278 c2 = = 9.4180

p = 0.7239 (1− p) = 0.2760
แกมมาแบบผสม α1 = 12.1192 β1 = 1.8430 α2 = 5.6468 β2 = 0.7621

p = 0.7553 (1− p) = 0.2446
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ตารางที่ 7: ค่าประมาณพารามิเตอร์ของการแจกแจง 7 ชนิด ณ 431301: สถานีอุตุนิยมวิทยานครราชสีมา

การแจกแจง ค่าประมาณพารามิเตอร์
ปรกติ µ = 7.3586 σ = 1.8269
ไวบูล k = 4.0509 c = 8.0643
ล็อกนอร์มอล µ = 1.9653 σ = 0.2492
แกมมา α = 16.5341 β = 2.2469
ปรกติแบบผสม µ1 = 7.0748 σ1 = 7.0748 µ2 = 9.6671 σ2 = 2.4129

p = 0.8905 (1− p) = 0.1094
ไวบูลแบบผสม k1 = 5.5448 c1 = 7.5786 k2 = 3.9951 c2 = = 9.9817

p = 0.8268 (1− p) = 0.1731
แกมมาแบบผสม α1 = 20.3186 β1 = 2.7901 α2 = 8.4453 β2 = 1.0855

p = 0.8464 (1− p) = 0.1535

4.2 การทดสอบแอนเดอร์สัน-ดาร์ลิง
ผลการทดสอบความหมาะสมของการแจกแจงความน่าจะเป็นทั้ง 7 ชนิด ที่มีต่อความเร็วลมเฉลี่ยรายวัน แสดง
ดังตารางที่ 8 โดยจะเห็นได้ว่าการแจกแจงความน่าจะเป็นทั้ง 7 ชนิด เป็นการแจกแจงความน่าจะเป็นที่เหมาะ
สมกับความเร็วลมเฉลี่ยรายวันในทุกสถานี เนื่องจากมีค่าพีของการทดสอบแอนเดอร์สัน-ดาร์ลิงมากกว่าระดับ
นัยสำคัญ 0.05

ตารางที่ 8: ผลการทดสอบแอนเดอร์สัน-ดาร์ลิง ของการแจกแจงความน่าจะเป็นทั้ง 7 ชนิด และ 6 สถานี
การแจกแจง การทดสอบแอนเดอร์สัน-ดาร์ลิง

381201 381301 403201 407301 407501 431301
ปรกติ 4.4231 4.8895 3.5268 5.3062 3.172 3.8632

(0.2196) (0.1403) (0.5020) (0.0895) (0.6504) (0.3783)
ไวบูล 4.8201 3.8578 3.3919 5.4399 4.7141 5.5447

(0.1476) (0.3801) (0.5570) (0.0779) (0.1677) (0.0713)
ล็อกนอร์มอล 3.339 3.8187 3.2124 4.3488 4.8411 4.1004

(0.5711) (0.3933) (0.6330) (0.2362) (0.1475) (0.3049)
แกมมา 3.2987 3.6363 3.533 4.0756 5.7301 5.1448

(0.5881) (0.4594) (0.4995) (0.3065) (0.0588) (0.1080)
ปรกติแบบผสม 4.2024 4.6432 2.6225 4.7551 3.8871 3.5917

(0.2718) (0.1801) (0.8676) (0.1577) (0.3703) (0.4765)
ไวบูลแบบผสม 3.5823 3.3418 2.0336 3.6202 3.0865 5.8173

(0.4726) (0.5779) (0.9858) (0.4582) (0.6870) (0.0537)
แกมมาแบบผสม 3.5891 6.459 4.475 4.3418 3.4468 3.6228

(0.4700) (0.0576) (0.2128) (0.2378) (0.5343) (0.4646)

ค่าใน ( ) คือค่าพี

4.3 การหาการแจกแจงความน่าจะเป็นที่เหมาะสมที่สุด
เมื่อนำการแจกแจงความน่าจะเป็นที่เหมาะสมที่ได้จากชุดข้อมูลฝึกฝนมาตรวจสอบกับชุดข้อมูลทดสอบเพื่อหา
การแจกแจงความน่าจะเป็นที่เหมาะสมที่สุดกับข้อมูลความเร็วลมเฉลี่ยรายวันในแต่ละสถานีโดยพิจารณาจาก
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ค่า RMSE และ R2 ได้ผลดังตารางที่ 9 ซึ่งจะเห็นได้ว่าการแจกแจงความน่าจะเป็นที่เหมาะสมกับข้อมูลความเร็ว
ลมเฉลี่ยรายวันของแต่ละสถานีสรุปได้ดังนี้

• 381201: สถานีตรวจอากาศขอนแก่น การแจกแจงที่เหมาะสมคือการแจกแจงล็อกนอร์มัล
• 381301: สถานีอุตุนิยมวิทยาท่าพระ การแจกแจงที่เหมาะสมคือการแจกแจงไวบูลแบบผสม

• 403201: สถานีอุตุนิยมวิทยาชัยภูมิ การแจกแจงที่เหมาะสมคือการแจกแจงล็อกนอร์มัล

• 407301: สถานีอุตุนิยมวิทยาแกษตรอุบลราชธานี การแจกแจงที่เหมาะสมคือการแจกแจงปรกติ
• 407501: สถานีตรวจอากาศอุบลราชธานี การแจกแจงที่เหมาะสมคือการแจกแจงล็อกนอร์มัล
• 431301: สถานีอุตุนิยมวิทยานครราชสีมา การแจกแจงที่เหมาะสมคือการแจกแจงปรกติ

ตารางที่ 9: ค่า RMSE และ R2 ของการแจกแจงความน่าจะเป็นทั้ง 7 ชนิด
การแจกแจงความน่าจะเป็น

สถานี ปรกติ ไวบูล ล็อกนอร์มัล แกมมา ปรกติ ไวบูล แกมมา
แบบผสม แบบผสม แบบผสม

381201 RMSE 0.1317 0.1218 0.1003* 0.1107 0.1116 0.1121 0.1047
R2 0.6937 0.6955 0.8558* 0.8160 0.8291 0.8177 0.8518

381301 RMSE 0.0615 0.0751 0.0544 0.0549 0.0524 0.0521* 0.0538
R2 0.9446 0.9033 0.9583 0.9573 0.9624 0.9625* 0.9599

403201 RMSE 0.0930 0.0893 0.0724* 0.0789 0.0863 0.0885 0.0852
R2 0.9016 0.9006 0.9417* 0.9309 0.9195 0.9144 0.9210

407301 RMSE 0.1336* 0.1420 0.1725 0.1595 0.1690 0.1688 0.1696
R2 0.7529* 0.6952 0.5574 0.6364 0.5534 0.5504 0.5526

407501 RMSE 0.0759 0.0626 0.0557* 0.0624 0.0687 0.0671 0.0645
R2 0.9375 0.9534 0.9682* 0.9601 0.9535 0.9547 0.9588

431301 RMSE 0.1118* 0.1186 0.1343 0.1271 0.1311 0.1287 0.1317
R2 0.8459* 0.8354 0.7698 0.7981 0.7967 0.8050 0.7891

* หมายถึงการแจกแจงที่มีค่า RMSE น้อยที่สุด และ R2 มากที่สุด

4.4 การหาความน่าจะป็นที่ความเร็วลมจะมีค่าในช่วงที่เหมาะสม
เมื่อนำการแจกแจงความน่าจะเป็นที่เหมาะสมที่สุดของความเร็วลมเฉลี่ยรายวันในแต่ละสถานีมาหาความน่าจะ
เป็นที่ความเร็วลมเฉลี่ยรายวันจะมีค่าในช่วง 2 - 12 เมตรต่อวินาที ซึ่งเป็นช่วงของความเร็วลมที่เหมาะสมใน
การตั้งฟาร์มลม ได้ผลดังตารางที่ 10 ซึ่งจะเห็นได้ว่าความน่าจะเป็นที่ความเร็วลมเฉลี่ยรายวันจะมีค่าอยู่ใน
ช่วงที่เหมาะสมสำหรับการตั้งฟาร์มลมของแต่ละสถานีนั้นมีค่ามากกว่า 0.95 ยกเว้นสถานี 407301: สถานี
อุตุนิยมวิทยาเกษตรอุบลราชธานีเท่านั้นที่มีความน่าจะเป็นน้อยกว่า 0.95 แต่ยังคงมีความน่าจะเป็นมากกว่า
0.90 จึงถือได้ว่าพื้นที่ในบริเวณสถานีทั้ง 6 สถานี มีศักยภาพในการตั้งฟาร์มลมเพื่อผลิตไฟฟ้า

5 สรุปและอภิปรายผล
จากผลการศึกษาพบว่าการแจกแจงล็อกนอร์มัลเป็นการแจกแจงความน่าจะเป็นที่เหมาะสมกับข้อมูลความเร็ว
ลมเฉลี่ยรายวันของสถานีตรวจอากาศขอนแก่น สถานีอุตุนิยมวิทยาชัยภูมิ และสถานีตรวจอากาศอุบลราชธานี
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ตารางที่ 10: ความน่าจะเป็นที่ความเร็วลมจะมีค่าอยู่ในช่วง 2-12 เมตรต่อวินาที

สถานี 381201 381301 403201 407301 407501 431301
การแจกแจง ล็อกนอร์มัล ไวบูลแบบผสม ล้อกนอร์มัล ปรกติ ล็อกนอร์มัล ปรกติ
ความน่าจะเป็น 0.9874 0.9982 0.9534 0.9126 0.9679 0.9927

ส่วนสถานีอุตุนิยมวิทยาเกษตรอุบลราชธานี และสถานีอุตุนิยมวิทยานครราชสีมา การแจกแจงความน่าจะเป็น
ที่เหมาะสมคือการแจกแจงปรกติ สำหรับสถานีอุตุนิยมวิทยาท่าพระการแจกแจงความน่าจะเป็นที่เหมาะสมคือ
การแจกแจงไวบูลแบบผสม ซึ่งการแจกแจงความน่าจะเป็นที่เหมาะสมเหล่านี้สอดคล้องกับการแจกแจงความน่า
จะเป็นที่ได้จากงานวิจัยที่ผ่านมา เช่น งานของ Filom et al. [7] ในปี 2021 Kantar et al. [10] ในปี 2016 และ
Koca et al. [8] ในปี 2019 นอกจากนั้นพื้นที่ในบริเวณสถานีเหล่านี้ยังเป็นพื้นที่ที่มีศักยภาพในการตั้งฟาร์มลม
เพื่อผลิตไฟฟ้าเนื่องจากมีความเร็วลมเฉลี่ยรายวันอยู่ในช่วงที่เหมาะสมอีกด้วย

ในประเทศไทยยังมีพื้นที่ที่มีความน่าสนใจในการศึกษาถึงศักยภาพในการติดตั้งฟาร์มลมเพื่อผลิตไฟฟ้า และ
ยังมีการแจกแจงความน่าจะเป็นชนิดอื่น ๆ ที่อาจจะมีความเหมาะสมกับข้อมูลความเร็วลมมากกว่าการแจกแจง
ความน่าจะเป็นที่นำมาศึกษา ดังนั้นงานวิจัยในครั้งต่อไปอาจทำการศึกษาในพื้นที่อื่น ๆ หรือนำการแจกแจง
ความน่าจะเป็นชนิดอื่นมาศึกษาต่อไป

เอกสารอ้างอิง
[1] กนกวรรณ สุวรรณมุข, แนวทางการส่ง เสริมการผลิตไฟฟ้าจากพลังงานลมชายฝั่งและนอกชายฝั่งใน

ประเทศไทย, 2561.
[2] กรมพัฒนาพลังงานทดแทน และอนุรักษ์พลังงาน กระทรวงพลังงาน, คู่มือการพัฒนาและการลงทุนผลิต

พลังงานทดแทน, 1 ed., บริษัท เอเบิล คอนซัลแตนท์ จำกัด, กรุงเทพฯ, 2554.
[3] ชมพูนุท ทับเจริญ และ ฆนัทนันท์ ทวีวัฒน์, การศึกษาความเป็นไปได้ในการลงทุนติดตั้งกังหันลมเพื่อผลิต

กระแสไฟฟ้าของภาคครัวเรือน, Journal of Science & Technology MSU 12 (2560), no. 2.
[4] พนิดา สุขสมพร้อม, สุพิชชา ถวิลไพร, สุภชัย พลน้ำเที่ยง, ศิโรรัตน์ พัฒนไพโรจน์ และ เกียรติฟ้า ตั้งใจจิต,

การประเมินลักษณะความเร็วลมเฉพาะแหล่งในเขตพื้นที่จังหวัดนครพนม, วารสารวิจัย มข. (ฉบับบัณฑิต
ศึกษา) 21 (2564), no. 1, 122–132.

[5] พนิดา สุขสมพร้อม, เกียรติฟ้า ตั้งใจจิต และ สุภชัย พลนํ้าเที่ยง, การวิเคราะห์ข้อมูลความเร็วลมในเขต
พื้นที่จังหวัดกาฬสินธุ์, Journal of Science & Technology MSU 38 (2562), no. 5.

[6] สุภชัย พลน้ำเที่ยง และ เกียรติฟ้า ตั้งใจจิต, การวิเคราะห์ข้อมูลพลังงานลมในเขตพื้นที่จังหวัดหนองคาย,
วิศวสารลาดกระบัง 34 (2560), no. 2, 29–36.

[7] Siyavash Filom, Soheil Radfar, and Roozbeh Panahi, Exploring wind energy potential as
a driver of sustainable development in the southern coasts of iran: The importance of
wind speed statistical distribution model, Sustainability 13 (2021), no. 14, 7702.

[8] Melih Burak Koca, Muhammet Burak Kiliç, and YUSUF ŞAHİN, Assessing wind energy po-
tential using finite mixture distributions, Turkish Journal of Electrical Engineering and Com-
puter Sciences 27 (2019), no. 3, 2276–2294.

[9] Ravindra Kollu, Srinivasa Rao Rayapudi, SVL Narasimham, and Krishna Mohan Pakkurthi,
Mixture probability distribution functions to model wind speed distributions, International
Journal of energy and environmental engineering 3 (2012), 1–10.

The 28th Annual Meeting in Mathematics (AMM2024)

480



[10] Yeliz Mert Kantar, Ilhan Usta, Ismail Yenilmez, and Ibrahim Arik, A study on estimation
of wind speed distribution by using the modified weibull distribution, INTERNATIONAL
JOURNAL OF INFORMATICS TECHNOLOGIES 9 (2016), 63.

The 28th Annual Meeting in Mathematics (AMM2024)

481



 
 
Proceedings of the 
28th Annual Meeting in Mathematics (AMM 2024) 
Department of Mathematics Statistics and Computer, 
Faculty of Science, Ubon Ratchathani University, 
Thailand 

____________________________________________ 
*งานวิจยัเร่ืองนี้ไดรับทุนสนับสนุนจากคณะวิทยาศาสตร มหาวิทยาลัยบูรพา   
†ผูนำเสนอ     ‡ผูแตงหลัก 
อีเมล:  pattara@go.buu.ac.th (ภัทราภรณ กิจผลเจริญ), 62030267@go.buu.ac.th (สุวิมล ชูเปรม),  
bumrungsak@buu.ac.th (บำรุงศักด์ิ เผ่ือนอารีย). 

 

 

 

 

การศึกษาความแกรงของสถิตทิดสอบความแตกตางของคาเฉลี่ย

ประชากรสองกลุมอิสระกัน เม่ือขอมูลมีการแจกแจงปรกติแบบผสม

และการแจกแจงแกมมาแบบผสม* 

ภัทราภรณ กิจผลเจริญ† สุวิมล ชูเปรม และ บำรุงศักดิ์ เผื่อนอารีย‡ 

ภาควิชาคณติศาสตร คณะวิทยาศาสตร มหาวิทยาลัยบูรพา 20131 

 

 

บทคัดยอ 

  การศึกษาครั้งน้ีมีวัตถุประสงคเพ่ือศึกษาความแกรงของการทดสอบที (t-test) และการทดสอบของ

เวลช (Welch’s test) ภายใตขอมูลที่มีการแจกแจงผสม ไดแก การแจกแจงปรกตแิบบผสม และ การแจกแจง

แกมมาแบบผสม โดยการจำลองดวยเทคนคิมอนติคารโล ดวยโปรแกรม R และกำหนดขนาดตัวอยางสองกลุม

เทากัน คือ 10, 30, 50, 100 และ 200 ที่ระดับนัยสำคัญ 0.05 เกณฑการเปรียบเทียบประสิทธิภาพของความ

แกรงคือ ความสามารถในการควบคุมความผิดพลาดแบบท่ี 1 ผลการศึกษาพบวาการทดสอบทีและการทดสอบ

ของเวลชสามารถควบคุมความผิดพลาดแบบที่ 1 ได นั่นคือ สถิติทดสอบทั้งสองมีความแกรงภายใตขอมูลที่มี

การแจกแจงปรกตแิบบผสมและการแจกแจงแกมมาแบบผสมทุกกรณท่ีีศึกษา  
 

คำสำคัญ: ความผิดพลาดแบบที่ 1, การทดสอบที, การทดสอบของเวลช, การแจกแจงปรกติแบบผสม, 

การแจกแจงแกมมาแบบผสม  

2020 MSC: ปฐมภูมิ 62F35 ทุติยภูมิ 62F03 

 

1 บทนำ 

การศึกษาความแตกตางของพารามิเตอรของประชากรสองกลุมอิสระกัน คือการเปรียบเทียบคาเฉลี่ยของ

ประชากรทั้งสองกลุมที่เปนอิสระกัน โดยในปจจุบันการทดสอบทียังคงเปนหนึ่งในสถิติทดสอบที่นักวิจัยนิยมใชในการ

ทดสอบสมมุติฐานสำหรับกรณีนี้ โดยมีขอสมมุติเบื ้องตนของการใชการทดสอบที คือ ขอมูลจะตองถูกสุมมาจาก
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ประชากรที่มีการแจกแจงปรกติ โดยเมื่อประชากรมีความแปรปรวนเทากัน จะใชการทดสอบที (Independent 

samples t-test) ในการทดสอบ และเมื่อประชากรมีความแปรปรวนไมเทากัน จะใชการทดสอบของเวลช (Welch’s 

test) ในการทดสอบ โดยจากงานวิจ ัยของ Derrick, Toher และ White [1] ไดศึกษาเปรียบเทียบความแกรง 

(Robustness) ของการทดสอบของเวลชและการทดสอบทีในการควบคุมความผิดพลาดแบบที่ 1 ภายใตขอมูลที่มีการ

แจกแจงปรกติ ผลการวิจัยพบวา การทดสอบของเวลชมีความแกรงในการควบคุมความผิดพลาดแบบที่ 1 ไดดีในทุก

กรณีที่ศึกษา โดยที่การทดสอบทีสามารถควบคุมความผิดพลาดแบบที่ 1 ไดดีในบางกรณีเทานั้น  Delacre, Lakens 

และ Lays [2] ไดศึกษาความแกรงของการทดสอบทีและการทดสอบของเวลชสำหรับใชกับการทำวิจัยทางดาน

จิตวิทยา พบวา การทดสอบของเวลชสามารถควบคุมความผิดพลาดแบบที่ 1 ไดดีกวาเมื่อความแปรปรวนของขอมูล

สองกลุมแตกตางกัน สวนอีกกรณีหนึ่งที่ความแปรปรวนของขอมูลเทากัน การทดสอบทีมีประสิทธิภาพดีกวา อยางไรก็

ตามในความเปนจริงแลวขอมูลบางประเภท ไมไดเปนไปตามขอสมมุติเบื้องตน นั่นคือ ขอมูลไมมีการแจกแจงปรกติ 

ตัวอยางเชน ขอมูลที่มีการแจกแจงปรกติแบบผสม ไดแก ขอมูลเกี่ยวกับการเงิน การวิเคราะหความเสี่ยงทางดาน

การเงิน [3] ขอมูลที่มีการแจกแจงแกมมาแบบผสม ไดแก ขอมูลทางดานอุทกวิทยา [4] ขอมูลปริมาณน้ำฝน [5] เปน

ตน โดยขอมูลที่กลาวมานั้นลวนแตเปนขอมูลที่มีความสำคัญ ซึ่งหากตองการวิเคราะหขอมูลเหลานี้ โดยการทดสอบ

สมมุติฐานเกี่ยวกับคาเฉลี่ย สถิติทดสอบพื้นฐานทั้งสองวิธีที่กลาวมายังมีความแกรงที่จะใชทดสอบขอมูลที่มีการแจก

แจงปรกติแบบผสมและการแจกแจงแกมมาแบบผสมในกรณีนี้ไดหรือไม นอกจากนี้ยังสามารถอางอิงไปถึงขอมูล

ประเภทอ่ืนที่มีการแจกแจงแบบผสมในลักษณะเดียวกันไดอีกดวย 

ดังนั้น ผูวิจัยจึงสนใจที่จะศึกษาความแกรงของการทดสอบของเวลชและการทดสอบที ในการควบคุมความ

ผิดพลาดแบบที่ 1 (Type I error) กรณีที่ขอมูลนั้นไมเปนไปตามขอสมมุติเบื้องตนของวิธีการทดสอบ โดยทำการศึกษา

ภายใตขอมูลที่มีการแจกแจงผสม ไดแก การแจกแจงปรกติแบบผสม และการแจกแจงแกมมาแบบผสม  

 

2  วิธีดำเนินการวิจัย 

 งานวิจัยนี้มีวัตถุประสงคเพื่อศึกษาความแกรงของการทดสอบที (t-test) และการทดสอบของเวลช (Welch’s 

test) ภายใตขอมูลที ่มีการแจกแจงผสม ไดแก การแจกแจงปรกติแบบผสม และการแจกแจงแกมมาแบบผสม 

การศึกษาครั ้งนี ้ไดทำการจำลองขอมูลที ่มีการแจกแจงผสมที ่กำหนดดวยเทคนิคมอนติคารโล (Monte Carlo 

Simulation Technique) ดวยโปรแกรม R [6]  ทดลองทำซ้ำ 10,000 ครั้ง กำหนดขนาดตัวอยาง คือ 10, 30, 50, 

100 และ 200 โดยทั ้งสองกลุ มมีขนาดเทากัน และกำหนดพารามิเตอรถวงน้ำหนักเทากับ 0.5 และ 0.8 ซึ ่งมี

รายละเอียดของวิธีการทดสอบที่ศึกษาและการกำหนดการแจกแจง ดังนี้ 

 
2.1 สถิติทดสอบท่ีใชในการศึกษา 
 

2.1.1 การทดสอบที (Independent samples t-test) เปนวิธีการทดสอบคาเฉลี่ยสองประชากรเมื่อขอมูล

ถูกสุมมาจากประชากรที่มีการแจกแจงปรกติที่เปนอิสระกันและมีความแปรปรวนเทากัน โดยมีการใชในตำราสถิติ

อยางแพรหลาย [7-9] โดยมตีัวสถิติทดสอบ ดังนี้  
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  𝑇𝑇 = 𝑋𝑋�1−𝑋𝑋�2
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𝑛𝑛2
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       (2.1) 

 

ซึ่งมีการแจกแจงโดยประมาณแบบที ที่องศาเสรีคือ; 𝑑𝑑𝑓𝑓 = 𝑛𝑛1 + 𝑛𝑛2 − 2 

โดยที่ 𝑋𝑋�𝑖𝑖  แทนคาเฉลี่ยของตัวอยางของกลุมที่  𝑖𝑖; 𝑖𝑖 = 1, 2 

𝑛𝑛𝑖𝑖  แทนขนาดตัวอยางของกลุมที่ 𝑖𝑖; 𝑖𝑖 = 1, 2 

 𝑆𝑆𝑝𝑝2  แทนความแปรปรวนรวม คำนวณไดจาก ; 𝑆𝑆𝑝𝑝2 = (𝑛𝑛1−1)𝑆𝑆12+(𝑛𝑛2−1)𝑆𝑆22

𝑛𝑛1+𝑛𝑛2−2
   

𝑆𝑆𝑖𝑖2  แทนความแปรปรวนตัวอยางของกลุมที่ 𝑖𝑖; 𝑖𝑖 = 1, 2 

 

2.1.2 การทดสอบของเวลช (Welch’s test) เปนวิธีการทดสอบคาเฉลี่ยสองประชากรเมื่อขอมูลถูกสุมมาจาก

ประชากรที่มีการแจกแจงปรกติที่เปนอิสระกันแตมีความแปรปรวนไมเทากัน [7-9] โดยมีตัวสถิติทดสอบ ดังนี ้ 
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โดยที่ 𝑋𝑋�𝑖𝑖  แทนคาเฉลี่ยของตัวอยางที่  𝑖𝑖; 𝑖𝑖 = 1, 2 

 𝑛𝑛𝑖𝑖  แทนขนาดตัวอยางของกลุมที่ 𝑖𝑖; 𝑖𝑖 = 1, 2 

 𝑆𝑆𝑖𝑖2  แทนความแปรปรวนตัวอยางที่ 𝑖𝑖; 𝑖𝑖 = 1, 2 

 
2.2 การแจกแจงท่ีใชในการศึกษา 

 
ในการศึกษาคร้ังนี้ไดจำลองขอมูลภายใตการแจกแจงผสม (Mixture Distributions) โดยมีฟงกชันความนาจะเปน ดังนี ้

 

  𝑓𝑓(𝑥𝑥, 𝑝𝑝) = (𝑝𝑝)𝑓𝑓1(𝑥𝑥) + (1 − 𝑝𝑝)𝑓𝑓2(𝑥𝑥)  ; 0 < 𝑝𝑝 < 1   (2.3) 

 

เมื่อ 𝑝𝑝 แทน พารามิเตอรถวงน้ำหนัก และ  𝑓𝑓𝑖𝑖(𝑥𝑥) แทน ฟงกชนัความนาจะเปนขององคประกอบที ่𝑖𝑖; 𝑖𝑖 = 1, 2 

 

2.2.1 การแจกแจงปรกติแบบผสม (Mixed normal distribution: MN) มีฟงกชันการแจกแจงความ

นาจะเปนดังนี้  
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เมื่อ 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2 แทนพารามิเตอรบงตำแหนงและบงรูปรางขององคประกอบที ่𝑖𝑖; 𝑖𝑖 = 1, 2 

 
2.2.2 การแจกแจงแกมมาแบบผสม (Mixed gamma distribution: MG) มีฟงกชันการแจกแจงความ

นาจะเปนดังนี้  

 

𝑓𝑓(𝑥𝑥) = 𝑝𝑝 �𝑥𝑥
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𝜃𝜃2
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𝑘𝑘2 �   (2.5) 

 

เมื่อ 𝑘𝑘𝑖𝑖 ,𝜃𝜃𝑖𝑖 แทนพารามิเตอรบงรูปรางและบงขนาดขององคประกอบที่ 𝑖𝑖; 𝑖𝑖 = 1, 2 

และสามารถกำหนดคาพารามิเตอรไดดังตารางที่ 1 

 

ตารางที่ 1: คาพารามิเตอรของการแจกแจงที่ศึกษา 

 

การแจกแจง สัญลักษณ 
𝑝𝑝 

ประชากรกลุมที่ 1 
𝑝𝑝 

ประชากรกลุมที่ 2 

  องคประกอบท่ี 1 องคประกอบท่ี 2 องคประกอบท่ี 1 องคประกอบท่ี 2 

การแจกแจง 

ปรกติแบบผสม  

(𝜇𝜇,𝜎𝜎) 

                

MN1 0.5 (0,1) (1,1) 0.5 (0,1) (1,1) 

MN2 0.8 (0,1) (1,1) 0.8 (0,1) (1,1) 

MN3 0.5 (0,1) (2,1) 0.5 (0,1) (2,1) 

MN4 0.8 (0,1) (2,1) 0.8 (0,1) (2,1) 

MN5 0.5 (0,1) (1,1) 0.5 (0,2) (1,2) 

MN6 0.8 (0,1) (1,1) 0.8 (0,2) (1,2) 

MN7 0.5 (0,1) (2,1) 0.5 (0,2) (2,2) 

MN8 0.8 (0,1) (2,1) 0.8 (0,2) (2,2) 

การแจกแจง

แกมมาแบบ

ผสม (𝑘𝑘,𝜃𝜃) 

การแจกแจง

แกมมาแบบ

ผสม (𝑘𝑘,𝜃𝜃) 

MG1 0.5 (1,1) (1/4,4) 0.5 (1,1) (1/4,4) 

MG2 0.8 (1,1) (1/4,4) 0.8 (1,1) (1/4,4) 

MG3 0.5 (1,1) (1/2,2) 0.5 (1,1) (1/2,2) 

MG4 0.8 (1,1) (1/2,2) 0.8 (1,1) (1/2,2) 

MG5 0.5 (1,1) (1/2,2) 0.5 (1,1) (1/4,4) 

MG6 0.8 (1,1) (1/2,2) 0.8 (1,1) (1/4,4) 

MG7 0.5 (1,1) (1/4,4) 0.5 (1/2,2) (1/4,4) 

MG8 0.8 (1,1) (1/4,4) 0.8 (1/2,2) (1/4,4) 
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2.3 ความสามารถในการควบคุมความผิดพลาดแบบท่ี 1 (Type I error: 𝛼𝛼) 
 

กรณีขอมูลที่นำมาวิเคราะหไมเปนไปตามขอสมมุติเบื ้องตนแตวิธีการทดสอบยังคงมีประสิทธิภาพและ

สามารถใชทดสอบสมมุติฐานได แสดงวาการทดสอบมีความแกรง โดยเกณฑที่ใชในการศึกษาความแกรงของการ

ทดสอบทีและการทดสอบของเวลช จะพิจารณาจากความสามารถในการควบคุมความผิดพลาดแบบที่ 1 ซึ่งหมายถึง

การปฏิเสธสมมุติฐานหลักเมื่อสมมุติฐานหลักเปนจริง โดยจำลองขอมูลภายใตสมมุติฐานหลักเปนจริงและนับจำนวน

ครั้งของการปฏิเสธสมมุติฐานหลัก (𝐼𝐼) โดยคาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 คำนวณ

จาก 
 

𝛼𝛼� =
𝐼𝐼

10,000
  

 

จากนั้นเปรียบเทียบกับเกณฑของ Bradley [0.025,0.075] [10] โดยงานวิจยันีก้ำหนดระดับนัยสำคัญเทากับ 0.05 หาก 

𝛼𝛼� ตกอยูในเกณฑดังกลาวจะสรุปวาสถิติทดสอบสามารถควบคุมความผิดพลาดแบบที่ 1 ได  
 

 

3  ผลการศึกษา 

พิจารณาจากคาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 ของการทดสอบทีและการ

ทดสอบของเวลช เมื่อขอมูลมีการแจกแจงแบบผสมทั้งสองการแจกแจง พบวา คาประมาณดังกลาวของการทดสอบที

และการทดสอบของเวลช ตกอยูในเกณฑของ Bradley ในทุกกรณีที่ศึกษา ดังนั้น การทดสอบทั้งสองสามารถควบคุม

ความผิดพลาดแบบที่ 1 ได อยางไรก็ตามคาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 ของการ

ทดสอบทั้งสองวิธีของขอมูลที่มีการแจกแจงปรกติแบบผสมมีคาใกลเคียงกับระดับนัยสำคัญที่กำหนดมากกวาขอมูลที่มี

การแจกแจงแกมมาแบบผสม แสดงดังภาพที่ 1 – 4 

 

 

ภาพที่ 1: คาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 เมื่อขอมูลมีการแจกแจงปรกติแบบผสม  

กรณีความแปรปรวนคงที ่
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ภาพที่ 2: คาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 เมื่อขอมูลมีการแจกแจงปรกติแบบผสม  

กรณีความแปรปรวนไมคงที ่

 

 

ภาพที่ 3: คาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 เมื่อขอมูลมีการแจกแจงแกมมาแบบผสม  

กรณีความแปรปรวนคงที ่

 

 

ภาพที่ 4: คาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 เมื่อขอมูลมีการแจกแจงแกมมาแบบผสม  

กรณีความแปรปรวนไมคงที ่
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4  สรุปผลและอภิปรายผลการศึกษา 
จากผลการวิจัยโดยการศึกษาความแกรงของการทดสอบทีและการทดสอบของเวลชในการควบคุมความ

ผิดพลาดแบบที่ 1 พบวาการทดสอบทีและการทดสอบของเวลชสามารถควบคุมความผิดพลาดแบบที่ 1 ไดในทุก

สถานการณที่ศึกษา เมื่อขอมูลมีการแจกแจงปรกติแบบผสมและการแจกแจงแกมมาแบบผสมทั้งกรณีที่ตัวอยางมี

ขนาด เล็ก ปานกลางและใหญ รวมถึงทุกขนาดของพารามิเตอรถวงน้ำหนักของการแจกแจงผสมที่นำมาศึกษาและเมื่อ

พิจารณาจากขนาดตัวอยางที่เพิ่มขึ้นจะเห็นไดวาคาประมาณความนาจะเปนของการเกิดความผิดพลาดแบบที่ 1 ของ

ทั้งสองวิธีจะมีคาเขาใกลระดับนัยสำคัญที่กำหนดมากขึ้น ดังนั้น หากขอมูลที่นำมาวิเคราะหมีการแจกแจงปรกติแบบ

ผสมและการแจกแจงแกมมาแบบผสมแลว สถิติทดสอบทั้งสองยังคงมีความแกรงและสามารถใชทดสอบสมมตุิฐานได

อยางมีประสิทธิภาพเชนเดิม 

  

5  ขอเสนอแนะ 

เนื ่องจากการวัดประสิทธิภาพของวิธีการทดสอบอาจพิจารณากำลังการทดสอบรวมดวย ดังนั ้นควร

ทำการศึกษาเพิ่มเติมเกี่ยวกับกำลังการทดสอบ เพื่อทราบถึงประสิทธิภาพของการทดสอบทีและการทดสอบของเวลช 

ภายใตขอมูลที่มีการแจกแจงปรกติแบบผสมและการแจกแจงแกมมาแบบผสม 

 

กิตติกรรมประกาศ ขอขอบคุณคณะวิทยาศาสตร มหาวิทยาลัยบูรพา ที่สนับสนุนการทำวิจัยคร้ังนี้ 
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Abstract 
 This research introduced the Expectation-Maximization (EM) algorithm approach to 
estimate the two parameters of the zero-truncated Poisson lognormal (ZTPLN) 
distribution. A population size estimator derived from the Poisson lognormal 
distribution was also proposed, offering a robust framework for modeling over-dispersed 
count data with heterogeneity. Comparisons with the maximum likelihood estimator of 
the Poisson distribution (MLEPoi), the maximum likelihood geometric distribution 
(Geo), and Chao’s estimators revealed that the new estimator can be beneficially used 
as a true model.  

 
Keywords: poisson lognormal distribution, capture-recapture, hidden population 

2020 MSC: Primary 62F10; Secondary 62F40. 
 

1 Introduction 
 
Knowledge of the size of the target population is applicable across various domains. In 
ecology, population size data play a pivotal role in guiding decisions regarding habitat 
protection, fragmentation management, and the promotion of connectivity to sustain viable 
populations. In the social sciences, population size informs decision-making processes and 
addresses challenges in social, economic, and public health domains. However, in reality, 
certain groups of individuals are not easily accessible or identifiable through conventional 
means of data collection such as census surveys or official records. Capture-Recapture (CR) 
is a powerful tool for estimating the size of populations, particularly when dealing with elusive 
or difficult-to-count species or groups. This method has been successfully used in ecology and 
wildlife conservation to estimate the population sizes of animal species and study population 
dynamics [1-2]. Recently, this approach has been applied in various fields including the social 
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sciences [3-7], public health, and epidemiology [8-10] to estimate the size of specific 
populations.  
 
The CR approach involves repeated counts of a target population. Suppose that iX , 
=i 1 2 3 N, , , ...,  is the number of times individual i  is captured over m  sampling occasions, 

and let = =x ip  P(X x) . Similarly, let xf  denote the frequency of individuals captured exactly 
x  times, where =ix 1,2,3,...,m  and m is the largest count. If =iX 0  is not observed, the 
corresponding 0f  is unknown and might be estimated by its expected value 0Np , while 0p is 
the probability of non-identifying in the sample process and needs to be estimated within the 

appropriate model. The Poisson distribution with parameters λ , and 
λ λ

=
x

x
exp( )p

x!
, can be 

selected as a basic model for counting data but it may not be suitable for CR data in 
heterogeneous populations.  To account for a heterogeneous population in CR data, the 
Poisson parameter is often considered as an unobserved random variable, with a mixed 
distribution h( )λ  and a marginal distribution as:  
 

xp = 
∞ −λ λ

λ∫
x

0

exp( ) h( )dx
x!

, 

where the mixing distribution density h( )λ  is unknown [11]. One approach to model 
overdispersion involves exploring established parametric Poisson mixture models like the 
negative binomial distribution [12], geometric distribution [13], the Conway-Maxwell-Poisson 
distribution [14] or the Poisson lognormal (PLN) distribution [15-16]. The PLN distribution 
provides a robust framework for modeling over-dispersed count data with heterogeneity and 
highly skewed distributions but involves complex numerical methods for estimating the 
parameters. This study estimated the size of the target population using CR data. In a CR 
study, the unobserved counts may disappear during the counting procedure. Therefore, here, 
the Expectation-Maximization (EM) algorithm approach was introduced to estimate the two 
parameters of the zero-truncated Poisson Lognormal (ZTPLN) distribution. A population size 
estimator based on the PLN distribution was also proposed, which offered a robust framework 
for modeling over-dispersed count data and highly skewed distributions. 
 

2  The Poisson Lognormal Distribution for Capture-Recapture 
Data  
 
The Poisson distribution assumes that the variance is equal to the mean. However, in many 
real-world scenarios, particularly in count data, the variance often exceeds the mean, 
indicating overdispersion. The PLN distribution allows for overdispersion by introducing 
variability in the rate parameter via the lognormal distribution. 
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2.1 The Poisson Lognormal Distribution 
 
Let the Poisson parameter λ  of each individual follow the lognormal distribution as  

 λ −µ λ µ σ = − 
σ λσ π  

2

2

1 (log )h( ; , ) exp
22

, where µ  is the mean and σ  is the  standard deviation 

of the normal distribution Y , and Y log( )= λ . The Poisson lognormal distribution (PLN) 
probability function can be depicted as: 

          
∞

−  λ −µ = λ −λ − λ 
σ σ π  

∫
2

x 1
x 2

0

1 (log )p exp( )exp d ,
2x! 2

  x 0,1,2,...=               (2.1) 

The range of parameters for the PLN distribution are µ >0  and σ >0 . To explore the 
characteristics of the PLN model, plots illustrating the probability mass function of the PLN 
distribution with parameters µ  and σ  are shown in Figure 1.  
 

 

 
Figure 1:  Simulated frequency distributions based on the PLN distribution with 

PLN( , )µ σ  
 
The expected value and variance of X  are shown as follows:  

    σ
= µ+

2

E(X) exp( )
2

, 

 
 

1, 1µ = σ =  

2, 1µ = σ =  

3, 1µ = σ =  

2, 2µ = σ =  2, 3µ = σ =  

3, 2µ = σ =  3, 3µ = σ =  

1, 2µ = σ =  1, 3µ = σ =  
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and 

    σ
= µ+

2

Var(X) exp( )M *
2

, 

 

where  { }
    σ     = + µ+ σ −          

2
2M* 1 exp exp( ) 1

2
. The point estimators of µ  and σ 2  are 

obtained by the first and the second moments as 
  µ =   − 

2alog
b a

and 
2

2

b alog
a
− σ =  

 
, where  

=
= ∑

m

x
x 0

1a xf
N

  and 
=

= ∑
m

2
x

x 0

1b x f
N

 [15].  Let xf  be the frequency counts with value x  times and 

m  is the largest count. Then, the completeness likelihood function of the PLN distribution 
for capture-recapture data is given by 
 

µ σcL (x; , )   x

m
f
x

x 0
p

=

=∏      

∞
−

=

  λ −µ = λ −λ − λ  
σ σ π   

∏ ∫
xf2m

x 1
2

x 0 0

1 (log )exp( )exp d
2x! 2

.              (2.2) 

        
Evaluating the likelihood equation requires numerical integration, which in turn necessitates 
using an optimization technique to obtain the maximum likelihood function. Fortunately, the 
R programming offers the poilogMLE() function within the poilog package to streamline 
this process. 
 
2.2 Population Size Estimator Based on the Zero-Truncated Poisson Lognormal 
Distribution  
  
In capture-recapture data, zero counts are unknown and require estimation. Let =x 0  denote 
an individual that cannot be captured from the target population with probability 0p . Then, 
under the assumption of the zero-truncated Poisson lognormal (ZTPLN) distribution  

+ =
−

x
x

0

p
p

1 p
, 

where 
∞  λ λ −µ = − λ  λ − σσ π  
∫

x 2

0 2
0

1 (log )p exp d
exp( ) 1 2x! 2

.               (2.3) 

Applying this equation to the Horvitz-Thompson method leads to a population size estimator 
based on the PLN distribution ( PLNN ) as: 

                             


=
−

PLN

0

nN
1 p

,                                             (2.4) 
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where 
=

=∑
m

x
x 1

n xf , and  0p  can be  calculated from (2.3) with estimators µ  and σ . The two 

parameters are obtained by maximizing the log-likelihood function of the ZTPLN 
distribution. 
 

∞
−

∞=

  λ −λ λ  σ π µ σ =  λ − λ  λ −σ π 

∫
∑

∫

xf

x 1

m 0

obs x
x 1

0

1 exp( )B*d
x! 2log L (x; , ) log

11 B*d
exp( ) 1x! 2

’                           (2.5) 

where 
 λ −µ = −  σ 

2
*

2

(log )B exp
2

. Equation (2.5) is then differentiated with respect to µ  and 

σ , followed by setting both equations to zero. However, this does not yield a closed-form 
expression.  One effective method for solving missing or hidden data is the Expectation- 
Maximization (EM) algorithm [17]. This iterative algorithm consists of two components: the 
Expectation step (E-step) and the Maximization step (M-step). In the first step, the algorithm 
attempts to estimate the missing data (zero counts) by replacing them with the conditional 
expected values, given frequency counts and the current parameters as: 
           0f  = µ σ0E(f |observed; , ) 

            = µ σ0 1 2 3 mE(f |f , f , f , ..., f ; , )  

            = 0Np . 
 
The size of population N can be estimated by + 0n f , and the expected value of unobserved 
data can be estimated by = + 

0 0 0f (n f )p = −0 0(np )/(1 p ) . In the M-step, the associated 

completeness log-likelihood function of the PLN distribution, which includes unobserved 0f  
and observed data ( 1 2 3 mf ,f ,f ,...f ), is required to estimate the new iterative parameters and 

the new population size estimator. Since there are no closed-form solutions for µ  and σ  
under the PLN distribution, the poilog package in R programming is used for the EM 
algorithm.  
 
2.3 The EM Algorithm 
 
The EM algorithm technique under the maximum likelihood estimation of the PLN 
distribution is given as follows: 
 

Step 0: Set  0l =   and use the empirical moments  
  µ =   − 

2(l) alog
b a

, 
 − σ =   
 

2(l)

2

b alog
a

, and 

 σ = σ
(l) 2(l)

 as the initial parameters. Then, use the poilog package in R programming to 

estimate (l)
0p and achieve =

−


(l)(l)
0

0 (l)
0

np
f

1 p
. The algorithm is repeated until the log-likelihood 
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function of the ZTPLN distribution in (2.5) converges to a constant with an acceptable error. 
Therefore, the initial value is set as  
  

µ σ = −∞(l)
obslog L (x; , ) .                                     (2.6) 

 

Step 1: Substitute 
(l)
0f in the completed frequency distribution table (Table 1) to calculate 

the new parameters 
+

µ
(l 1)

  and 
+

σ
(l 1)

 using the maximum likelihood estimation.  
 

Table 1: The frequency distribution 
 

x  0  1 2  … m  

xf  
0
(l)

f  1f  2f  … mf  

 
The maximum likelihood estimators are computed using the poilog package in R 
programming, with the poilogMLE () function leading to new log-likelihood maximum 
estimators. 
 

Step 2: Estimate the new unobserved probability, 
+(l 1)

0p , using the dpoilog () function in R 
programming, and then estimate the new unobserved frequency and population size: 





+

+
+

=
−

(l 1)

(l 1) 0
0 (l 1)

0

npf
1 p

                                            (2.7) 

and  




+

+
=

−

(l 1)
PLN (l 1)

0

nN
1 p

.                                           (2.8) 

Step 3: Check the algorithm condition by substituting 
+

µ
(l 1)

  and 
+

σ
(l 1)

 into the log-
likelihood of the ZTPLN distribution, (l 1)

obslog L (x; , ) +µ σ , and compare the difference in 
values as  

dif = | (l)
obslog L (x; , )µ σ - (l 1)

obslog L (x; , ) +µ σ | 0.0001< .                       (2.9) 
 
Then, setting = +l l 1 . If  dif 0.0001≥ return to step 1 to update the new maximum likelihood 
estimators.  The algorithm is repeated until the log-likelihood function of the ZTPLN 
converges to a constant with an acceptable error. 
 
2.4 Confidence Interval Estimation 
 
The confidence interval of the PLN estimator is constructed using the imputed bootstrapping 
method introduced by [18]. One advantage of utilizing the bootstrap confidence interval is its 
flexibility and robustness against outliers, skewed distributions, or small sample sizes. 
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Moreover, this method does not require a variance formula estimator. The procedure for 
constructing a 95% imputed bootstrap confidence interval is as follows: 
 

  ± 0.975N Z SE(N) ,                                         (2.10) 

where  SE(N) denotes the standard error of N  from the imputed bootstrap method, and 
=0.975Z 1.96 . 

 
2.5  Alternative Estimators 

 
Comparison with some well-known estimators is then performed to achieve a better judgment 
of the proposed estimator. 

 
2.5.1 Maximum Likelihood Estimator under the Poisson Distribution 
Suppose that the capture-recapture count X  follows a Poisson distribution with density. The 
population size ( MLEPoiN ) can then be estimated as  



 

= =
− − −λ

MLEPoi

ZTPoi0

n nN
1 p 1 exp( )

’                           (2.11) 

The maximum likelihood estimator λZTPoi  can be calculated using the EM algorithm approach 
based on the zero-truncated Poisson lognormal distribution. A variance estimation of   


MLEPoiN ,  

MLEPoiVar(N ) , is given as: 

 



 

= =

=     − −     

∑ ∑
MLEPoi

MLEPoi
m m

x x
x 1 x 1

MLEPoi MLEPoi

NVar(N )
xf xf

exp 1
N N

.                             (2.12) 

For further details, see [19,20]. 
 
2.5.2 Chao’s Lower Bound Estimator 
The Chao estimator [11] estimates species richness based on a vector or matrix of abundance 
data for an unobserved heterogeneous population. If counts ( X ) are assumed to be modeled 
from a mixed Poisson distribution with arbitrary mixing density h( )λ ; then,       

∞ −λ λ
= λ λ∫

x

x
0

exp( )p h( )d
x!

, where x 0,1,2,...=                      (2.13) 

Using the Cauchy-Schwarz inequality for any two random variables X  and Y , gives 
≤2 2 2E[(XY)] E(X )E(Y ) . The Chao lower bound population size estimator ( ChaoN ) can be 

written as: 
 = +

2
1

Chao

2

f
N n

2f
.                                        (2.14) 

Only the observed frequencies 1f  and 2f  are used in the Chao lower bound estimator. A 

modified version of variance of the Chao estimator, 

ChaoVar(N )  [21] can be given as: 
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      = + +      
   

2 2 3 2
1 1 1

Chao 3 2
22 2

f f f1 1Var(N )  
4 2 ff f

.                           (2.15) 

 
2.5.3 Maximum Likelihood Estimator under the Geometric Distribution 
The geometric distribution comprises a mixture of the Poisson distribution with an 
exponential density, leading to the associated marginal density with parameter p , and 
obtained as x

xp (p) (1 p) p= − , where x 0,1,2,...= . A maximum likelihood estimator based on 

the geometric distribution for a heterogeneous population ( GeoN ) was proposed by [22] as:  


 

= = =
−− −

Geo

0

n n nSN
S n1 p 1 p

’                                                    (2.16) 

where 
=

=∑
m

x
x 1

S xf . The variance estimation of this estimator can be calculated from 

 
  =

−

2 2

Geo 3

S nVar(N )
(S n)

.                                   (2.17) 

 

3 Simulation Study 
3.1 Simulation Scenarios  
A simulation study is used to assess the performance of population size estimators across 
simulated data sets. The proposed estimator was compared with some well-known estimators 
highlighted in the previous section. The simulation scheme was designed by generating data 
following the Poisson lognormal distribution with two parameters µ = {1,1.5,2,2.5,3,3.5} and 
σ = {1,2,3}.  The population size was fixed as N 500=  for a small, N 1,000=  for a medium, 
and N 5,000= for a large size study. T 1,000= data sets were drawn from each simulation 
scenario and any occurrences of zero counts were truncated before estimating the population 
size, with the proposed estimator evaluated in terms of accuracy and precision. Let  ( t )N  
denote the population size estimated value from replication tht , where  t 1,2,3,...,T= . Then, 

the expected value of the population size estimator can be achieved by  

=
= ∑

T
(t )

t 1

1E(N) N
T

. The 

relative bias of population size estimator was selected to investigate accuracy, defined as 
 { }= −

1Rbias(N) E(N) N
N

. The precision criteria were defined as the relative variance;   

  ( )
=

  = −  − 
∑

2T
(t )2

t 1

1 1R var(N) N E(N)
T 1N

. Bias and precision describe the estimator 

performance, and the relative root mean square error was used to measure the performance 

of the population size estimator as    { }= +
21RRMSE(N) Var(N) bias(N)

N
, where 

 = −bias(N) E(N) N  and   { }
2T

t
t 1

1Var(N) N E(N)
T =

= −∑ .  
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3.2 Simulation Results 
The PLN estimator provides an asymptotically unbiased estimate of the population size N , 
with results displayed in Figures 2 and 3. Both the MLEPoi and Chao estimators 
underestimated the population size across all scenarios under the PLN distribution although 
their bias reduced when the location parameter,µ , increased. The Geo estimator also tended 
to slightly underestimate when the dispersion parameter was small. However, it showed 
promise in estimating population size under the PLN distribution for 1σ = .  The relative 
variance of all estimators showed less dispersion when the parameter µ  and the population 
size increased. To select the most suitable estimator under the Poisson lognormal distribution, 
a balance between bias and precision is necessary. The RRMSE was used to measure and 
compare the four estimators. As illustrated in Figure 4, the PLN was the optimal choice for 
estimating the target population size, as it consistently exhibited the lowest RRMSE across 
all scenarios. The Chao estimator showed promise as an alternative choice for small to 
medium-sized populations, as its estimated results closely aligned with those of the proposed 
estimator.  

 

 
 

 
 

Figure 2: Relative bias (Rbias) of the four estimators for counts drawn from PLN( , )µ σ  
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Figure 3: Relative variance (Rvar) of the four estimators for counts drawn from PLN( , )µ σ  
 

 

 
Figure 4: Relative root mean error (RRMSE) of the four estimators for counts drawn from 

PLN( , )µ σ  
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4 Real Data Example 
 

In this section, different estimators were applied to a real-data example using Malaysian 
butterfly’s data. The dataset originated from [23] and has been explored by many authors 
[15,16]. Malaysian butterflies comprise 620 species, totaling 9,029 individuals, as presented in 
Table 2. The EM algorithm was employed to estimate the two parameters of the ZTPLN 

distribution, with initial values set as the empirical moments: 
(0)

µ = 1.7485 and 
(0)

σ  = 
0.8908.  The algorithm involved 18 repeated steps, during which the log-likelihood function 
of the ZTPLN distribution converged to a constant with an acceptable error. The maximum 
log-likelihood estimation with the EM algorithm provided results as µ  = 1.1219 and             
σ=1.4817. The estimated number of species in the population under the PLN estimator was 
721. This was lower than the estimate obtained using a numerical integral method (742) [15] 
and an extension of MacArthur’s broken stick model (816) [16]. 
 
 

Table 2: Frequency distribution of Malaysian butterflies 
 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
fx 118 74 44 24 29 22 20 19 20 15 12 14 6 12 6 9 9 6 10 10  
x 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41+ 
fx 11 5 3 3 5 4 8 3 3 2 5 4 7 4 5 3 3 3 3 1 56 

 
 
The results of population size estimates across various mixed Poisson distributions are 
presented in Table 3 and Figure 5. The MLEPoi estimator yielded the lowest number of 
species because it is designed for homogeneous populations and often underestimates 
population size heterogeneity [24]. The PLN estimator demonstrated a superior fit compared 
to the Chao and Geo estimators.  
 

Table 3: Population size estimates 
 
             Estimator 0f  N  



SE(N)  95% of CI 

MLEPoi ( λ =8.5435) 1 621 0.35 620 -- 622 

Chao 95 659 20.27 619 -- 699 
Geo ( p =0.106 ) 67 631 9.18 613 -- 649 

PLN ( µ=1.1219, σ=1.4817) 157 721 19.70 683 -- 760 
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Figure 5: Estimated population size versus observed frequencies 

 

5 Conclusions  
 
Various estimators in the capture-recapture field have widespread applications in various 
domains. This study proposed a modified approach for estimating population size under a 
specific of heterogeneity based on the Poisson lognormal distribution. The EM algorithm 
procedure was employed to estimate the two parameters of the ZTPLN distribution, while 
the accuracy and precision of the method compared to other well-known estimators were also 
assessed. The PLN estimator emerged as the optimal choice for estimating the target 
population size, consistently demonstrating the lowest RRMSE values across all scenarios. 
The Chao estimator showed promise as an alternative choice for small to medium-sized 
populations, with estimated results that closely aligned with the proposed estimator. For the 
future work, it would be worthwhile to explore additional data structures, including those 
featuring varied covariate variable types or assuming different sampling distributions. 
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ความรูความเขาใจและพฤติกรรมการปองกันโรคโควิด-19  

หลังการระบาดใหญของประชาชนในจังหวัดสุราษฎรธานี 
 

อัญชุลี ณ ตะก่ัวทุง1 ศุภชัย ดำคำ1,†, ‡ เกตุกนก หนูดี1 และ กันยากร ออนรกัษ1 
1สาขาวิชาคณิตศาสตร คณะวิทยาศาสตรและเทคโนโลยี มหาวิทยาลัยราชภฏัสรุาษฎรธานี 84100  

 

บทคัดยอ 

 การวิจัยเชิงสำรวจนี้มีวัตถุประสงคเพื ่อ 1) ศึกษาความรู ความเขาใจเกี ่ยวกับโรคและการปองกัน        

โรคโควิด-19 2) ศึกษาพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 และ 3) ศึกษาความสัมพันธระหวาง

ขอมูลท่ัวไปกับระดับความรูความเขาใจเก่ียวกับโรคและการปองกันโรค พฤติกรรมการปองกันการแพรระบาดของ

โรคโควิด-19 ของประชาชนในจังหวัดสุราษฎรธานี กลุ มตัวอยาง คือประชาชนที่อาศัยและมีภูมิลำเนาใน      

จังหวัดสุราษฎรธานี จำนวน 453 คน ใชวิธีสุ มตัวอยางแบบโควตา เครื ่องมือที่ใชเปนแบบสอบถามความรู     

ความเขาใจและพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 ที่มีคา IOC อยูในชวง 0.67-1.00       

และมีคาความเช่ือมั่นดวยคาสัมประสิทธ์ิแอลฟาของครอนบาค เทากับ 0.70 สถิติท่ีใชในการวิเคราะหขอมูล ไดแก   

การนับความถ่ี คารอยละ คาเฉลี่ย สวนเบ่ียงเบนมาตรฐาน และการทดสอบไคสแควร    

  ผลการวิจัยพบวา กลุมตัวอยางที่ตอบแบบสอบถาม สวนใหญเปนเพศหญิง (รอยละ 78.15) มีอายุ

ในชวง 50-59 ป (รอยละ 31.79) สำเร็จการศึกษาในระดับมัธยมศึกษา (รอยละ 41.28) มากที่สุด สวนใหญ

ประกอบอาชีพเกษตรกรรม (รอยละ 29.58) สวนใหญมีประวัติการไดรับวัคซีนโควิด-19 จำนวน 3 เข็ม (รอยละ 

47.46) มีความรู ความเขาใจเกี ่ยวกับโรคและการปองกันโรคโควิด-19 ระดับปานกลาง (รอยละ 79.25)              

มีพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 ในภาพรวมมีการปฏิบัต ิในทุกครั ้งมากที ่สุด              

(รอยละ 67.33) เมื่อพิจารณารายขอ พบวา มีพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 ดีที่สุดคือ 

การสวมหนากากอนามัยทุกครั้งเมื่อไมสบายหรือออกจากบาน รองลงมาคือ การสังเกตลักษณะอาการท่ีเก่ียวของ

กับการติดเช้ือโรคโควิด-19 ของตนเองเปนประจำ ในการศึกษาความสัมพันธระหวางขอมูลท่ัวไปกับระดับความรู

ความเขาใจเกี่ยวกับโรคและการปองกันโรค พฤติกรรมปองกันการแพรระบาดของโรคโควิด-19 พบวา เพศและ

ประวัติการไดรับวัคซีนโควิด-19 สงผลตอระดับความรูความเขาใจเกี ่ยวกับโรคและการปองกันโรคโควิด-19        

ในขณะท่ีขอมูลเพศ อายุ ระดับการศึกษา สงผลตอระดับพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19    

ท่ีระดับนัยสำคัญ 0.05  

 

คำสำคัญ: โควิด-19, ความรูความเขาใจ, พฤติกรรมการปองกัน  
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1 บทนำ 
โรคโควิด-19 เกิดขึ้นครั้งแรกในประเทศจีน เมืองอูฮั่น มณฑลหูเปย เมื่อวันที่ 30 ธันวาคม 2562 จากนั้นพบ

ผู ป วยในหลายพื ้นที ่ของประเทศจีน สำหรับการติดเช ื ้อนอกประเทศจีนนั ้น ไดถูกรายงานเปนครั ้งแรกใน                

วันที่ 13 มกราคม 2563 ในประเทศไทย และไดกระจายไปยังทวีปตางๆ ทั่วโลก เมื่อการระบาดขยายวงกวางออกไป 

ในหลายประเทศมากขึ้น วันที่ 11 มีนาคม 2563 WHO จึงไดประกาศใหการแพรระบาดของโรคโควิด-19 เปน       

"การระบาดใหญ" หรือ Pandemic [1]  ซึ่งในปจจุบันองคการอนามัยโลกยังคงติดตามและเฝาระวังการแพรระบาดนี้

อยางตอเนื ่อง โรคโควิด-19 เปนโรคที ่เกิดการติดเชื ้อไวรัส ที ่มีชื ่อวา Severe Acute Respiratory Syndrome 

Coronavirus 2 หรือ SARS-CoV-2 ไวรัสสามารถแพรกระจายจากปากหรือจมูกของผูติดเชื ้อในอนุภาคของเหลว  

ขนาดเล็ก เมื่อไอ จาม พูด รองเพลง หรือหายใจ อนุภาคเหลานี้มีตั้งแตละอองในทางเดินหายใจที่ใหญขึ้นไปจนถึง

ละอองลอยที่เล็กกวา ผูติดเชื้อไวรัสสวนใหญจะมีอาการปวยทางเดินหายใจเล็กนอยถึงปานกลางและหายเปนปกติ  

โดยไมตองรับการรักษาเปนพิเศษ แตบางรายอาจมีอาการปวยหนักและตองไดรับการดูแลจากแพทย นอกจากนี้      

ในผูสูงอายุและผูที่มีโรคประจำตัว เชน โรคหัวใจและหลอดเลือด เบาหวาน โรคทางเดินหายใจเรื้อรัง หรือมะเร็ง       

มีแนวโนมที่จะเจ็บปวยรุนแรง อยางไรก็ตามผูปวยอาจมีอาการปวยหนักหรือเสียชีวิตไดทุกวัย [2] การระบาดในไทย

พบการแพรระบาดหลายสายพันธุ  โดยสายพันธุที่ระบาดในประเทศไทยในปลายป 2566 จนถึงตนป 2567 นี้ เปนไวรัส 

SARS-CoV-2 สายพันธุ omicron JN.1 [3]  

จากขอมูลขององคการอนามัยโลก วันที่ 1 เมษายน 2567 พบผูติดเชื้อทั่วโลก 704,539,975 คน ผูเสียชีวิต 

7,008,958 คน โดยพบผูเชื ้อสะสมสูงสุด 3 อันดับแรก คือ สหรัฐอเมริกา (ผู ติดเชื ้อ 111,765,841 คน เสียชีวิต 

1,218,840 คน) อินเดีย (ผูติดเชื้อ 45,034,146 คน เสียชีวิต 533,547 คน) และฝรั่งเศส (ผูติดเชื้อ 40,138,560 คน 

เสียชีวิต 167,642 คน) สำหรับประเทศไทยอยูในลำดับที่ 33 โดยพบผูติดเชื้อยืนยันสะสม 4,769,277 ราย เสียชีวิต

สะสม 34,581 ราย [4] นอกจากนี้รายงานสถานการณโรคโควิด-19 ของกระทรวงสาธารณสุข ในชวงป 2566 จนถึง

เดือนมีนาคม 2567 พบวายังคงพบการติดเชื้อของโรคโควิด-19 อยางตอเนื่อง และยังมีผูปวยจำเปนตองพักรักษาตัวใน

โรงพยาบาล ผูปวยปอดอักเสบรุนแรง ผูปวยที่ตองใชเครื่องชวยหายใจ รวมถึงผูเสียชีวิตเพิ่มจำนวนขึ้น ทั้งนี้ยังไมมี

ขอมูลบงชี้วาโรคโควิด-19 สายพันธุที่ระบาดในปจจุบัน กอใหเกิดความเจ็บปวยรุนแรงเพิ่มขึ้น แตเชื้อมีความสามารถ

ในการแพรระบาดไดรวดเร็วขึ้น อีกทั้งประชาชนปฏิบัติตามมาตรการปองกันตนเองลดลง เปนเหตุใหจำนวนผูปวย

เพิ่มขึ้น สำหรับการปองกันโรค องคการอนามัยโลกแนะนำใหบุคคลที่เสี่ยงตอการติดเชื้อและมีอาการรุนแรง เขารับ

การฉีดวัคซีนโควิด-19 อยางนอยหนึ่งเข็มและรับเข็มตอไปหางจากเข็มแรก 6-12 เดือน รวมกับการปฏิบัติตนตาม

มาตรการปองกันการติดเชื ้ออยางสม่ำเสมอ เชน การสวมหนากากอนามัย การปดปาก ปดจมูกเมื่อไอหรือจาม        

และการลางมือเปนประจำ [5]  

อยางไรก็ตามการผอนคลายมาตรการและขอจำกัดตางๆ เพื่อใหประชาชนและผูประกอบการสามารถดำรงชีวิต

ไดใกลเคียงกับปกติ ทั้งที่โรคโควิด-19 ยังเปนโรคที่มีผูปวยและผูเสียชีวิตอยางตอเนื่อง ทำใหการศึกษาการแพรระบาด

ของโรคโควิด-19 ยังเปนหัวขอที่นาสนใจ ในป พ.ศ. 2564 จันทิมา หาวหาญ และคณะ [6] ไดศึกษาความรูความเขาใจ

และพฤติกรรมการปฏิบัติตนเกี่ยวกับการปองกันโรคโควิด-19 ของประชาชนในจังหวัดภูเก็ต ผลการศึกษาพบวา    

ระดับความรูความเขาใจเกี่ยวกับการปองกันโรคโควิด-19 ของประชาชนในจังหวัดภูเก็ต อยูในระดับมาก ซึ่งกลุม

ตัวอยางสวนใหญมีความรู ใน ประเด็นที่ 1 ดานความรูทั ่วไปเกี ่ยวกับโรคโควิด-19 มากที่สุด คือ ไวรัสโคโรนา          
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สายพันธุใหม 2019 เหมือนไวรัสโรคทางเดินหายใจตะวันออกกลางและโรคซารส และพฤติกรรมการปองกันการแพร

ระบาดของโรคโควิด-19 ของประชาชนในจังหวัดภูเก็ต อยูในระดับมากที่สุด มีคาเฉลี่ยของขอที่มีการปฏิบัตินอยที่สุด 

คือ การสวมหนากากอนามัยทุกครั้งเมื ่อไมสบายหรือออกจากบาน ในปเดียวกัน บงกช โมระสกุลและคณะ [7]          

ไดศึกษาความรูและพฤติกรรมการปองกันโรคโควิด-19 ของนักศึกษาพยาบาลชั้นปที่ 1 วิทยาลัยนานาชาติเซนตเทเรซา

และวิทยาลัยเซนตหลุยส ผลการศึกษานี้ใชเปนแนวทางในการจัดโปรแกรมการใหความรูเกี่ยวกับโรคโควิด-19 ใหกับ

นักศึกษาพยาบาลชั้นปที่ 1 ใหดียิ่งข้ึน เพื่อสามารถปองกันการติดเชื้อโควิด-19 ไดเมื่อตองอยูในชุมชนระหวางการเรียน

ออนไลนชวงที่มีการระบาดของโรคโควิด-19 และแนวทางการเสริมความรูเมื่อสามารถขึ้นฝกปฏิบัติการพยาบาล      

ในชั้นปที่ 2 ตอมาในป 2565 กัมปนาท โคตรพันธ และคณะ [8] ไดศึกษาความสัมพันธระหวางความรอบรูดานสุขภาพ

กับพฤติกรรมการปองกันโรคติดเชื้อไวรัสโคโรนา 2019 ของประชาชนในจังหวัดมุกดาหาร จากผลการศึกษาพบวา           

กลุมตัวอยางมีความรอบรูดานสุขภาพในการปองกันควบคุมโรคติดเชื้อไวรัสโคโรนา 2019 อยูในระดับปานกลาง     

(รอยละ 65.4) พฤติกรรมการปองกันโรคติดเชื้อไวรัสโคโรนา 2019 อยูในระดับปานกลาง (รอยละ 55.3) และภาพรวม

ความรอบรูดานสุขภาพมีความสัมพันธทางบวกระดับปานกลางกับพฤติกรรมการปองกันโรคติดเชื้อไวรัสโคโรนา 2019 

อยางมีนัยสำคัญทางสถิต ิ(r = 0.522, p-value < 0.001) ผลการวิจัยนี้หนวยงานสาธารณสุขสามารถนำไปเปนขอมูล

พื้นฐานในการออกแบบกิจกรรมพัฒนาความรอบรูดานสุขภาพเพื่อสงเสริมพฤติกรรมการปองกันโรคสำหรับประชาชน

และกลุมเสี่ยงได  

จังหวัดสุราษฎรธานี เปนศูนยกลางทางเศรษฐกิจของกลุมจังหวัดภาคใตตอนบน มีผูคนเดินทางจากภายนอก 

เขามาในจังหวัดเปนจำนวนมาก รวมทั้งยังเปนเมืองทองเที่ยวที่มีนักทองเที่ยวทั้งชาวไทยและชาวตางชาติเขามาตลอดป  

ซึ่งเปนปจจัยหนึ่งที่สงผลตอการแพรระบาดของโรคโควิด-19 การศึกษาคร้ังนี้จึงมุงศึกษาความรูความเขาใจเก่ียวกับโรค

และการปองกันโรคโควิด-19 รวมถึงพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 หลังการระบาดใหญของ

ประชาชนในจังหวัดสุราษฎรธานี เพื่อเปนแนวทางในพัฒนาระบบการปองกันการแพรระบาดของโรคโควิด-19 ตอไป 
 

2  วัตถุประสงคการวิจัย 
 1. ศึกษาความรูความเขาใจเก่ียวกับโรคและการปองกันโรคโควิด-19 ของประชาชนในจังหวัดสุราษฎรธานี  

 2. ศึกษาพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 ของประชาชนในจังหวัดสุราษฎรธานี  

 3. ศึกษาความสัมพันธระหวางขอมูลทั่วไปกับความรูความเขาใจเกี ่ยวกับโรคและการปองกันโรค พฤติกรรม      

การปองกันการแพรระบาดของโรคโควิด-19 ของประชาชนในจังหวัดสุราษฎรธาน ี
 

3  วิธีการดำเนินการวิจัย  
 การวิจัยเชิงสำรวจนี้ มีวิธีการดำเนินการวิจัย ดังนี้  

3.1 ประชากรและตัวอยาง 

 ประชากรที่ใชในการวิจัย คือ ประชาชนที่อาศัยและมีภูมิลำเนาในอำเภอเมืองสุราษฎรธานี จังหวัดสุราษฎรธานี 

จากขอมูลประชากร ณ เดือนธันวาคม พ.ศ. 2565 จำนวน 189,816 คน 

 กลุมตัวอยาง คือ ประชาชนที่อาศัยและมีภูมิลำเนาในอำเภอเมืองสุราษฎรธานี จังหวัดสุราษฎรธานี ไมนอยกวา

จำนวน 400 คน ที่ไดจากกำหนดขนาดตัวอยางโดยใช Yamane (1967) [10] และใชการเลือกตัวอยางแบบโควตา 

(Quota Sampling) ของประชากรจำแนกตามตำบลในเขตอำเภอเมืองสุราษฎรธานี  
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3.2 เครื่องมือท่ีใชในการวิจัย  

 เครื่องมือที่ใชในการวิจัยเปนแบบสอบถามความรูความเขาใจและพฤติกรรมการปองกันการแพรระบาดของ   

โรคโควิด-19 ของประชาชนจังหวัดสุราษฎรธาน ีจำนวน 3 ตอน ประกอบดวย  

 ตอนที่ 1 ขอมูลทั่วไปของผูตอบแบบสอบถาม เปนแบบตรวจสอบรายการ (Checklist) จำนวน 5 ขอ ไดแก 

เพศ อายุ ระดับการศึกษา อาชีพ และประวัติการไดรับวัคซีนโควิด-19 

 ตอนที่ 2 ความรูความเขาใจเกี่ยวกับโรคและการปองกันโรคโควิด-19 มีจำนวน 30 ขอ แบงเปน 2 ประเด็น 

คือ 1) ความรูความเขาใจเกี่ยวโรคโควิด-19 และ 2) ความรูความเขาใจเกี่ยวกับการปองกันโรคโควิด-19 ซึ่งมีลักษณะ

แบบเลือกตอบ กำหนดเกณฑการใหคะแนน คือถูกตอง เทากับ 1 คะแนน และไมถูกตอง เทากับ 0 คะแนน  

โดยเกณฑในการแปลผลคะแนนใชการพิจารณาแบงระดับคะแนนอิงเกณฑ โดยประยุกตจากหลกัเกณฑของ 

Bloom (1971) [11] ซึ่งแบงเกณฑคะแนนคนที่ตอบถูกออกเปน 3 ระดับ ดังนี้ 

         ความรูระดับสงู หมายถึง ไดคะแนนตั้งแตรอยละ 80 ข้ึนไป หรือ 24-30 คะแนน   

         ความรูระดับปานกลาง หมายถึง ไดคะแนนตัง้แตรอยละ 60-79 หรือ 18-23 คะแนน   

         ความรูระดับนอย หมายถึง ไดคะแนนต่ำกวารอยละ 60 หรือ 0-17 คะแนน 

 ตอนที่ 3 พฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 เปนมาตราสวนประมาณคา (Rating Scale) 

ชนิด 5 ระดับ จำนวน 10 ขอ รายละเอียดดังนี้  

     ทุกคร้ัง หมายถึง ฉันปฏิบัตติรงกับขอความนั้น 6-7 วัน/สัปดาห 

 บอยคร้ัง หมายถึง ฉันปฏิบัติตรงกับขอความนั้น 4-5 วัน/สปัดาห 

 บางคร้ัง หมายถึง ฉันปฏิบัติตรงกับขอความนั้น 3 วัน/สปัดาห 

 นอยคร้ัง หมายถึง ฉันปฏิบัติตรงกับขอความนั้น 1-2 วัน/สปัดาห 

 ไมปฏิบัติเลย หมายถึง ฉันไมเคยปฏิบัติตรงกับขอความนั้นเลย 

การตรวจสอบความตรงเชิงเนื้อหา โดยนำแบบสอบถามที่สรางเสร็จแลวใหผู ทรงคุณวุฒิ จำนวน 3 ทาน 

ประกอบดวย นักวิชาการดานสาธารณสุข นักวิชาการดานสถิติ และนักวิชาการดานการวัดผลและประเมินผล พิจารณา

และตรวจสอบความตรงเชิงเนื้อหาเปนรายขอ เพื่อตรวจสอบถูกตองของเนื้อหาและความเหมาะสมของสำนวนภาษา 

โดยใชดัชนีความสอดคลอง IOC (Index of Congruence) ของ Rovinelli and Hambleton (1977) [12] มีสูตร        

ในการคำนวณ ดงันี้          IOC = ΣR/N 

                                       เมื่อ IOC แทน ดัชนีความสอดคลอง  

 ΣR แทน ผลรวมของคะแนนความคิดเห็นของผูเชี่ยวชาญ 

          N แทน จำนวนผูเชี่ยวชาญ 

การตรวจสอบคุณภาพของแบบสอบถาม โดยใชคาความเชื่อมั่น (Reliability) ดวยคาสัมประสิทธิ์แอลฟา

ของครอนบาค (Cronbach’s Alpha Method) Cronbach (1990) [13] มีสูตรในการคำนวณ ดังนี้ 

       
 ∑ α = −  −   

2
i

2
t

k S
1

k 1 S
 

                           เมื่อ  α  แทน สัมประสิทธิ์ความเชื่อมั่นของเคร่ืองมือ 

    k  แทน จำนวนขอของเคร่ืองมือ 

The 28th Annual Meeting in Mathematics (AMM2024)

506



 
 

              2
iS แทน ความแปรปรวนของคะแนนคำถามแตละขอ 

              2
tS แทน ความแปรปรวนของคะแนนรวมของผูตอบทั้งหมด  

ทั้งนี้ แบบสอบที่ใชมีคาความเชื่อมั่นเปน 0.70 โดยที่ดานความรูความเขาใจเกี่ยวกับโรคและการปองกัน     

โรคโควิด-19 มีคาความเชื ่อมั ่นมากกวา 0.71 และดานพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19            

มีคาความเชื่อมั่นมากกวา 0.89 หลังจากนั้นนำแบบสอบถามที่ไดไปดำเนินการขอจริยธรรมการวิจัยในมนุษยจาก

คณะกรรมการจริยธรรมการวิจัยในมนุษย มหาวิทยาลัยราชภัฏสุราษฎรธานี เอกสารรับรองเลขที่ SRU-EC2023/081 

เมื่อไดรับการรับรองจริยธรรมการวิจัยในมนุษยแลว จึงนำแบบสอบถามไปเก็บรวบรวมขอมูลกับกลุมตัวอยาง 
 

3.3 การวิเคราะหขอมูล 

ผูวิจัยใชสูตรในการวิเคราะหขอมูลของชูศรี วงษรัตนะ (2562) [14] โดยมีสูตรในการคำนวณ ดังนี้ 

 สูตร  รอยละ  =
f

P  X 100
n

 

        เมื่อ P แทน คารอยละ 

   f  แทน ความถ่ีที่ตองการแปลงเปนคารอยละ   

   n แทน จำนวนขอมูลทั้งหมด  

 สูตร  คาเฉลี่ย 
∑=

x
x  

n
 

        เมื่อ x    แทน คาเฉลี่ย 

   ∑ x แทน ผลรวมของขอมูลทั้งหมด  

    n   แทน จำนวนขอมูลทั้งหมด  

 สูตร  สวนเบี่ยงเบนมาตรฐาน 

n
2

i
i 1

(X X )

S  
n 1

=
−∑

=
−

 

 เมื่อ  S  แทน สวนเบี่ยงเบนมาตรฐาน  

   xi  แทน ขอมูลแตละตัว 

  x  แทน คาเฉลี่ย 

    n  แทน จำนวนขอมูลทั้งหมด  

   ∑ แทน ผลรวม  

 สูตร  ไควสแควร   
= =

−
χ = ∑∑

2r c
ij ij2

i 1 j 1 ij

(O E )
 

E
 

 เมื่อ  χ2   แทน คาไควสแควร มีองศาอิสระ (r-1)(c-1) 

        ijO  แทน ความถ่ีท่ีไดจากการสังเกตใน cell (i,j)  

   ijE   แทน ความถ่ีคาดหวังใน cell (i,j)  
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โดยมีรายละเอียดการวิเคราะหขอมูล ดังนี้  

 1. การวิเคราะหขอมูลทั่วไปของผูตอบแบบสอบถาม โดยการนับความถ่ีและคารอยละ 

 2. การวิเคราะหขอมูลความรูความเขาใจเก่ียวกับโรคและการปองกันโรค พฤติกรรมการปองกันการแพรระบาด

ของโรคโควิด-19 ของประชาชนในจังหวัดสุราษฎรธานี โดยการนับความถ่ีและคารอยละ 

 3. การวิเคราะหความสัมพันธระหวางขอมูลทั่วไปกับความรูความเขาใจเกี ่ยวกับโรคและการปองกันโรค 

พฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 ดวยการทดสอบไคสแควร (Chi-Square test)  
 

4  ผลการวิจัย  
 1. ขอมูลทั่วไปของกลุมตัวอยาง จำนวน 453 คน พบวาผู ตอบแบบสอบถามสวนใหญเปนเพศหญิง (รอยละ 

78.15) สวนใหญม ีอายุในช วง 50-59 ป (รอยละ 31.79) ในดานการศึกษาสวนใหญสำเร ็จการศ ึกษาใน                 

ระดับมัธยมศึกษา (รอยละ 41.28) สวนใหญประกอบอาชีพเกษตรกรรม/เกษตรกร (รอยละ 29.58) และสวนใหญ       

มีประวัติการไดรับโควิด-19 จำนวน 3 เข็ม มากที่สุด (รอยละ 47.46) ดังตารางที่ 1  

ตารางที่ 1 จำนวนและรอยละของผูตอบแบบสอบถาม   

ขอมูลท่ัวไป จำนวน รอยละ 

1. เพศ 

    ชาย 

    หญิง 

99 

354 

21.85 

78.15 

รวม 453 100 

2. อายุ 

    ต่ำกวา 20 ป 

    20-29 ป 

    30-39 ป 

    40-49 ป 

    50-59 ป 

   60 ปข้ึนไป 

 

21 

29 

39 

103 

144 

117 

 

4.64 

6.40 

8.61 

22.74 

31.79 

25.83 

รวม 453 100 

   

3. ระดับการศึกษา 

    ประถมศึกษา 

    มัธยมศึกษา 

    อนุปริญญาหรือเทียบเทา 

    ปริญญาตร ี

    ปริญญาตรีข้ึนไป 

 

151 

187 

34 

63 

18 

 

33.33 

41.28 

7.51 

13.91 

3.97 

รวม 453 100 
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ขอมูลท่ัวไป จำนวน รอยละ 

4. อาชีพ 

    รับจาง 

    เกษตรกรรม/เกษตรกร 

    คาขาย/ธุรกิจสวนตัว 

    พนักงานของรัฐ/รัฐวิสาหกิจ 

    ขาราชการ 

    นักเรียนนักศึกษา 

    แมบาน 

 

124 

134 

119 

26 

8 

21 

21 

 

27.37 

29.58 

26.27 

5.74 

1.77 

4.64 

4.64 

รวม 453 100 

 

 2. ผลการวิเคราะหความรูความเขาใจเกี่ยวกับโรคและการปองกันโรคโควิด-19 พบวา ผูตอบแบบสอบถาม   

สวนใหญมีความรูความเขาใจในระดับปานกลาง (รอยละ79.25) รองลงมามีความรูความเขาใจระดับมาก (รอยละ 

11.92) ดังตารางที่ 2 และตารางที่ 3  
 

ตารางที่ 2 จำนวนและรอยละของผูตอบแบบสอบถามที่ตอบถูกในดานความรูความเขาใจเก่ียวกับโรคโควิด-19   

ความรูความเขาใจเกี่ยวกับโรคโควิด-19 จำนวนผูตอบถูก รอยละ 

1. โรคโควิด-19 (COVID-19, ยอจาก Coronavirus disease 2019) เปนโรคตดิเช้ือ

ทางเดินหายใจท่ีเกิดจากไวรัสโคโรนา มีช่ือทางการวา SARS-CoV-2 

436 

 

96.25 

 

2. โรคโควิด-19 เริม่ตนระบาดครั้งแรกท่ีเมืองอูฮั่น สาธารณรัฐประชาชนจีน  

และแพรระบาดไปยังประเทศอ่ืนๆ ท่ัวโลก 

444 

 

98.01 

3. โรคโควิด-19 สามารถแพรกระจายผานการสมัผสักับผูติดเช้ือ ผานทางละออง

เสมหะจากการไอ จาม น้ำมูก น้ำลายได 

445 

 

98.23 

 

4. โรคโควิด-19 สามารถแพรเช้ือผานสินคา ท่ีผลติในประเทศท่ีมีรายงานการระบาด 183 40.40 

5. โรคโควิด-19 แพรกระจายไดแคในอากาศแหงหนาวและไมแพรในอากาศ รอนช้ืน 228 50.33 

6. โรคโควิด-19 สามารถตดิตอกันโดยการสัมผัสเทาน้ัน 146 32.23 

7. โรคโควิด-19 เปนโรคท่ีอันตรายและแพรระบาดไปในวงกวางไดอยางรวดเร็ว  

หากไดรับเช้ือ จะสามารถนำเช้ือไปติดกับยังผูอ่ืนไดทันที 

395 87.20 

 

5. ประวัติการไดรับวัคซีนโควิด-19 

     ไมไดฉีด 

     ฉีด 1 เข็ม 

     ฉีด 2 เข็ม 

     ฉีด 3 เข็ม 

     ฉีด 4 เข็ม 

     มากกวา 4 เข็ม 

 

12 

21 

139 

215 

56 

10 

 

2.65 

4.64 

30.68 

47.46 

12.36 

2.21 

รวม 453 100 
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ความรูความเขาใจเกี่ยวกับโรคโควิด-19 จำนวนผูตอบถูก รอยละ 

8. ระยะฟกตัวของโรคโควิด-19 มรีะยะเวลา 2-14 วัน 406 89.62 

9. ระยะฟกตัวสามารถแพรเช้ือได ชวง 2-3 วันกอนท่ีจะแสดงอาการ แตระยะฟกตัว

แตละคนอาจตางกันออกไป จึงควรกักตัวทันทีหลังเสี่ยงรับเช้ือ 

30 

 

6.62 

 

10. ผูท่ีไดรับเช้ือโควิด-19 จะไมแสดงอาการจนกวาจะพนระยะฟกตัวของเช้ือ 317 69.98 

11. อาการของผูปวยโควิด-19 อาการท่ัวไปคลายไขหวัดใหญ เชน มไีขสูง ไอ  

หายใจลำบาก 

420 92.72 

12. ผูปวยโควิด-19 เสียชีวิตเน่ืองจากระบบหายใจลมเหลวเพราะปอดถูกทำลาย 419 92.49 

13. ผูปวยโควิด-19 จำนวนมากไมมีอาการใดๆ และสามารถฟนตัวจนหายเองได 239 52.76 

14. หลังหายปวยจากการติดเช้ือโควิด-19 แลว ผูปวยจากโควิด-19จะมีภมูิคุมกัน 

ท่ีเกิดข้ึนตามธรรมชาติอยู และภูมคิุมกันน้ี จะปองกันไมใหติดเช้ือซ้ำตลอดชีวิต 

286 63.13 

15. การมีระบบภูมิคุมกันท่ีดี สามารถชวยรักษาโรคโควิด-19 (COVID-19) ได 

โดยไมจำเปนตองทานยา 

198 43.71 

16. Antigen Test Kit (ATK) หรอืชุดตรวจโควิด-19 แบบเรงดวน ดวยการ Swab 

เก็บตัวอยางสารคัดหลั่งทางจมูก หรือเก็บจากคอ จำเปนตองผานการตรวจจาก

โรงพยาบาลเทาน้ัน 

243 53.64 

17. ควรตรวจหาเช้ือโควิด-19 ดวย ATK ดวน เมื่อมีอาการมีไข ไอ ลิ้นไมรับรส  

ปวดเมื่อยตามรางกาย ปวดศีรษะ หายใจหอบ หายใจลำบาก หรือมปีระวัติเดินทาง

หรือไปในสถานท่ีเสี่ยง พักอาศัย หรืออยูรวมบานกับผูตดิเช้ือโควิด-19 

431 

 

95.14 

 

18. ปจจุบันยังไมมียาท่ีมีผลในการตานไวรัสโรคโควิด-19 โดยเฉพาะ 126 27.81 

19. การฉีดวัคซีนปองกันโรคโควิด-19 สามารถลดการแพรระบาด ลดความรุนแรง 

ของอาการปวย และลดการเสียชีวิตได 

407 89.85 

20. ควรฉีดวัคซีนโควิด-19 จำนวน 2 เข็มเปนพ้ืนฐาน หลังจากน้ีสามารถฉีดได 

ทุก 4 เดือน เพ่ือลดโอกาสติดเช้ือและความรุนแรงของโรค 

309 68.21 

 

ความรูความเขาใจเกี่ยวกับการปองกันโรคโควิด-19 จำนวนผูตอบถูก รอยละ 

21. การใสหนากากอนามัยท่ีถูกตอง ปองกันความเสี่ยงจากการตดิโรคโควิด-19 ได 

22. การใสหนากากอนามัยท่ีไมถูกวิธี เปนสาเหตุใหมีโอกาสติดเช้ือโรคโควิด-19 มากข้ึน 

23. หลังจากไดรับการฉีดวัคซีนปองกันโรคโควิด-19 แลวไมจำเปนตองสวมหนากากอนามัย 

24. ควรเวนระยะหางจากผูปวยตดิเช้ือหรือผูท่ีมีอาการอยางนอย 1 เมตร 

25. การรักษาระยะหางจากผูอ่ืนในพ้ืนท่ีแออัดสามารถลดการแพรเช้ือได  

จึงไมจำเปนตองสวมหนากากอนามัย 

26. ลางมือดวยสบูและน้ำหรือใชแอลกอฮอลสำหรับลางมือบอย ๆ โดยเฉพาะ 

หลังสัมผัสกับผูปวยหรือขาวของเครื่องใชของผูปวย 

27. ลางมือใหสม่ำเสมอดวยสบู หรือแอลกอฮอลเจลอยางนอย 20 วินาที  

ความเขมขนของแอลกอฮอลไมต่ำกวา 50% 

424 

103 

357 

360 

294 

 

421 

 

130 

93.60 

22.74 

78.81 

79.47 

64.90 

 

92.94 

 

28.70 
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ความรูความเขาใจเกี่ยวกับการปองกันโรคโควิด-19 จำนวนผูตอบถูก รอยละ 

28. การใชชอนกลางประจำตัวเมือ่ตองรับประทานอาหารรวมกับผูอ่ืน เพ่ือลดความเสี่ยง

ในการติดเช้ือไวรัสจากการทานอาหารกับผูอ่ืน 

29. การรับประทานอาหารท่ีปรุงสกุใหมๆ ดวยความรอน ชวยลดความเสีย่ง 

โรคโควิด-19 

30. เลือกทานอาหารท่ีมีประโยชน และคณุคาทางอาหารอยูเสมอเพ่ือชวย              

เรื่องระบบภูมิคุมกันใหทำงานไดอยางมีประสิทธิภาพ 

431 

 

424 

 

430 

95.14 

 

93.60 

 

94.92 

 

ตารางที่ 3 ระดับความรูความเขาใจเก่ียวกับโรคและการปองกันโรคโควิด-1 9 ของผูตอบแบบสอบถาม  

ระดับความรู จำนวน  รอยละ 

   ระดับสูง 

   ระดับปานกลาง 

   ระดับนอย 

54 

359 

40 

11.92 

79.25 

8.83 

 

3. ผลการศึกษาพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 ของผูตอบแบบสอบถาม พบวา     

มีพฤติกรรมการปฏิบัติทุกครั้งมากที่สุด (รอยละ 67.33) เมื่อพิจารณาเปนรายขอ พบวา มีพฤติกรรมการปองกัน   

การแพรระบาดของโรคโควิด-19 ดีที่สุดคือ การสวมหนากากอนามัยทุกคร้ังเมื่อไมสบายหรือออกจากบาน รองลงมา

คือ การสังเกตลักษณะอาการที่เก่ียวของกับการติดเชื้อโรคโควิด-19 ของตนเองเปนประจำ และพฤติกรรมการปองกัน

การแพรระบาดของโรคโควิด-19 นอยกวาทุกขอคือ การหลีกเลี่ยงการใชมือสัมผัสใบหนา ตา จมูก โดยไมจำเปน     

ดังตารางที่ 4 และตารางที่ 5  
 

ตารางที่ 4 จำนวนและรอยละของกลุมตัวอยางจำแนกตามพฤติกรรมการปองกันโรคโควิด-19  

ขอปฏิบัติ 
ความถี่ในการปฏิบัติ 

ทุกคร้ัง บอยคร้ัง บางคร้ัง นานๆ คร้ัง ไมปฏิบัติเลย 

1. สวมหนากากอนามัยทุกครั้งเมือ่ไมสบาย 

หรือออกจากบาน 

307 

(67.77) 

97 

(21.41) 

47 

(10.38) 

2 

(0.44) 

0 

(0.00) 

2. เมื่อไอ หรือจามจะใชกระดาษทิชชู หรือผาปดปาก

หรือจมูก 

273 

(60.26) 

145 

(32.01) 

33 

(7.28) 

2 

(0.44) 

0 

(0.0) 

3. หลีกเลี่ยงการใชมือสัมผัสใบหนา ตา จมูก  

โดยไมจำเปน 

203 

(44.81) 

159 

(35.10) 

80 

(17.66) 

10 

(2.21) 

1 

(0.22) 

4. หลีกเลี่ยงท่ีจะเขาไปในท่ีท่ีมผีูคนหนาแนนแออัด

หรือพ้ืนท่ีปด 

228 

(50.33) 

141 

(31.13) 

77 

(17.00) 

7 

(1.55) 

0 

(0.0) 

5. เวนระยะหางจากผูปวยติดเช้ือหรือผูท่ีมีอาการ 

อยางนอย 1 เมตร 

275 

(60.71) 

102 

(22.52) 

71 

(15.67) 

4 

(0.88) 

1 

(0.22) 

6. ลางมือดวยสบู หรือแอลกอฮอล หลังจากสัมผสั

สิ่งของ หรือกลับจากขางนอก 

287 

(63.36) 

107 

(23.62) 

56 

(12.36) 

3 

(0.66) 

0 

(0.0) 
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ขอปฏิบัติ 
ความถี่ในการปฏิบัติ 

ทุกคร้ัง บอยคร้ัง บางคร้ัง นานๆ คร้ัง ไมปฏิบัติเลย 

7. แยกของใชสวนตัว และหลีกเลีย่งการใชของ 

รวมกับผูอ่ืน 

282 

(62.25) 

130 

(28.70) 

39 

(8.61) 

2 

(0.44) 

(0.00) 

0 

8. เปลี่ยนเสื้อผาหรือการอาบน้ำทันที เมื่อกลับมา 

จากขางนอก 

259 

(57.17) 

109 

(24.06) 

81 

(17.88) 

4 

(0.88) 

0 

(0.00) 

9. สังเกตลักษณะอาการท่ีเก่ียวของกับการติดเช้ือโรค

โควิด-19 ของตนเองเปนประจำ เชน การไอ เจ็บ คอ 

มีไข และการหายใจหอบเหน่ือย เปนตน 

298 

(65.78) 

132 

(29.14) 

18 

(3.97) 

1 

(0.22) 

4 

(0.88) 

10. ดูแลสุขภาพตัวเองและปองกันตัวเองอยูสม่ำเสมอ 

เชน ออกกำลังกายเปนประจำ พกหนากากอนามัย 

และเจลแอลกอฮอลติดตัวหลังออกจากบาน 

238 

(52.54) 

 

138 

(30.46) 

 

68 

(15.01) 

 

4 

(0.88) 

 

5 

(1.10) 

 

 

ตารางที่ 5 จำนวนและรอยละของกลุมตัวอยางจำแนกตามระดบัพฤติกรรมการปองกันการระบาดของโรคโควิด-19 

ระดับพฤติกรรมการปองกัน จำนวน  รอยละ 

   ปฏิบัติทุกครั้ง 

   ปฏิบัติบอยครั้ง 

   ปฏิบัติบางครั้ง 

   ปฏิบัตินานๆ ครั้ง 

   ไมปฏิบัติเลย 

305 

127 

21 

0 

0 

67.33 

28.04 

4.63 

0.00 

0.00 

  

 4. การศึกษาความสัมพันธระหวางขอมูลทั่วไปกับระดับความรูความเขาใจเก่ียวกับโรคและการปองกันโรคโควิด-19 

ดวยการทดสอบไคสแควร กำหนดสมมติฐานในการทดสอบ ดังนี้  

   0H : ขอมูลทั่วไปของผูตอบแบบสอบถามไมสงผลตอระดับความรูความเขาใจเก่ียวกับโรคและการปองกันโรคโควิด-19  

   1H : ขอมูลทั่วไปของผูตอบแบบสอบถามสงผลตอระดับความรูความเขาใจเก่ียวกับโรคและการปองกันโรคโควิด-19 

 ผลการทดสอบ พบวา ขอมูลเพศกับประวัติการไดรับวัคซีนโควิด-19 ที่แตกตางกันจะสงผลตอระดับความรู   

ความเขาใจเกี่ยวกับการปองกันโรคโควิด-19 สวนขอมูลอายุ ระดับการศึกษา และอาชีพ ไมสงผลตอระดับความรู 

ความเขาใจเก่ียวกับโรคโควิด-19 อยางมีนัยสำคัญทางสถิติที่ระดับ 0.05 ดังตารางที่ 6 
 

ตารางที่ 6 ผลการวิเคราะหความสัมพันธระหวางขอมูลทั่วไปกับระดับความรูความเขาใจเกี่ยวกับโรคและการปองกัน       

โรคโควิด-19 ดวยสถิติทดสอบไคสแควร 

ขอมูลท่ัวไป 
ระดับความรูความเขาใจ 2χ  

(df) 

p-value 

สูง ปานกลาง ต่ำ 

เพศ 

    ชาย 

    หญิง 

 

66 (14.57) 

278 (61.37) 

 

32 (7.06) 

73 (16.11) 

 

1 (0.22) 

3 (0.66) 

 

19.87 

(7) 

 

0.006* 
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ขอมูลท่ัวไป 
ระดับความรูความเขาใจ 2χ  

(df) 

p-value 

สูง ปานกลาง ต่ำ 

อายุ 

    ต่ำกวา 20 ป 

    20-29 ป 

    30-39 ป 

    40-49 ป 

    50-59 ป 

    60 ปข้ึนไป 

 

15 (3.31) 

20 (4.42) 

32 (7.06) 

83 (18.32) 

108 (23.84) 

86 (18.98) 

 

6 (1.32) 

9 (1.99) 

6 (1.32) 

19 (4.19) 

36 (7.95) 

29 (6.40) 

 

0 (0.00) 

0 (0.00) 

1 (0.22) 

1 (0.22) 

0 (0.00) 

2 (0.44) 

 

32.42 

(35) 

 

 

 

 

 

0.594 

 

 

 

 

 

ระดับการศึกษา 

    ประถมศึกษา 

    มัธยมศึกษา 

    อนุปริญญาหรือเทียบเทา 

    ปริญญาตร ี

    ปริญญาตรีข้ึนไป 

 

112 (24.72) 

145 (32.01) 

28 (6.18) 

45 (9.93) 

14 (3.09) 

 

39 (8.61) 

40 (8.83) 

6 (1.32) 

17 (3.75) 

3 (0.66) 

 

0 (0.00) 

2 (0.44) 

0 (0.00) 

1 (0.22) 

1 (0.22) 

 

28.09 

(28) 

 

 

 

 

0.460 

 

 

 

 

อาชีพ 

    รับจาง 

    เกษตรกรรม/เกษตรกร 

    คาขาย/ธุรกิจสวนตัว 

    พนักงานของรัฐ/รัฐวิสาหกิจ 

    ขาราชการ 

    นักเรียน/นักศึกษา 

    แมบาน 

 

95 (20.97) 

104 (22.96) 

86 (18.98) 

20 (4.42) 

5 (1.10) 

16 (3.53) 

18 (3.97) 

 

28 (6.18) 

28 (6.18) 

32 (7.06) 

6 (1.32) 

3 (0.66) 

5 (1.10) 

3 (0.66) 

 

1 (0.22) 

2 (0.44) 

1 (0.22) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

 

34.72 

(42) 

 

 

0.780 

 

ประวัติการไดรับวัดซีนโควิด-19 

    ไมไดฉีด 

    ฉีด 1 เข็ม 

    ฉีด 2 เข็ม 

    ฉีด 3 เข็ม 

    ฉีด 4 เข็ม 

    มากกวา 4 เข็ม 

 

10 (2.21) 

10 (2.21) 

78 (17.22) 

176 (38.85) 

46 (10.15) 

8 (1.77) 

 

2 (0.44) 

10 (2.21) 

44 (9.71) 

38 (8.39) 

9 (1.99) 

2 (0.44) 

 

0 (0.00) 

1 (0.22) 

1 (0.22) 

1 (0.22) 

1 (0.22) 

0 (0.00) 

 

66.11 

(35) 

 

0.001* 

 

* ระดับนัยสำคัญทางสถิติท่ีระดับ 0.05 
 

 5. การศึกษาความสัมพันธระหวางขอมูลทั่วไปกับพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19       

ดวยการทดสอบไคสแควร กำหนดสมมติฐานในการทดสอบ ดังนี้ 

    0H : ขอมูลทั่วไปของผูตอบแบบสอบถามไมสงผลตอระดับพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 

    1H : ขอมูลทั่วไปของผูตอบแบบสอบถามสงผลตอระดับพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 
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 ผลการทดสอบพบวา ขอมูลเพศ อายุ ระดับการศึกษา และอาชีพที่แตกตางกันจะสงผลตอพฤติกรรมการปองกัน

การแพรระบาดของโรคโควิด-19 สวนขอมูลประวัติการไดรับวัคซีนโควิด-19 ไมสงผลตอพฤติกรรมการปองกัน       

การแพรระบาดของโรคโควิด-19 อยางมีนัยสำคัญทางสถิติที่ระดับ 0.05 ดังตารางที่ 7  
 

ตารางที ่ 7 ผลการวิเคราะหความสัมพันธระหวางขอมูลทั ่วไปกับระดับพฤติกรรมการปองกันการแพรระบาด          

ของโรคโควิด-19 ดวยสถิติทดสอบไคสแควร  

ขอมูลท่ัวไป 

ระดับพฤติกรรมการปองกัน 2χ  

(df) 

p-value 

ทุกคร้ัง บอยคร้ัง บางคร้ัง นานๆ คร้ัง ไมปฏิบัติเลย   

เพศ 

   ชาย 

   หญิง 

 

54 (11.92) 

251 (55.41) 

 

40 (8.83) 

87 (19.20) 

 

5 (1.10) 

16 (3.53) 

 

0 (0.00) 

0 (0.00) 

 

0 (0.00) 

0 (0.00) 

 

34.95 

(20) 

 

0.020* 

 

อายุ 

   ต่ำกวา 20 ป 

   20-29 ป 

   30-39 ป 

   40-49 ป 

   50-59 ป 

   60 ปข้ึนไป 

 

16 (3.53) 

18 (3.97) 

18 (3.97) 

71 (15.67) 

102 (22.52) 

80 (17.66) 

 

4 (0.66) 

10 (2.21) 

20 (4.41) 

26 (5.74) 

36 (7.95) 

31 (6.84) 

 

1 (0.22) 

1 (0.22) 

1 (0.22) 

6 (1.32) 

6 (1.32) 

6 (1.32) 

 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

 

145.13 

(100) 

 

 

 

0.002* 

 

ระดับการศึกษา 

   ประถมศึกษา 

   มัธยมศึกษา 

   อนุปริญญา 

   ปริญญาตร ี

   ปริญญาตรี ข้ึนไป 

 

103 (22.74) 

124 (27.37) 

20 (4.41) 

43 (9.49) 

15 (3.31) 

 

41 (9.05) 

55 (12.14) 

10 (2.21) 

18 (3.97) 

3 (0.66) 

 

7 (1.54) 

8 (1.77) 

4 (0.88) 

2 (0.44) 

0 (0.00) 

 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

 

104.19 

(80) 

 

 

 

0.036* 

 

 

 

อาชีพ 

   รับจาง 

   เกษตรกร 

   คาขาย/ธุรกิจสวนตัว 

   พนักงานของรัฐ 

   ขาราชการ 

   นักเรียน/นักศึกษา 

   แมบาน 

 

88 (19.43) 

86 (18.98) 

77 (17.00) 

17 (3.75)  

6 (1.32) 

18 (3.97) 

13 (2.87) 

 

32 (7.06) 

43 (9.49) 

34 (7.50) 

8 (1.77)  

2 (0.44) 

2 (0.44) 

6 (1.32) 

 

4 (0.88) 

5 (1.10) 

8 (1.77) 

1 (0.22)  

0 (0.00) 

1 (0.22) 

2 (0.44) 

 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

 

212.16 

(120) 

 

 

 

 

0.000* 
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ขอมูลท่ัวไป 

ระดับพฤติกรรมการปองกัน 2χ  

(df) 

p-value 

ทุกคร้ัง บอยคร้ัง บางคร้ัง นานๆ คร้ัง ไมปฏิบัติเลย   

ประวัติการไดรับวัคซีนโควิด-19 

    ไมไดฉีด 

    ฉีด 1 เข็ม 

    ฉีด 2 เข็ม 

    ฉีด 3 เข็ม 

    ฉีด 4 เข็ม 

    มากกวา 4 เข็ม 

9 (1.99) 

11 (2.42) 

97 (21.41) 

141 (31.12) 

42 (9.27) 

5 (0.10) 

3 (0.66) 

9 (1.99) 

39 (8.61) 

61 (13.46) 

10 (2.21) 

5 (1.10) 

0 (0.00) 

1 (0.22) 

3 (0.66) 

13 (2.87) 

4 (0.88) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

0 (0.00) 

123.71 

(100) 

 

 

 

0.054 

 

 

 

* ระดับนัยสำคัญทางสถิติท่ีระดับ 0.05 

 

5 สรุป อภิปรายผลและขอเสนอแนะ 

5.1 สรุปและอภิปรายผล 

  1. ผลการศึกษาความรู ความเขาใจเกี ่ยวกับโรคและการปองกันโรคโควิด-19 พบวา ประชาชนใน           

จังหวัดสุราษฎรธานี มีความรูความเขาใจเกี่ยวกับโรคและการปองกันโรคโควิด-19 ในระดับปานกลาง (รอยละ 

79.25) อภิปรายผลไดวา ชวงเวลาของการศึกษาครั้งนี้เปนชวงหลังการระบาดใหญที่ประชาชนไดรับขอมูลขาวสาร

เกี่ยวกับโรคและการปองกันโรคไมเขมขน ซึ่งสอดคลองกับงานวิจัยของบงกช โมระสกุล และคณะ [7] ไดศึกษา

ความรูและพฤติกรรมการปองกันโรคโควิด-19 ของนักศึกษาพยาบาลชั้นปที่ 1 วิทยาลัยนานาชาติเซนตเทเรซา และ

วิทยาลัยเซนตหลุยส พบวานักศึกษาพยาบาลชั้นปที่ 1 มีความรูความเขาใจเก่ียวกับโรคโควิด-19 ในระดับปานกลาง 

ซึ่งแตกตางจากงานวิจัยของจันทิมา หาวหาญ และคณะ [6] ไดศึกษาความรูความเขาใจและพฤติกรรมการปฏิบัติ

ตนเกี่ยวกับการปองกันโรคโควิด-19 (COVID-19) ของประชาชนในจังหวัดภูเก็ต ผลการศึกษาพบวา ระดับความรู

ความเขาใจเกี่ยวกับการปองกันโรคโควิด-19 (COVID-19) ของประชาชนในจังหวัดภูเก็ต อยูในระดับมาก ซึ่งเปน   

ผลการศึกษาในชวงการระบาดหนักของโรคโควิด-19  

 2. ผลการศึกษาพฤติกรรมการปองกันการแพรระบาดของโรคโควิด-19 ของประชาชนในจังหวัดสุราษฎรธานี 

พบวา มีพฤติกรรมการปฏิบัติทุกครั ้งมากที่สุด (รอยละ 67.33) เมื ่อพิจารณาเปนรายขอ พบวา ประชาชน             

มีพฤติกรรมการปองกันการแพรระบาดที่ดีที่สุดคือ การสวมหนากากอนามัยทุกครั้งเมื่อไมสบายหรือออกจากบาน 

รองลงมาคือ การสังเกตลักษณะอาการที่เก่ียวของกับการติดเชื้อโรคโควิด-19 ของตนเองเปนประจำ และพฤติกรรม

การปองกันการแพรระบาดที่นอยกวาทุกขอคือ การหลีกเลี ่ยงการใชมือสัมผัสใบหนา ตา จมูก โดยไมจำเปน        

ซึ ่งสอดคลองกับงานวิจ ัยของธานี กล อมใจ และคณะ [9] ได ศ ึกษาความรู และพฤติกรรมของประชาชน              

เรื่องการปองกันตนเองจากการติดเชื้อไวรัสโคโรนาสายพันธุใหม 2019 พบวา พฤติกรรมการปองกันตนเองจาก    

การติดเชื้อไวรัสโคโรนาสายพันธุใหม 2019 ในภาพรวมอยูในระดับมาก  

 3. ผลศึกษาความสัมพันธระหวางขอมูลทั่วไปกับความรูความเขาใจเก่ียวกับโรค การปองกันโรค และพฤติกรรม

การปองกันการแพรระบาดของโรคโควิด-19 ของประชาชนในจังหวัดสุราษฎรธานี พบวา เพศและประวัติการไดรับ

วัคซีนโควิด-19 สงผลตอระดับความรู ความเขาใจเกี ่ยวกับโรคและการปองกันโรคโควิด-19 อภิปรายผลไดวา 
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ประชาชนที่ไดรับการฉีดวัคซีนโควิด-19 จะมีความตระหนักรูเก่ียวกับโรคและสวนใหญจะไดรับความรูเก่ียวกับโรคและ

การปองกันโรคพรอมๆ กับการไดรับวัคซีนไปดวย ในขณะที่เพศ อายุ ระดับการศึกษาและอาชีพสงผลตอพฤติกรรม

การปองกันการแพรระบาดของโรคโควิด-19 สวนขอมูลประวัติการไดรับวัคซีนโควิด-19 ไมสงผลตอพฤติกรรมการ

ปองกันการแพรระบาดของโรคโควิด-19 อภิปรายผลไดวา ประชาชนที ่ไดรับวัคซีนตามจำนวนที ่หนวยงาน            

ดานสาธารณสุขใหขอมูล ยอมมีความมั่นใจตอประสิทธิภาพของวัคซีนโควิด-19 ที่ไดรับ ทำใหพฤติกรรมการปองกัน

การแพรระบาดของโรคโควิด-19 ไมแตกตางกัน  
 

5.2 ขอเสนอแนะ  

 1. การวิจัยคร้ังตอไป ควรเพิ่มการศึกษาตัวแปรเก่ียวกับการแพรระบาดของโรคโควิด-19 ในจังหวัดสุราษฎรธานี 

เชน ความรูความเขาใจและพฤติกรรมการปองกันโรคของกลุมบุคลากรปฏิบัติงานดานสาธารณสุขในพื้นที่ เชน 

อาสาสมัครสาธารณสุขประจำหมูบาน (อสม.) หรือนักทองเที่ยวตางชาติที่เดินทางเขามาในจังหวัดสุราษฎรธานี เปนตน   

 2. หนวยงานดานสาธารณสุขในพื้นที่จังหวัดสุราษฎรธานี สามารถนำผลการวิจัยไปวางแผน สงเสริมและ

สนับสนุนการจัดกิจกรรมดานสาธารณสุขเกี ่ยวกับการปองกันและเฝาระวังการแพรระบาดของโรคโควิด-19       

ในชวงหลังการระบาดใหญในพื้นที่ได  
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77 รศ. ดร.เอธัสวัฒน์ คำมณี มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่
78 ผศ. ดร.กิตติศักดิ์ ชุมพงศ์ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่
79 ผศ. ดร.นัฐดา จิเบ็ญจะ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่
80 ผศ. ดร.ภานุพงศ์ วิจิตรคุณากร มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่
81 รศ. ดร.อนิรุทธ ผลอ่อน มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี
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86 รศ. ดร.นพรัตน์ โพธิ์ชัย สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร-
ลาดกระบัง

87 ผศ. ดร.พุทธา สักกะพลางกูร สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร-
ลาดกระบัง

ฝ่ายจัดทำเอกสาร
1 อ. ดร.กฤษดา นารอง
2 อ. ดร.วรยุทธ วงษ์นิล
3 อ. ดร.วิชิต สมบัติ
4 อ.ธวัชชัย สลางสิงห์
5 อ.ธนาตย์ เดโชชัยพร
6 อ. ดร.ไพชยนต์ คงไชย
7 ผศ. ดร.วีรยุทธ นิลสระคู
8 รศ. ดร.รตนกร วัฒนทวีกุล
9 ผศ.รตี โบจรัส
10 นายนัฐพงษ์ สืบสุข
11 นางสาวพูลพิศมัย ไพศาลธรรม
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ประเทศไทย
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5. ผศ. ดร.กนกพร ช่างทอง

6. ผศ. ดร.คณิศา โชติจันทึก

7. ผศ. ดร.ชัชวิน นามมั่น

8. ผศ. ดร.ชิดหทัย เพชรช่วย

9. ผศ. ดร.พัชรี วงษาสนธิ์

10. ผศ. ดร.ไพรินทร์ สุวรรณศรี

11. ผศ. ดร.วีรยุทธ นิลสระคู

12. ผศ. ดร.สุพจน์ สีบุตร

13. ผศ.รตี โบจรัส

14. อ. ดร.กฤษดา นารอง

15. อ. ดร.จิรัชยา ใจสะอาดซื่อตรง

16. อ. ดร.ธนวิทย์ จีรุพันธ์

17. อ. ดร.นงคราญ สระโสม

18. อ. ดร.ไพชยนต์ คงไชย
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21. อ. ดร.ศักดิ์ดา น้อยนาง

22. อ. ดร.สมปอง เวฬุวนาธร

23. อ.กุลธรา มหาดิลกรัตน์

24. อ.ธนาตย์ เดโชชัยพร

25. อ.ธวัชชัย สลางสิงห์

26. นางสาวจิราภรณ์ ทองสุด

27. นางสาวดุจฤทัย สหพงษ์

28. นางสาวพูลพิศมัย ไพศาลธรรม

29. นางสาวมลฤดี กาญจนวงษ์

30. นางสาวลลิตภัทรา ริมทอง

31. นางสาววิศัลยา จันทร์เกษมสุข

32. นางสาวศิรดาภักดิ์ พิทักษา

33. นางสาวสุตินทรณ์ อาชญาทา

34. นางสาวสุนิสา นาครินทร์

35. นางสาวอมรรัตน์ วะสุรีย์

36. นางกานต์อนงค์ นิตรักษ์

37. นางเกษมณี โสภาณเวช

38. นางทุติยาภรณ์ วีระกุล

39. นางนันทนา พิมพ์พันธ์

40. นางพิกุล ยิ่งยง

41. นางเรไร กาฬบุตร

42. นางวรุณี ไชยกาล

43. นางศันสนีย์ สืบสุข

44. นางศิริพร ระวี

45. นางสมหญิง บุตรจอมชัย

46. นางสุกัญญา พิมพ์บุญมา

47. นายกมล คำพิบูลย์

48. นายชาติชนะ โมฬีชาติ

49. นายธนศิลป์ ทองไทย

50. นายนราธิป ธรรมเรือง

51. นายนัฐพงษ์ สืบสุข

52. นายประจักกิจ ระวี

53. นายภูมรินทร์ ทองแดง

54. นายรัชต์วิภพ มีทรัพย์รุ่งโรจน์

55. นายวิชิต คำภูบาล

56. นายศุภชัย เชื้อพันธ์

57. นายอภัยวรรณ สุระพร

58. นายอภิรักษ์ ทูลภิรมย์
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